Droplet impact is a common phenomenon in daily life and various industrial applications. Previous research shows that surface geometry significantly influences impact outcomes. However, there is a gap in systematic research on how convex structures, similar in size to the droplet, influence impact behaviors. To address this, our study focused on producing various targets with different convexity to investigate the morphological evolution of droplet impact. Using high-speed imaging techniques, we examined these impacts with Weber numbers ranging from 5 to 346. The experimental results show that dry convex surfaces increase the maximum spreading diameter of droplets by altering liquid mass redistribution. Reduced air entrapment diminishes the circumferential instability of deformed droplets on these surfaces, as evidenced by fewer fingers formed. This study also proposes a hybrid model to predict the maximum spreading diameter on convex surfaces using the energy conservation method. Benefiting from models for flat surfaces, this new approach accounts for convex surface impacts, which alter the impact characteristics according to the convexity of the impact geometry. The model assumes that the droplet at its maximum spreading diameter resembles either a disc or a rim. Notably, the rim assumption was quite evident in several convex surface impacts, presenting a donut-shaped expansion. These results are combined through weighted summation The hybrid model’s predictions show a superior agreement with the experimental data compared to existing models. Additionally, the model’s weighting factors provide insights into the distribution of liquid mass between the central film and the surrounding rim.