This article presents the results of the investigation of the generation efficiency for different sizes and positions of the pumping beam waist inside the active medium of the YVO4/Nd : YVO4/YVO4 lasers. The measurements were carried out for a fixed resonator length of 36.1 mm, a constant pumping power of 1.16 W, and four output couplers with different radii of curvature. According to the knowledge of the authors, such an extended experimental approach is presented for the first time.
{"title":"Investigation of the Impact of the Pumping Beam Waist Size and Position on the Efficiency of YVO4/Nd : YVO4/YVO4 Laser Generation","authors":"J. Młyńczak, Maciej Zyskowski","doi":"10.1155/2021/5451467","DOIUrl":"https://doi.org/10.1155/2021/5451467","url":null,"abstract":"This article presents the results of the investigation of the generation efficiency for different sizes and positions of the pumping beam waist inside the active medium of the YVO4/Nd : YVO4/YVO4 lasers. The measurements were carried out for a fixed resonator length of 36.1 mm, a constant pumping power of 1.16 W, and four output couplers with different radii of curvature. According to the knowledge of the authors, such an extended experimental approach is presented for the first time.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47013524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samina Bilquees, H. Dawood, H. Dawood, N. Majeed, A. Javed, M. Mahmood
In a world of multimedia information, where users seek accurate results against search query and demand relevant multimedia content retrieval, developing an accurate content-based image retrieval (CBIR) system is difficult due to the presence of noise in the image. The performance of the CBIR system is impaired by this noise. To estimate the distance between the query and database images, CBIR systems use image feature representation. The noise or artifacts present within the visual data might confuse the CBIR when retrieving relevant results. Therefore, we propose Noise Resilient Local Gradient Orientation (NRLGO) feature representation that overcomes the noise factor within the visual information and strengthens the CBIR to retrieve accurate and relevant results. The proposed NRLGO consists of three steps: estimation and removal of noise to protect the local visual structure; extraction of color, texture, and local contrast features; and, at the end, generation of microstructure for visual representation. The Manhattan distance between the query image and the database image is used to measure their similarity. The proposed technique was tested using the Corel dataset, which contains 10000 images from 100 different categories. The outcomes of the experiment signify that the proposed NRLGO has higher retrieval performance in comparison with state-of-the-art techniques.
{"title":"Noise Resilient Local Gradient Orientation for Content-Based Image Retrieval","authors":"Samina Bilquees, H. Dawood, H. Dawood, N. Majeed, A. Javed, M. Mahmood","doi":"10.1155/2021/4151482","DOIUrl":"https://doi.org/10.1155/2021/4151482","url":null,"abstract":"In a world of multimedia information, where users seek accurate results against search query and demand relevant multimedia content retrieval, developing an accurate content-based image retrieval (CBIR) system is difficult due to the presence of noise in the image. The performance of the CBIR system is impaired by this noise. To estimate the distance between the query and database images, CBIR systems use image feature representation. The noise or artifacts present within the visual data might confuse the CBIR when retrieving relevant results. Therefore, we propose Noise Resilient Local Gradient Orientation (NRLGO) feature representation that overcomes the noise factor within the visual information and strengthens the CBIR to retrieve accurate and relevant results. The proposed NRLGO consists of three steps: estimation and removal of noise to protect the local visual structure; extraction of color, texture, and local contrast features; and, at the end, generation of microstructure for visual representation. The Manhattan distance between the query image and the database image is used to measure their similarity. The proposed technique was tested using the Corel dataset, which contains 10000 images from 100 different categories. The outcomes of the experiment signify that the proposed NRLGO has higher retrieval performance in comparison with state-of-the-art techniques.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45889188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a liquid crystal tunable thin-film optical bandpass filter is studied and analyzed using the signal flow graph technique. This paper investigates an exact form for calculating the transmission coefficients, reflection coefficients, and the transmission intensity of the filter. The simulation results show the filter performance and the channel shape profile. In addition, the results show the tuning capability of the filter. The signal flow graph technique provides an attractive method for analyzing the thin-film optical filters since it overcomes the difficulty of the refractive index concept in extending to optical applications. Moreover, it simplifies the filter analysis and design process.
{"title":"Analysis of Liquid Crystal Tunable Thin-Film Optical Filters Using Signal Flow Graph Technique","authors":"A. Athamneh, S. Alboon","doi":"10.1155/2021/5513995","DOIUrl":"https://doi.org/10.1155/2021/5513995","url":null,"abstract":"In this paper, a liquid crystal tunable thin-film optical bandpass filter is studied and analyzed using the signal flow graph technique. This paper investigates an exact form for calculating the transmission coefficients, reflection coefficients, and the transmission intensity of the filter. The simulation results show the filter performance and the channel shape profile. In addition, the results show the tuning capability of the filter. The signal flow graph technique provides an attractive method for analyzing the thin-film optical filters since it overcomes the difficulty of the refractive index concept in extending to optical applications. Moreover, it simplifies the filter analysis and design process.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48377474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyuan Zhao, Guoyang Wang, Siyu Shao, Qinghao Meng, Jiahui Wang, Sijia Zhang, Bo Su, Cunlin Zhang
Magnetic fluid is a new functional material with both liquid fluidity and solid magnetism, which has important application value in medicine, biology, and so on. In this study, terahertz technology and microfluidic technology were combined to investigate the terahertz transmission characteristics of a magnetic fluid in different magnetic fields and different electric fields. In the external magnetic field, the intensity of the terahertz spectrum increased with an increase in the magnetic field intensity, and the response to the magnetic field in different directions was different. Under the applied electric field, the intensity of the terahertz spectrum decreased with an increase in the electric field intensity. This method is convenient for studying the terahertz characteristics of magnetic fluid and provides technical support for in-depth studies of magnetic fluid.
{"title":"Terahertz Characteristics of Magnetic Fluid Based on Microfluidic Technology","authors":"Xinyuan Zhao, Guoyang Wang, Siyu Shao, Qinghao Meng, Jiahui Wang, Sijia Zhang, Bo Su, Cunlin Zhang","doi":"10.1155/2021/5599185","DOIUrl":"https://doi.org/10.1155/2021/5599185","url":null,"abstract":"Magnetic fluid is a new functional material with both liquid fluidity and solid magnetism, which has important application value in medicine, biology, and so on. In this study, terahertz technology and microfluidic technology were combined to investigate the terahertz transmission characteristics of a magnetic fluid in different magnetic fields and different electric fields. In the external magnetic field, the intensity of the terahertz spectrum increased with an increase in the magnetic field intensity, and the response to the magnetic field in different directions was different. Under the applied electric field, the intensity of the terahertz spectrum decreased with an increase in the electric field intensity. This method is convenient for studying the terahertz characteristics of magnetic fluid and provides technical support for in-depth studies of magnetic fluid.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":"1-8"},"PeriodicalIF":1.7,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46836511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to solve the difficulties in the coupling between space light and single-mode fiber (SMF) in free-space optical communication. A fiber coupler based on two-dimensional (2D) piezoelectric ceramics was developed, which uses the stochastic parallel gradient descent (SPGD) algorithm to realize the automatic coupling of space light-SMF. In addition, a spatial light-SMF alignment experimentation platform was built indoors to verify the effectiveness and practicality of the 2D piezoelectric ceramic fiber coupler. The results show that the use of the SPGD algorithm can realize the automatic alignment of fiber position coupling, and the SMF coupling efficiency reaches 52.58% when the system is closed loop. 2D piezoelectric ceramic fiber couplers have unique advantages of low cost, simplified structure, and easy array expansion and can effectively solve the difficulty in the alignment of spatial light-SMF coupling. This study will serve as a significant reference for the research on spatial fiber-coupled array technology.
{"title":"Experimental Research on Automatic Alignment and Control Algorithm of Spatial Light-Fiber Coupling","authors":"Xizheng Ke, Benkang Yin","doi":"10.1155/2021/8481146","DOIUrl":"https://doi.org/10.1155/2021/8481146","url":null,"abstract":"This study aims to solve the difficulties in the coupling between space light and single-mode fiber (SMF) in free-space optical communication. A fiber coupler based on two-dimensional (2D) piezoelectric ceramics was developed, which uses the stochastic parallel gradient descent (SPGD) algorithm to realize the automatic coupling of space light-SMF. In addition, a spatial light-SMF alignment experimentation platform was built indoors to verify the effectiveness and practicality of the 2D piezoelectric ceramic fiber coupler. The results show that the use of the SPGD algorithm can realize the automatic alignment of fiber position coupling, and the SMF coupling efficiency reaches 52.58% when the system is closed loop. 2D piezoelectric ceramic fiber couplers have unique advantages of low cost, simplified structure, and easy array expansion and can effectively solve the difficulty in the alignment of spatial light-SMF coupling. This study will serve as a significant reference for the research on spatial fiber-coupled array technology.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":"1-9"},"PeriodicalIF":1.7,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44426135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Syniavskyi, Y. Oberemok, Y. Ivanov, M. Sosonkin, V. Kireyev, K. Akinin
In this paper, the scan mirror assembly for the space experiment Aerosol-UA scanning polarimeter (ScanPol) is described. The aim of the Ukrainian space mission Aerosol-UA is to create a database of the optical characteristics of aerosol and cloud particles in the Earth’s atmosphere over a long period of time. The optical characteristics of aerosol and cloud particles are derived from multiangular measurements. Multiangular scanning in ScanPol is provided by scan mirror assembly, which contains a reactive torque compensator electric motor and two scan mirrors, mounted on the shaft of the motor. The control system of the scan mirror assembly enables continuous scanning with a constant speed of the space under investigation. This control system tolerates movements of the orbiting satellite and preserves invariability of its spatial position. The polarimeter ScanPol is designed to acquire spatial, temporal, and spectral-polarimetric measurements simultaneously to minimize instrumental effects and “false” polarizations due to scene movement. Instrumental polarization, introduced by the mirrors of scan assembly, is minimized through the polarization compensated two-mirror scheme which contains two mirrors with orthogonal planes of incidence. In this paper, the polarimetric model of the polarization compensated two scan mirrors is considered. Theoretical calculations are given that substantiate the maximum allowable error of the relative angular position of the mirrors is 15 arcmin (0.25°), and the method of adjustment and control of the angular position of the mirrors is proposed. The polarization properties of mirrors are modelled in the spectral range of 370–1680 nm for bulk oxide-free aluminum. It is obtained that the maximum instrumental polarization of the unadjusted mirror system should be observed at 865 nm, and thus, the polarization characteristics of the scanning system at a given wavelength could be considered as representative for ScanPol in general. The key steps for assembling the unit are illustrated.
{"title":"Scan Mirror Assembly for the Multispectral Scanning Polarimeter of Aerosol-UA Space Mission","authors":"I. Syniavskyi, Y. Oberemok, Y. Ivanov, M. Sosonkin, V. Kireyev, K. Akinin","doi":"10.1155/2021/8854505","DOIUrl":"https://doi.org/10.1155/2021/8854505","url":null,"abstract":"In this paper, the scan mirror assembly for the space experiment Aerosol-UA scanning polarimeter (ScanPol) is described. The aim of the Ukrainian space mission Aerosol-UA is to create a database of the optical characteristics of aerosol and cloud particles in the Earth’s atmosphere over a long period of time. The optical characteristics of aerosol and cloud particles are derived from multiangular measurements. Multiangular scanning in ScanPol is provided by scan mirror assembly, which contains a reactive torque compensator electric motor and two scan mirrors, mounted on the shaft of the motor. The control system of the scan mirror assembly enables continuous scanning with a constant speed of the space under investigation. This control system tolerates movements of the orbiting satellite and preserves invariability of its spatial position. The polarimeter ScanPol is designed to acquire spatial, temporal, and spectral-polarimetric measurements simultaneously to minimize instrumental effects and “false” polarizations due to scene movement. Instrumental polarization, introduced by the mirrors of scan assembly, is minimized through the polarization compensated two-mirror scheme which contains two mirrors with orthogonal planes of incidence. In this paper, the polarimetric model of the polarization compensated two scan mirrors is considered. Theoretical calculations are given that substantiate the maximum allowable error of the relative angular position of the mirrors is 15 arcmin (0.25°), and the method of adjustment and control of the angular position of the mirrors is proposed. The polarization properties of mirrors are modelled in the spectral range of 370–1680 nm for bulk oxide-free aluminum. It is obtained that the maximum instrumental polarization of the unadjusted mirror system should be observed at 865 nm, and thus, the polarization characteristics of the scanning system at a given wavelength could be considered as representative for ScanPol in general. The key steps for assembling the unit are illustrated.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"2021 1","pages":"1-12"},"PeriodicalIF":1.7,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46735410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The acquisition, alignment, and tracking system is an important part of airborne laser communication and is the prerequisite and guarantee for the normal communication link. In order to solve the problem of automatic tracking of laser communication links in the airborne environment, the rapid capture, alignment, and tracking of beams between terminals are realized. This article proposes a stepping motor as a control servo system and a four-quadrant detector as an automatic tracking method for the detection unit. The pulse width modulation signal controls the rotation speed of the stepping motor and combines the position distribution of the light spot on the four-quadrant detector to achieve high-precision beam tracking. On this basis, indoor simulation experiments are carried out. After many experiments, the tracking accuracy is better than 2.5 μrad, which shows that the system can be applied to airborne laser communication, and it is verified that this method has good automatic tracking performance for airborne laser communication.
{"title":"Airborne Laser Communication System with Automated Tracking","authors":"Xizheng Ke, Hanli Liang","doi":"10.1155/2021/9920368","DOIUrl":"https://doi.org/10.1155/2021/9920368","url":null,"abstract":"The acquisition, alignment, and tracking system is an important part of airborne laser communication and is the prerequisite and guarantee for the normal communication link. In order to solve the problem of automatic tracking of laser communication links in the airborne environment, the rapid capture, alignment, and tracking of beams between terminals are realized. This article proposes a stepping motor as a control servo system and a four-quadrant detector as an automatic tracking method for the detection unit. The pulse width modulation signal controls the rotation speed of the stepping motor and combines the position distribution of the light spot on the four-quadrant detector to achieve high-precision beam tracking. On this basis, indoor simulation experiments are carried out. After many experiments, the tracking accuracy is better than 2.5 μrad, which shows that the system can be applied to airborne laser communication, and it is verified that this method has good automatic tracking performance for airborne laser communication.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":"1-8"},"PeriodicalIF":1.7,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49375657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the purpose of satisfying the demands of polarization-maintaining fibers for fiber optic gyroscopes, this article proposes a semicircular cladding birefringent hollow-core anti-resonant fiber. The influence of structural parameters on the birefringence, loss, and bending loss of the fiber is studied. The simulation results demonstrate that at 1550 nm, the ultimate loss of the fundamental mode of x and y polarization is 1.76 dB/m and 0.93 dB/m, respectively. The birefringence can reach 1 × 10−4, and the wavelength range of birefringence greater than 10−4 can reach 60 nm. This indicates that it has excellent bending properties. The proposed optical fiber has excellent performance in polarization maintenance and can supply ideas for the research of high-precision fiber optic gyroscopes and other optical devices.
{"title":"Study on the High-Birefringence Hollow-Core Anti-Resonant Fiber with Semicircular Cladding","authors":"Shuo Liu, Yuanwei Li, R. Ma, Linwan Zhao, Jia-kun Lv, Xiaolong Dong","doi":"10.1155/2021/5520142","DOIUrl":"https://doi.org/10.1155/2021/5520142","url":null,"abstract":"For the purpose of satisfying the demands of polarization-maintaining fibers for fiber optic gyroscopes, this article proposes a semicircular cladding birefringent hollow-core anti-resonant fiber. The influence of structural parameters on the birefringence, loss, and bending loss of the fiber is studied. The simulation results demonstrate that at 1550 nm, the ultimate loss of the fundamental mode of x and y polarization is 1.76 dB/m and 0.93 dB/m, respectively. The birefringence can reach 1 × 10−4, and the wavelength range of birefringence greater than 10−4 can reach 60 nm. This indicates that it has excellent bending properties. The proposed optical fiber has excellent performance in polarization maintenance and can supply ideas for the research of high-precision fiber optic gyroscopes and other optical devices.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":"1-10"},"PeriodicalIF":1.7,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41928100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunpeng Ren, Zhiyu Li, Y. Chen, Yunxia Ye, Zhiduo Xin, Heng Lu, Hanyu Wan, Jianquan Yao
Different open resonant ring structures with substrate of polyimide were designed. The transmission characteristics of the structures for terahertz wave were investigated by simulation and experiment. The results show that the transmission peak of the structures moves to high frequency with increase of thickness of the metal layer. With increase of substrate thickness, the transmission peak moved to low frequency and the transmissivity decreased. The influence of number of “C” shape open resonant rings in the unit structure on the transmission characteristics of terahertz wave was also studied. It is found that when the number of “C” shape open resonant rings increases from one to two, more transmission peaks appeared in the frequency of 0.2–2 THz. The transmissivity of the designed structures was tested by terahertz time-domain spectrometer (THz-TDS). The experimental results showed good agreement to the simulation results.
{"title":"Simulation and Experimental Study of Terahertz Wave Transmission Characteristics Based on Periodic Metal Open Resonant Ring Structures","authors":"Yunpeng Ren, Zhiyu Li, Y. Chen, Yunxia Ye, Zhiduo Xin, Heng Lu, Hanyu Wan, Jianquan Yao","doi":"10.1155/2021/6663146","DOIUrl":"https://doi.org/10.1155/2021/6663146","url":null,"abstract":"Different open resonant ring structures with substrate of polyimide were designed. The transmission characteristics of the structures for terahertz wave were investigated by simulation and experiment. The results show that the transmission peak of the structures moves to high frequency with increase of thickness of the metal layer. With increase of substrate thickness, the transmission peak moved to low frequency and the transmissivity decreased. The influence of number of “C” shape open resonant rings in the unit structure on the transmission characteristics of terahertz wave was also studied. It is found that when the number of “C” shape open resonant rings increases from one to two, more transmission peaks appeared in the frequency of 0.2–2 THz. The transmissivity of the designed structures was tested by terahertz time-domain spectrometer (THz-TDS). The experimental results showed good agreement to the simulation results.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"2021 1","pages":"1-10"},"PeriodicalIF":1.7,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41852081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gait recognition-based person identification is an emerging trend in visual surveillance due to its uniqueness and adaptability to low-resolution video. Existing gait feature extraction techniques such as gait silhouette and Gait Energy Image rely on the human body’s shape. The shape of the human body varies according to the subject’s clothing and carrying conditions. The clothing choice changes every day and results in higher intraclass variance and lower interclass variance. Thus, gait verification and gait recognition are required for person identification. Moreover, clothing choices are highly influenced by the subject’s cultural background, and publicly available gait datasets lack the representation of South Asian Native clothing for gait recognition. We propose a Dynamic Gait Features extraction technique that preserves the spatiotemporal gait pattern with motion estimation. The Dynamic Gait Features under different Use Cases of clothing and carrying conditions are adaptable for gait verification and recognition. The Cross-Correlation score of Dynamic Gait Features resolves the problem of Gait verification. The standard deviation of Cross-Correlation Score lies in the range of 0.12 to 0.2 and reflects a strong correlation in Dynamic Gait Features of the same class. We achieved 98.5% accuracy on Support Vector Machine based gait recognition. Additionally, we develop a multiappearance-based gait dataset that captures the effects of South Asian Native Clothing (SACV-Gait dataset). We evaluated our work on CASIA-B, OUISIR-B, TUM-IITKGP, and SACV-Gait datasets and achieved an accuracy of 98%, 100%, 97.1%, and 98.8%, respectively.
{"title":"An Appearance Invariant Gait Recognition Technique Using Dynamic Gait Features","authors":"Hajra Masood, Humera Farooq","doi":"10.1155/2021/5591728","DOIUrl":"https://doi.org/10.1155/2021/5591728","url":null,"abstract":"Gait recognition-based person identification is an emerging trend in visual surveillance due to its uniqueness and adaptability to low-resolution video. Existing gait feature extraction techniques such as gait silhouette and Gait Energy Image rely on the human body’s shape. The shape of the human body varies according to the subject’s clothing and carrying conditions. The clothing choice changes every day and results in higher intraclass variance and lower interclass variance. Thus, gait verification and gait recognition are required for person identification. Moreover, clothing choices are highly influenced by the subject’s cultural background, and publicly available gait datasets lack the representation of South Asian Native clothing for gait recognition. We propose a Dynamic Gait Features extraction technique that preserves the spatiotemporal gait pattern with motion estimation. The Dynamic Gait Features under different Use Cases of clothing and carrying conditions are adaptable for gait verification and recognition. The Cross-Correlation score of Dynamic Gait Features resolves the problem of Gait verification. The standard deviation of Cross-Correlation Score lies in the range of 0.12 to 0.2 and reflects a strong correlation in Dynamic Gait Features of the same class. We achieved 98.5% accuracy on Support Vector Machine based gait recognition. Additionally, we develop a multiappearance-based gait dataset that captures the effects of South Asian Native Clothing (SACV-Gait dataset). We evaluated our work on CASIA-B, OUISIR-B, TUM-IITKGP, and SACV-Gait datasets and achieved an accuracy of 98%, 100%, 97.1%, and 98.8%, respectively.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"2021 1","pages":"1-15"},"PeriodicalIF":1.7,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44679559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}