首页 > 最新文献

Experiments in Fluids最新文献

英文 中文
Fluid wetting and penetration characteristics in T-shaped microchannels T 型微通道中的流体润湿和渗透特性
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-11-09 DOI: 10.1007/s00348-024-03906-w
Huijie Zhang, Anja Lippert, Ronny Leonhardt, Tobias Tolle, Luise Nagel, Tomislav Marić

A thorough understanding of media tightness in automotive electronics is crucial for ensuring more reliable and compact product designs, ultimately improving product quality. Concerning the fundamental characteristics of fluid leakage issues, the dynamic wetting and penetration behavior on small scales is of special interest and importance. In this work, four T-shaped microchannels with one inlet and two outlets are experimentally investigated in terms of contact angle dynamics and interface movement over time, generating novel insight into the wetting mechanisms and fluid distribution. With a main channel width of 1 mm, a crevice width of (w = {0.3},hbox {mm}, {0.4},hbox {mm}) and a rounding edge radius of (r = {0.1},hbox {mm}, {0.2},hbox {mm}), the geometrical effects on the fluid penetration depth in the crevice and the interface edge pinning effect are analyzed quantitatively using an automated image processing procedure. It is found that the measured dynamic contact angles in all parts can be well described by molecular kinetic theory using local contact line velocities, even with local surface effects and abrupt geometry changes. Moreover, a smaller crevice width, a sharper edge and a larger flow velocity tend to enhance the interface pinning effect and prevent fluid penetration into the crevice. The rounding radius has a more significant effect on the interface pinning compared with crevice width. The experimental data and image processing algorithm are made publicly available.

透彻了解汽车电子产品中的介质密封性对于确保更可靠、更紧凑的产品设计,最终提高产品质量至关重要。关于流体泄漏问题的基本特征,小尺度上的动态润湿和渗透行为具有特殊的意义和重要性。在这项研究中,我们对四个具有一个入口和两个出口的 T 型微通道进行了接触角动态和界面随时间移动的实验研究,从而对润湿机制和流体分布有了新的认识。主通道宽度为 1 毫米,缝隙宽度为(w = {0.3}hbox {mm}, {0.4}hbox {mm}),圆边半径为(r = {0.1}hbox {mm}, {0.2}hbox {mm}),利用自动图像处理程序定量分析了缝隙中流体渗透深度的几何效应和界面边缘的钉扎效应。结果发现,即使存在局部表面效应和几何形状的突然变化,所有部分测得的动态接触角都可以用分子动力学理论的局部接触线速度很好地描述。此外,较小的缝隙宽度、较尖锐的边缘和较大的流速往往会增强界面针销效应,防止流体渗入缝隙。与裂缝宽度相比,圆角半径对界面针化的影响更为显著。实验数据和图像处理算法已公布于众。
{"title":"Fluid wetting and penetration characteristics in T-shaped microchannels","authors":"Huijie Zhang,&nbsp;Anja Lippert,&nbsp;Ronny Leonhardt,&nbsp;Tobias Tolle,&nbsp;Luise Nagel,&nbsp;Tomislav Marić","doi":"10.1007/s00348-024-03906-w","DOIUrl":"10.1007/s00348-024-03906-w","url":null,"abstract":"<div><p>A thorough understanding of media tightness in automotive electronics is crucial for ensuring more reliable and compact product designs, ultimately improving product quality. Concerning the fundamental characteristics of fluid leakage issues, the dynamic wetting and penetration behavior on small scales is of special interest and importance. In this work, four T-shaped microchannels with one inlet and two outlets are experimentally investigated in terms of contact angle dynamics and interface movement over time, generating novel insight into the wetting mechanisms and fluid distribution. With a main channel width of 1 mm, a crevice width of <span>(w = {0.3},hbox {mm}, {0.4},hbox {mm})</span> and a rounding edge radius of <span>(r = {0.1},hbox {mm}, {0.2},hbox {mm})</span>, the geometrical effects on the fluid penetration depth in the crevice and the interface edge pinning effect are analyzed quantitatively using an automated image processing procedure. It is found that the measured dynamic contact angles in all parts can be well described by molecular kinetic theory using local contact line velocities, even with local surface effects and abrupt geometry changes. Moreover, a smaller crevice width, a sharper edge and a larger flow velocity tend to enhance the interface pinning effect and prevent fluid penetration into the crevice. The rounding radius has a more significant effect on the interface pinning compared with crevice width. The experimental data and image processing algorithm are made publicly available.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03906-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase changes in burning precursor-laden single droplets leading to puffing and micro-explosion 燃烧前体单液滴中的相变导致膨化和微爆炸
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-11-07 DOI: 10.1007/s00348-024-03895-w
Benjamin A. Südholt, Arne Witte, Greg J. Smallwood, Sebastian A. Kaiser, Lutz Mädler, Niklas Jüngst

When producing metal-oxide nanoparticles via flame spray pyrolysis, precursor-laden droplets are ignited and undergo thermally induced disintegration, called ‘puffing’ and ‘micro-explosion’. In a manner that is not fully understood, these processes are associated with the formation of dispersed phases inside the droplets. This work aims at visualizing the interior of precursor-laden burning single droplets via diffuse back illumination and microscopic high-speed imaging. Solutions containing iron(III) nitrate nonahydrate (INN) and tin(II) 2-ethylhexanoate (Sn-EH) were dispersed into single droplets of sub-100 μm diameter that were ignited by passing through a heated coil. At low precursor concentration, 50% of the INN-laden droplets indicate a gas bubble of about 5 μm diameter in the center of the droplet. The bubble persists for several hundred microseconds at a similar size. In almost all of these cases, the bubble expands at some point and the droplet ends up in a micro-explosion. In some of these instances, the droplet’s surface shows spatial brightness modulations, i.e., surface undulations, indicating the formation of a viscous shell. With increasing INN concentration, the fraction of droplets showing surface undulations, gas bubbles, and micro-explosions drastically decreases. This may be associated with a more rigid viscous shell and reduced mobility of bubbles. Bright incandescent streaks originating from the disrupting INN-laden droplets, may indicate sub-micrometer droplets or particles from within the droplets or formed in the gas phase. In contrast, Sn-EH-laden droplets show very fast disruptions, typically less than 10 μs from first visible deformation to ejection of secondary droplets. Bubbles and surface undulations were not observed.

Graphical abstract

通过火焰喷射热解法生产金属氧化物纳米粒子时,充满前驱体的液滴会被点燃并发生热诱导分解,即所谓的 "膨化 "和 "微爆"。这些过程与液滴内部分散相的形成有关,但人们对其方式尚不完全了解。这项研究旨在通过漫反射照明和显微高速成像技术,对含有前驱体的燃烧单液滴内部进行可视化观察。将含有一水硝酸铁(III)(INN)和 2-乙基己酸锡(II)(Sn-EH)的溶液分散成直径小于 100 μm 的单液滴,通过加热线圈点燃。在前驱体浓度较低时,50% 含有 INN 的液滴会在液滴中心出现直径约为 5 μm 的气泡。类似大小的气泡会持续几百微秒。几乎在所有这些情况下,气泡都会在某个点膨胀,液滴最终会发生微爆炸。在其中一些情况下,液滴表面会出现空间亮度调节,即表面起伏,表明形成了粘性外壳。随着 INN 浓度的增加,出现表面起伏、气泡和微爆炸的液滴比例急剧下降。这可能与粘性外壳更加坚硬和气泡流动性降低有关。从含有干扰性 INN 的液滴中产生的明亮炽热条纹,可能表示来自液滴内部或在气相中形成的亚微米液滴或颗粒。相比之下,含 Sn-EH 的液滴显示出非常快的破坏速度,从第一次可见变形到喷射出次级液滴的时间通常不到 10 μs。没有观察到气泡和表面起伏。
{"title":"Phase changes in burning precursor-laden single droplets leading to puffing and micro-explosion","authors":"Benjamin A. Südholt,&nbsp;Arne Witte,&nbsp;Greg J. Smallwood,&nbsp;Sebastian A. Kaiser,&nbsp;Lutz Mädler,&nbsp;Niklas Jüngst","doi":"10.1007/s00348-024-03895-w","DOIUrl":"10.1007/s00348-024-03895-w","url":null,"abstract":"<div><p>When producing metal-oxide nanoparticles via flame spray pyrolysis, precursor-laden droplets are ignited and undergo thermally induced disintegration, called ‘puffing’ and ‘micro-explosion’. In a manner that is not fully understood, these processes are associated with the formation of dispersed phases inside the droplets. This work aims at visualizing the interior of precursor-laden burning single droplets via diffuse back illumination and microscopic high-speed imaging. Solutions containing iron(III) nitrate nonahydrate (INN) and tin(II) 2-ethylhexanoate (Sn-EH) were dispersed into single droplets of sub-100 μm diameter that were ignited by passing through a heated coil. At low precursor concentration, 50% of the INN-laden droplets indicate a gas bubble of about 5 μm diameter in the center of the droplet. The bubble persists for several hundred microseconds at a similar size. In almost all of these cases, the bubble expands at some point and the droplet ends up in a micro-explosion. In some of these instances, the droplet’s surface shows spatial brightness modulations, i.e., surface undulations, indicating the formation of a viscous shell. With increasing INN concentration, the fraction of droplets showing surface undulations, gas bubbles, and micro-explosions drastically decreases. This may be associated with a more rigid viscous shell and reduced mobility of bubbles. Bright incandescent streaks originating from the disrupting INN-laden droplets, may indicate sub-micrometer droplets or particles from within the droplets or formed in the gas phase. In contrast, Sn-EH-laden droplets show very fast disruptions, typically less than 10 μs from first visible deformation to ejection of secondary droplets. Bubbles and surface undulations were not observed.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03895-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dam break flow through rigid-emergent vegetation 大坝断流穿过刚性植被
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-11-06 DOI: 10.1007/s00348-024-03901-1
Adel A. Mahmoud, Tatsuhiko Uchida

Dam failures pose a significant threat to life and property. This study investigates the potential of rigid emergent vegetation to attenuate dam break waves, reducing their destructive impact. Experiments explored the effect of varying vegetation field lengths on wave propagation. Wooden cylinders with consistent diameter (1.0 cm) and density (0.067) simulated the rigid vegetation in a straight, flat rectangular channel. Four different vegetation lengths and three bore conditions for different reservoir and tailwater depths were examined to analyze their influence on dam break wave behavior. The results demonstrate the effectiveness of vegetation in dissipating wave energy, leading to a rapid decrease in wave height and celerity. Interestingly, increasing vegetation length significantly attenuates the wave height downstream of the vegetation zone, while having no significant impact on the reflection wave height upstream of the vegetation. This finding highlights the targeted effectiveness of strategically placed vegetation in shielding downstream areas. The study also clarifies that celerity can be calculated using shallow water equations for both upstream and downstream regions with wave height and tailwater depth. However, within the vegetation, drag forces significantly reduce celerity. A novel equation, derived from wavefront profiles, was proposed and validated to accurately calculate celerity within the vegetation field. These findings provide valuable data for validating numerical models simulating dam break wave interactions with vegetation.

溃坝对生命和财产构成重大威胁。本研究调查了刚性新生植被衰减溃坝波的潜力,以减少其破坏性影响。实验探索了不同植被场长度对波传播的影响。直径(1.0 厘米)和密度(0.067)一致的木质圆柱体在笔直平坦的矩形水道中模拟了刚性植被。研究了四种不同的植被长度和三种不同水库和尾水深度的钻孔条件,以分析它们对溃坝波浪行为的影响。结果表明,植被能有效消散波浪能量,从而迅速降低波高和流速。有趣的是,增加植被长度可明显减弱植被区下游的波高,而对植被区上游的反射波高无明显影响。这一发现凸显了战略性植被在屏蔽下游区域方面的针对性效果。这项研究还阐明,可以利用浅水方程计算上游和下游区域的波高和尾水深度的流速。然而,在植被内部,阻力会大大降低流速。根据波前剖面提出并验证了一个新方程,可准确计算植被区内的流速。这些发现为验证模拟溃坝波浪与植被相互作用的数值模型提供了宝贵的数据。
{"title":"Dam break flow through rigid-emergent vegetation","authors":"Adel A. Mahmoud,&nbsp;Tatsuhiko Uchida","doi":"10.1007/s00348-024-03901-1","DOIUrl":"10.1007/s00348-024-03901-1","url":null,"abstract":"<p>Dam failures pose a significant threat to life and property. This study investigates the potential of rigid emergent vegetation to attenuate dam break waves, reducing their destructive impact. Experiments explored the effect of varying vegetation field lengths on wave propagation. Wooden cylinders with consistent diameter (1.0 cm) and density (0.067) simulated the rigid vegetation in a straight, flat rectangular channel. Four different vegetation lengths and three bore conditions for different reservoir and tailwater depths were examined to analyze their influence on dam break wave behavior. The results demonstrate the effectiveness of vegetation in dissipating wave energy, leading to a rapid decrease in wave height and celerity. Interestingly, increasing vegetation length significantly attenuates the wave height downstream of the vegetation zone, while having no significant impact on the reflection wave height upstream of the vegetation. This finding highlights the targeted effectiveness of strategically placed vegetation in shielding downstream areas. The study also clarifies that celerity can be calculated using shallow water equations for both upstream and downstream regions with wave height and tailwater depth. However, within the vegetation, drag forces significantly reduce celerity. A novel equation, derived from wavefront profiles, was proposed and validated to accurately calculate celerity within the vegetation field. These findings provide valuable data for validating numerical models simulating dam break wave interactions with vegetation.</p>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03901-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cylinder wake flow in confined channel and its active control by sweeping jets 封闭水道中的圆筒形尾流及其通过扫掠射流的主动控制
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-11-05 DOI: 10.1007/s00348-024-03910-0
Jinsheng Song, Zihao Qiu, Yingzheng Liu, Xin Wen

The wake dynamics of the flow past a confined circular cylinder and its active control by sweeping jets (SWJs) and steady jets (SJs) positioned at the front stagnation points were experimentally investigated using particle image velocimetry and pressure measurements. Experiments were conducted across a range of Reynolds numbers (Re, based on the incoming flow velocity and the cylinder diameter) from 10,000 to 45,000 and blockage ratios ((beta)) of (1/2), (1/3), (1/4), and (1/5). A comprehensive comparison between the current results and existing literature on natural flow dynamics fills the knowledge gap and reveals that confinement gradually reduces the time-average pressure coefficient ((C_{{text{p}}})) and increases the drag coefficient ((C_{{text{D}}})) and Strouhal number (St). The interaction between the wake and lateral wall shear layer gradually increased as (beta) increased. Both SWJs and SJs effectively suppressed wake fluctuations, and the statistical characteristics of the flow field and proper orthogonal decomposition analysis indicated a consistent flow control mechanism between the two methods. However, the SJs introduced external fluctuations and unbalanced forces in the forward flow field, resulting in a wake flow asymmetry. By contrast, SWJs provide more uniform control and superior flow control effectiveness and efficiency.

利用粒子图像测速仪和压力测量法,对流经密闭圆筒的尾流动力学及其由位于前方停滞点的扫掠射流(SWJs)和稳定射流(SJs)进行的主动控制进行了实验研究。实验的雷诺数(Re,基于入流速度和气缸直径)范围为 10,000 到 45,000,阻塞比((beta))为(1/2)、(1/3)、(1/4)和(1/5)。当前结果与现有自然流动力学文献的综合比较填补了知识空白,并揭示了束缚会逐渐降低时间平均压力系数(C_{text{p}}),增加阻力系数(C_{text{D}})和斯特劳哈尔数(St)。随着 (beta) 的增加,尾流与侧壁剪切层之间的相互作用逐渐增强。SWJs和SJs都有效地抑制了唤醒波动,流场的统计特征和适当的正交分解分析表明两种方法的流动控制机制是一致的。然而,SJ 在前向流场中引入了外部波动和不平衡力,导致尾流不对称。相比之下,SWJ 的控制更均匀,流动控制效果和效率更高。
{"title":"Cylinder wake flow in confined channel and its active control by sweeping jets","authors":"Jinsheng Song,&nbsp;Zihao Qiu,&nbsp;Yingzheng Liu,&nbsp;Xin Wen","doi":"10.1007/s00348-024-03910-0","DOIUrl":"10.1007/s00348-024-03910-0","url":null,"abstract":"<div><p>The wake dynamics of the flow past a confined circular cylinder and its active control by sweeping jets (SWJs) and steady jets (SJs) positioned at the front stagnation points were experimentally investigated using particle image velocimetry and pressure measurements. Experiments were conducted across a range of Reynolds numbers (Re, based on the incoming flow velocity and the cylinder diameter) from 10,000 to 45,000 and blockage ratios (<span>(beta)</span>) of <span>(1/2)</span>, <span>(1/3)</span>, <span>(1/4)</span>, and <span>(1/5)</span>. A comprehensive comparison between the current results and existing literature on natural flow dynamics fills the knowledge gap and reveals that confinement gradually reduces the time-average pressure coefficient (<span>(C_{{text{p}}})</span>) and increases the drag coefficient (<span>(C_{{text{D}}})</span>) and Strouhal number (St). The interaction between the wake and lateral wall shear layer gradually increased as <span>(beta)</span> increased. Both SWJs and SJs effectively suppressed wake fluctuations, and the statistical characteristics of the flow field and proper orthogonal decomposition analysis indicated a consistent flow control mechanism between the two methods. However, the SJs introduced external fluctuations and unbalanced forces in the forward flow field, resulting in a wake flow asymmetry. By contrast, SWJs provide more uniform control and superior flow control effectiveness and efficiency.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A speckle projection-based 3D digital image correlation method for measuring dynamic liquid surfaces 基于斑点投影的三维数字图像相关方法,用于测量动态液体表面
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-11-05 DOI: 10.1007/s00348-024-03907-9
Kai Wang, Bin Cheng, Derui Li, Sheng Xiang

Measuring dynamic liquid surfaces is a significant challenge in fluid mechanics and sloshing dynamics, with a notable lack of high-precision, effective full-field measurement methods. To resolve this challenge, this research proposes a speckle projection-based 3D digital image correlation (3D-DIC) method for the measurement of dynamic liquid surfaces. The approach employs liquid staining and speckle projecting to create textured patterns on the liquid surface, which are then captured by binocular cameras. The binocular cameras are calibrated using a ratio-invariant method to accurately obtain the internal and external parameter matrices. Subsequently, algorithm based on zero-mean normalized cross-correlation (ZNCC) is utilized to reconstruct the dynamic liquid surface wave height field. To validate the accuracy of the method, a geometric optical numerical model is established to simulate binocular images of regular wave liquid surfaces with projected speckle patterns. The results show that full-field root mean square (RMS) error in simulated liquid surface measurement is less than 0.019 mm. Physical experiments were further conducted to confirm the method's applicability, achieving a maximal measurement error of 0.133 mm for real dynamic liquid surfaces. Results demonstrate that the proposed method achieves high-precision, non-contact, and full-field measurements of dynamic liquid surfaces, making it ideal for laboratory measurements of flowing liquids.

Graphical abstract

测量动态液体表面是流体力学和荡动动力学中的一项重大挑战,目前明显缺乏高精度、有效的全场测量方法。为解决这一难题,本研究提出了一种基于斑点投影的三维数字图像相关(3D-DIC)方法,用于测量动态液体表面。该方法利用液体染色和斑点投影在液体表面形成纹理图案,然后由双目相机捕捉。双目相机采用比值不变法进行校准,以准确获得内部和外部参数矩阵。随后,利用基于零均值归一化交叉相关(ZNCC)的算法重建动态液面波高场。为了验证该方法的准确性,建立了一个几何光学数值模型,模拟带有投射斑点图案的规则波液体表面的双目图像。结果表明,模拟液面测量的全场均方根误差小于 0.019 毫米。为证实该方法的适用性,还进一步进行了物理实验,对真实动态液体表面的最大测量误差为 0.133 毫米。结果表明,所提出的方法可对动态液体表面进行高精度、非接触和全场测量,是实验室测量流动液体的理想方法。
{"title":"A speckle projection-based 3D digital image correlation method for measuring dynamic liquid surfaces","authors":"Kai Wang,&nbsp;Bin Cheng,&nbsp;Derui Li,&nbsp;Sheng Xiang","doi":"10.1007/s00348-024-03907-9","DOIUrl":"10.1007/s00348-024-03907-9","url":null,"abstract":"<div><p>Measuring dynamic liquid surfaces is a significant challenge in fluid mechanics and sloshing dynamics, with a notable lack of high-precision, effective full-field measurement methods. To resolve this challenge, this research proposes a speckle projection-based 3D digital image correlation (3D-DIC) method for the measurement of dynamic liquid surfaces. The approach employs liquid staining and speckle projecting to create textured patterns on the liquid surface, which are then captured by binocular cameras. The binocular cameras are calibrated using a ratio-invariant method to accurately obtain the internal and external parameter matrices. Subsequently, algorithm based on zero-mean normalized cross-correlation (ZNCC) is utilized to reconstruct the dynamic liquid surface wave height field. To validate the accuracy of the method, a geometric optical numerical model is established to simulate binocular images of regular wave liquid surfaces with projected speckle patterns. The results show that full-field root mean square (RMS) error in simulated liquid surface measurement is less than 0.019 mm. Physical experiments were further conducted to confirm the method's applicability, achieving a maximal measurement error of 0.133 mm for real dynamic liquid surfaces. Results demonstrate that the proposed method achieves high-precision, non-contact, and full-field measurements of dynamic liquid surfaces, making it ideal for laboratory measurements of flowing liquids.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow characteristics of a Francis turbine under deep part-load and various no-load conditions 混流式水轮机在深度部分负荷和各种空载条件下的流量特性
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-11-04 DOI: 10.1007/s00348-024-03904-y
Araz Rezavand Hesari, Maxime Gauthier, Maxime Coulaud, Yvan Maciel, Sébastien Houde

In the recent years, increased use of hydraulic turbines in off-design operating conditions such as no-load and deep part-load has resulted in increased damage to the turbines. A detailed understanding of the fluctuating flow phenomena can help to identify and mitigate the potentially damaging flow structures. This paper presents a comprehensive experimental and numerical study of the flow phenomena at the inlet of a Francis turbine at four no-load operating conditions, including speed-no-load and a deep part-load operating condition. Measurements are taken using a high-frequency stereoscopic endoscopic particle image velocimetry method on radial–azimuthal planes, covering the vaneless space and a large part of the interblade channels at different spans. For the speed-no-load condition, experimental data are enriched with unsteady RANS simulation data to understand the three-dimensional behavior of the flow. The average flow phenomena, transient structures and velocity fluctuations are discussed and compared among different operating points. At all operating points, the strongest average flow circulation zone (strong enough to form a vortex only at one operating condition) consistently exhibits the highest velocity fluctuation energy. The results show that the highest velocity fluctuations, and thus the most energetic dynamic structures, are in a no-load operating point with a guide vane opening smaller than speed-no-load. Position and intensity of the interblade vortices varies not only with the guide vane opening but also with the amount of torque extracted by the runner.

近年来,水轮机在空载和深度部分负载等非设计运行条件下的使用增加,导致水轮机损坏率上升。详细了解波动流动现象有助于识别和减轻潜在的破坏性流动结构。本文对混流式水轮机在四种空载运行条件下的进水口流动现象进行了全面的实验和数值研究,包括无速度无负荷和深部分负荷运行条件。测量采用高频立体内窥镜粒子图像测速法,在径向-方位角平面上进行,覆盖了不同跨度的无叶空间和大部分叶间通道。在无速度无载荷条件下,实验数据与非稳态 RANS 模拟数据相结合,以了解流动的三维行为。讨论并比较了不同工作点的平均流动现象、瞬态结构和速度波动。在所有运行点上,最强的平均流环流区(仅在一种运行条件下足以形成涡旋)始终表现出最高的速度波动能量。结果表明,在导叶开度小于无速度-无负荷的无负荷运行点,速度波动最大,因此动态结构的能量也最大。叶片间涡流的位置和强度不仅随导叶开度的变化而变化,还随转轮提取的扭矩大小而变化。
{"title":"Flow characteristics of a Francis turbine under deep part-load and various no-load conditions","authors":"Araz Rezavand Hesari,&nbsp;Maxime Gauthier,&nbsp;Maxime Coulaud,&nbsp;Yvan Maciel,&nbsp;Sébastien Houde","doi":"10.1007/s00348-024-03904-y","DOIUrl":"10.1007/s00348-024-03904-y","url":null,"abstract":"<div><p>In the recent years, increased use of hydraulic turbines in off-design operating conditions such as no-load and deep part-load has resulted in increased damage to the turbines. A detailed understanding of the fluctuating flow phenomena can help to identify and mitigate the potentially damaging flow structures. This paper presents a comprehensive experimental and numerical study of the flow phenomena at the inlet of a Francis turbine at four no-load operating conditions, including speed-no-load and a deep part-load operating condition. Measurements are taken using a high-frequency stereoscopic endoscopic particle image velocimetry method on radial–azimuthal planes, covering the vaneless space and a large part of the interblade channels at different spans. For the speed-no-load condition, experimental data are enriched with unsteady RANS simulation data to understand the three-dimensional behavior of the flow. The average flow phenomena, transient structures and velocity fluctuations are discussed and compared among different operating points. At all operating points, the strongest average flow circulation zone (strong enough to form a vortex only at one operating condition) consistently exhibits the highest velocity fluctuation energy. The results show that the highest velocity fluctuations, and thus the most energetic dynamic structures, are in a no-load operating point with a guide vane opening smaller than speed-no-load. Position and intensity of the interblade vortices varies not only with the guide vane opening but also with the amount of torque extracted by the runner.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roughness-induced transition and turbulent wedge spreading 粗糙度引起的过渡和湍流楔形扩展
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-11-02 DOI: 10.1007/s00348-024-03909-7
Alexandre Berger, Edward White

Boundary layer transition triggered by a discrete roughness element generates a turbulent wedge that spreads laterally as it proceeds downstream. The historical literature reports the spreading half angle is approximately 6(^{circ }) in zero-pressure gradient flows regardless of Reynolds number and roughness shape. Recent simulations and experiments have sought to explain the lateral spreading mechanism and have observed high- and low-speed streaks along the flanks of the wedge that appear central to the spreading process. To better elucidate the roles of Reynolds number and of streaks, a naphthalene flow visualization survey and hotwire measurements are conducted over a wider range of Reynolds numbers and longer streamwise domain than previous experiments. The naphthalene results show that while the mean spreading angle is consistent with the historical literature, there may be a weak dependency on x-based Reynolds number, which emerges as a result of the large sample size of the survey. The distance between the roughness element and the wedge origin exhibits a clear trend with the roughness–height-based Reynolds number. The hotwire measurements explain that this difference originates from whether breakdown occurs first in the central lobe or flanking streaks of the turbulent wedge. This observation highlights different transition dynamics at play within the supercritical regime. In agreement with past experiments, the hotwire measurements reveal that breakdown occurs in the wall normal shear layer above low-speed streaks. Due to the elongated streamwise extent of this experiment, secondary streak dynamics are also uncovered. A high-speed streak is produced directly downstream of the initiating low-speed streak. Subsequently, a new low-speed streak is observed outboard of the previous high-speed streak. This self-sustaining process is the driving mechanism of turbulent wedge spreading.

由离散粗糙度元素引发的边界层过渡会产生一个湍流楔,该湍流楔在顺流而下时会横向扩散。据历史文献报道,在零压力梯度流中,无论雷诺数和粗糙度形状如何,扩散半角大约为 6(^{circ })。最近的模拟和实验试图解释横向扩张机制,并观察到沿着楔形侧面的高速和低速条纹似乎是扩张过程的核心。为了更好地阐明雷诺数和条纹的作用,我们在比以往实验更宽的雷诺数范围和更长的流域内进行了萘流可视化调查和热线测量。萘的测量结果表明,虽然平均扩展角与历史文献一致,但可能与基于 x 的雷诺数有微弱的相关性,这也是调查样本量大的结果。粗糙度元素与楔形原点之间的距离与基于粗糙度高度的雷诺数呈明显的趋势。热丝测量结果表明,这种差异源于湍流楔的中央叶片或侧翼条纹是否首先发生破裂。这一观测结果凸显了超临界状态下不同的过渡动力学。与过去的实验一致,热丝测量显示,击穿发生在低速条纹上方的壁面法向剪切层。由于本次实验的流向范围较长,还发现了次级条纹动力学。在开始的低速条纹的正下游产生了一条高速条纹。随后,在前一条高速条纹的外侧又观测到一条新的低速条纹。这种自我维持过程是湍流楔形扩展的驱动机制。
{"title":"Roughness-induced transition and turbulent wedge spreading","authors":"Alexandre Berger,&nbsp;Edward White","doi":"10.1007/s00348-024-03909-7","DOIUrl":"10.1007/s00348-024-03909-7","url":null,"abstract":"<div><p>Boundary layer transition triggered by a discrete roughness element generates a turbulent wedge that spreads laterally as it proceeds downstream. The historical literature reports the spreading half angle is approximately 6<span>(^{circ })</span> in zero-pressure gradient flows regardless of Reynolds number and roughness shape. Recent simulations and experiments have sought to explain the lateral spreading mechanism and have observed high- and low-speed streaks along the flanks of the wedge that appear central to the spreading process. To better elucidate the roles of Reynolds number and of streaks, a naphthalene flow visualization survey and hotwire measurements are conducted over a wider range of Reynolds numbers and longer streamwise domain than previous experiments. The naphthalene results show that while the mean spreading angle is consistent with the historical literature, there may be a weak dependency on <i>x</i>-based Reynolds number, which emerges as a result of the large sample size of the survey. The distance between the roughness element and the wedge origin exhibits a clear trend with the roughness–height-based Reynolds number. The hotwire measurements explain that this difference originates from whether breakdown occurs first in the central lobe or flanking streaks of the turbulent wedge. This observation highlights different transition dynamics at play within the supercritical regime. In agreement with past experiments, the hotwire measurements reveal that breakdown occurs in the wall normal shear layer above low-speed streaks. Due to the elongated streamwise extent of this experiment, secondary streak dynamics are also uncovered. A high-speed streak is produced directly downstream of the initiating low-speed streak. Subsequently, a new low-speed streak is observed outboard of the previous high-speed streak. This self-sustaining process is the driving mechanism of turbulent wedge spreading.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Starting jets in non-Newtonian viscoelastic fluids: on vortex ring generation and behavior 非牛顿粘弹性流体中的起始射流:涡环的生成与行为
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-11-02 DOI: 10.1007/s00348-024-03905-x
Julie Albagnac, Dominique Anne-Archard

The generation process and behavior of non-Newtonian viscoelastic vortex rings generated with a piston cylinder apparatus are studied through fluorescent dye visualizations. The generalized Reynolds numbers targeted by this study are ({varvec{Re}}in mathbf{[10,600]}) and allow the identification of different regimes leading gradually from the generation of a blob that remains attached to the cylinder to that of a starting jet and then to a self-propagating vortex ring. Experiments are performed in eight different viscoelastic solutions and allow to evaluate the influence of the rheological properties of the fluid on the dynamics of the coherent structure. Regardless of the viscoelastic fluid used, the kinematics of the structure exhibits two steps: an initial propagation until reaching a maximum penetration position which depends on the parameters of the experiment (Reynolds number and elasticity number) and then a backward movement over a distance which also depends on these same parameters. The visualizations highlight important deformations of the structure envelope, in particular a spanwise flattening just before reaching the maximum position and a refocusing around the propagation axis during the backward movement. Results are interpreted in terms of Reynolds number and elasticity number.

通过荧光染料可视化研究了活塞汽缸装置产生的非牛顿粘弹性涡环的生成过程和行为。本研究针对的广义雷诺数为({varvec{Re}}in mathbf{[10,600]}),可以识别从产生附着在气缸上的小球到起始射流再到自蔓延涡环的不同过程。实验在八种不同的粘弹性溶液中进行,可以评估流体流变特性对相干结构动力学的影响。无论使用哪种粘弹性流体,结构的运动学都表现出两个步骤:初始传播直至达到最大穿透位置,这取决于实验参数(雷诺数和弹性数),然后向后运动一段距离,这也取决于这些相同的参数。可视化效果突出显示了结构包络的重要变形,尤其是在达到最大位置之前的跨度扁平化,以及在后向运动过程中围绕传播轴的重新聚焦。结果用雷诺数和弹性数进行了解释。
{"title":"Starting jets in non-Newtonian viscoelastic fluids: on vortex ring generation and behavior","authors":"Julie Albagnac,&nbsp;Dominique Anne-Archard","doi":"10.1007/s00348-024-03905-x","DOIUrl":"10.1007/s00348-024-03905-x","url":null,"abstract":"<div><p>The generation process and behavior of non-Newtonian viscoelastic vortex rings generated with a piston cylinder apparatus are studied through fluorescent dye visualizations. The generalized Reynolds numbers targeted by this study are <span>({varvec{Re}}in mathbf{[10,600]})</span> and allow the identification of different regimes leading gradually from the generation of a blob that remains attached to the cylinder to that of a starting jet and then to a self-propagating vortex ring. Experiments are performed in eight different viscoelastic solutions and allow to evaluate the influence of the rheological properties of the fluid on the dynamics of the coherent structure. Regardless of the viscoelastic fluid used, the kinematics of the structure exhibits two steps: an initial propagation until reaching a maximum penetration position which depends on the parameters of the experiment (Reynolds number and elasticity number) and then a backward movement over a distance which also depends on these same parameters. The visualizations highlight important deformations of the structure envelope, in particular a spanwise flattening just before reaching the maximum position and a refocusing around the propagation axis during the backward movement. Results are interpreted in terms of Reynolds number and elasticity number.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative near-field water–air spray measurements at elevated pressures by neutron radiography imaging 利用中子射线成像技术对高压下的近场水气喷雾进行定量测量
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-11-01 DOI: 10.1007/s00348-024-03908-8
Aleksander Clark, Walker Mccord, Rajagopalan V. Ranganathan, Yuxuan Zhang, Jean-Christophe Bilheux, Zhili Zhang

Extensive experimental research on high-pressure spray has been conducted for decades to deepen our understanding and optimize its use in transportation, aviation, and propulsion applications; however, the near-field and in-nozzle flow characteristics are not fully understood. Dense near-field spray is among the most challenging diagnostic tasks since light is severely scattered and diffused by the liquid droplets and columns. In this work, the near-field spray and in-nozzle flow characteristics of an aeration nozzle at elevated pressures were characterized by neutron radiography imaging at the Oak Ridge National Laboratory High Flux Isotope Reactor. Neutron imaging benefits via strong penetration depths for some metals (i.e., aluminum, lead, and steel) and is sufficiently sensitive to detection of light elements, especially for hydrogen-based molecules, due to the large incoherent scattering cross section of neutrons. Both two-dimensional snapshots of the near-field spray and a three-dimensional tomographic scan of the nozzle geometry and in-nozzle water were obtained. This work provides new quantitative characterization of practical metal nozzle geometry for accurate boundary conditions, internal flow patterns inside the nozzle, and high-pressure spray flows. The findings may be used to improve performance and operating conditions of transportation vehicles and propulsion systems.

几十年来,我们对高压喷雾进行了广泛的实验研究,以加深理解并优化其在交通、航空和推进应用中的使用;然而,我们对近场和喷嘴内的流动特性还没有完全了解。密集的近场喷雾是最具挑战性的诊断任务之一,因为光会被液滴和液柱严重散射和扩散。在这项工作中,通过在橡树岭国家实验室高通量同位素反应堆进行中子射线成像,对高压下曝气喷嘴的近场喷雾和喷嘴内流动特性进行了描述。由于中子的非相干散射截面很大,中子成像对某些金属(如铝、铅和钢)有很强的穿透深度,对轻元素的检测也足够灵敏,特别是对氢基分子。这项研究获得了近场喷雾的二维快照以及喷嘴几何形状和喷嘴内水的三维断层扫描。这项工作为精确边界条件、喷嘴内部流动模式和高压喷雾流提供了实用金属喷嘴几何形状的新定量特征。研究结果可用于改善运输车辆和推进系统的性能和运行条件。
{"title":"Quantitative near-field water–air spray measurements at elevated pressures by neutron radiography imaging","authors":"Aleksander Clark,&nbsp;Walker Mccord,&nbsp;Rajagopalan V. Ranganathan,&nbsp;Yuxuan Zhang,&nbsp;Jean-Christophe Bilheux,&nbsp;Zhili Zhang","doi":"10.1007/s00348-024-03908-8","DOIUrl":"10.1007/s00348-024-03908-8","url":null,"abstract":"<div><p>Extensive experimental research on high-pressure spray has been conducted for decades to deepen our understanding and optimize its use in transportation, aviation, and propulsion applications; however, the near-field and in-nozzle flow characteristics are not fully understood. Dense near-field spray is among the most challenging diagnostic tasks since light is severely scattered and diffused by the liquid droplets and columns. In this work, the near-field spray and in-nozzle flow characteristics of an aeration nozzle at elevated pressures were characterized by neutron radiography imaging at the Oak Ridge National Laboratory High Flux Isotope Reactor. Neutron imaging benefits via strong penetration depths for some metals (i.e., aluminum, lead, and steel) and is sufficiently sensitive to detection of light elements, especially for hydrogen-based molecules, due to the large incoherent scattering cross section of neutrons. Both two-dimensional snapshots of the near-field spray and a three-dimensional tomographic scan of the nozzle geometry and in-nozzle water were obtained. This work provides new quantitative characterization of practical metal nozzle geometry for accurate boundary conditions, internal flow patterns inside the nozzle, and high-pressure spray flows. The findings may be used to improve performance and operating conditions of transportation vehicles and propulsion systems. </p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double refractive particle tracking and sizing 双折射粒子跟踪和筛选
IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-10-29 DOI: 10.1007/s00348-024-03894-x
Jörg König, Christian Cierpka

We present a novel bifocal imaging method enabling three-dimensional particle tracking and size determination employing a single camera only. The method is based on double refraction causing a particle to be imaged twice, each particle image of different blur. From these double images, a linear calibration function can be derived allowing to determine the three-dimensional particle position unambiguously over the entire depth of measurement volume. As this calibration function is independent of the particle size used, the particle size can be determined simultaneously by relating size of the double images and depth position of the particle. To prove the applicability, a co-laminar flow of two particle suspensions with particles of 1.14 (upmu)m and 2.47 (upmu)m in diameter was measured in a Y-shaped microchannel. While the laminar flow field was measured with very low uncertainty and independent of the particle size, the particle size distributions determined reproduced reliably the size distributions expected for the co-laminar flow applied, with a precision of about 98.6 (%) regarding the particle size discrimination. The progress for research is a new method readily to implement in common optical setups, promising, for example, valuable insights in polydisperse suspension flows—the vast majority of flows in fundamental research and applications.

Graphical abstract

我们提出了一种新颖的双焦成像方法,只需一台照相机就能实现三维粒子跟踪和粒度测定。该方法基于双折射原理,使粒子成像两次,每次粒子成像的模糊程度不同。从这些双重图像中可以推导出一个线性校准函数,从而可以在整个测量深度范围内准确无误地确定粒子的三维位置。由于该校准函数与所使用的颗粒大小无关,因此可以通过双图像的大小和颗粒的深度位置同时确定颗粒的大小。为了证明其适用性,我们在 Y 形微通道中测量了直径分别为 1.14 和 2.47 m 的两种颗粒悬浮液的共层流。虽然层流流场的测量不确定性很低,而且与颗粒大小无关,但所确定的颗粒大小分布可靠地再现了所应用的共层流的预期大小分布,颗粒大小分辨的精确度约为98.6(%)。这种新方法易于在普通光学装置中实施,有望在多分散悬浮流动--基础研究和应用中的绝大多数流动--等方面提供有价值的见解。
{"title":"Double refractive particle tracking and sizing","authors":"Jörg König,&nbsp;Christian Cierpka","doi":"10.1007/s00348-024-03894-x","DOIUrl":"10.1007/s00348-024-03894-x","url":null,"abstract":"<div><p>We present a novel bifocal imaging method enabling three-dimensional particle tracking and size determination employing a single camera only. The method is based on double refraction causing a particle to be imaged twice, each particle image of different blur. From these double images, a linear calibration function can be derived allowing to determine the three-dimensional particle position unambiguously over the entire depth of measurement volume. As this calibration function is independent of the particle size used, the particle size can be determined simultaneously by relating size of the double images and depth position of the particle. To prove the applicability, a co-laminar flow of two particle suspensions with particles of 1.14 <span>(upmu)</span>m and 2.47 <span>(upmu)</span>m in diameter was measured in a Y-shaped microchannel. While the laminar flow field was measured with very low uncertainty and independent of the particle size, the particle size distributions determined reproduced reliably the size distributions expected for the co-laminar flow applied, with a precision of about 98.6 <span>(%)</span> regarding the particle size discrimination. The progress for research is a new method readily to implement in common optical setups, promising, for example, valuable insights in polydisperse suspension flows—the vast majority of flows in fundamental research and applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03894-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Experiments in Fluids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1