Pub Date : 2024-01-06DOI: 10.1016/j.gete.2024.100534
Germán Rodríguez-Pradilla, James P. Verdon
To date, hydraulic fracturing for shale gas extraction has been used at three wells in the UK. In each case, the resulting microseismicity exceeded the UK’s red-light threshold of magnitude 0.5. The three wells all targeted the Bowland Shale Formation, and all were located within close proximity of each other on the Fylde Peninsula in west Lancashire. Observations of hydraulic fracturing-induced seismicity (HF-IS) elsewhere shows that the prevalence of induced seismicity is highly spatially variable. Hence, it is by no means clear whether hydraulic fracturing elsewhere in the Bowland Shale would be likely to generate seismicity at similar levels. In this study we examine the geological and geomechanical conditions across the Bowland Shale with respect to their potential controls on induced seismicity. The abundance of pre-existing faults is likely to play an important control on the generation of HF-IS. We use an automated fault detection algorithm to map faults within a selection of 3D reflection seismic datasets across the Bowland Shale play. For the identified faults, we compute the effective stresses acting on these structures in order to identify whether they are likely to be critically stressed. We find that the Bowland Shale within the Fylde Peninsula contains a significant number of critically stressed faults. However, there is significant variation in the density of critically stressed faults across the play, with up to an order of magnitude reduction in fault density from the west (i.e., the Fylde Peninsula) to the east. We use these observations to inform a seismic hazard model for proposed hydraulic fracturing in areas to the east of the Bowland Shale play. We find that the occurrence of felt seismic events cannot be precluded, however their likelihood of occurring is reduced.
{"title":"Quantifying the variability in fault density across the UK Bowland Shale with implications for induced seismicity hazard","authors":"Germán Rodríguez-Pradilla, James P. Verdon","doi":"10.1016/j.gete.2024.100534","DOIUrl":"10.1016/j.gete.2024.100534","url":null,"abstract":"<div><p>To date, hydraulic fracturing for shale gas extraction has been used at three wells in the UK. In each case, the resulting microseismicity exceeded the UK’s red-light threshold of magnitude 0.5. The three wells all targeted the Bowland Shale Formation, and all were located within close proximity of each other on the Fylde Peninsula in west Lancashire. Observations of hydraulic fracturing-induced seismicity (HF-IS) elsewhere shows that the prevalence of induced seismicity is highly spatially variable. Hence, it is by no means clear whether hydraulic fracturing elsewhere in the Bowland Shale would be likely to generate seismicity at similar levels. In this study we examine the geological and geomechanical conditions across the Bowland Shale with respect to their potential controls on induced seismicity. The abundance of pre-existing faults is likely to play an important control on the generation of HF-IS. We use an automated fault detection algorithm to map faults within a selection of 3D reflection seismic datasets across the Bowland Shale play. For the identified faults, we compute the effective stresses acting on these structures in order to identify whether they are likely to be critically stressed. We find that the Bowland Shale within the Fylde Peninsula contains a significant number of critically stressed faults. However, there is significant variation in the density of critically stressed faults across the play, with up to an order of magnitude reduction in fault density from the west (i.e., the Fylde Peninsula) to the east. We use these observations to inform a seismic hazard model for proposed hydraulic fracturing in areas to the east of the Bowland Shale play. We find that the occurrence of felt seismic events cannot be precluded, however their likelihood of occurring is reduced.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"38 ","pages":"Article 100534"},"PeriodicalIF":5.1,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380824000017/pdfft?md5=0e1b19b12a8500ffad2430571bbf9ce4&pid=1-s2.0-S2352380824000017-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139394113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-23DOI: 10.1016/j.gete.2023.100533
Penglong Li , Ning Luo , Yunchen Suo , Cheng Zhai , Weifu Sun
In the process of coalbed methane (CBM) extraction, coal seam penetration modification is frequently subjected to several cycle impact due to drilling-blasting method and deflagration fracturing method. Therefore, the split Hopkinson pressure bar (SHPB) was utilized to investigate the impact cycle effect and confining pressure effect on dynamic behavior of coal. Furthermore, the low-field nuclear magnetic resonance (NMR) was utilized to evaluate the modification of multiscale pore before and after 5 cycles impacts. Finally, the 3D profile scanner was utilized to quantify fracture surfaces and assess fracture roughness variation. The results showed that there existed the 6 MPa critical confining pressure that altered the dynamic mechanical properties of coal. Due to the combined effect of the confining pressure and cycle impact, the damage variable based on the energy method showed a log-normal distribution. With increasing strain rate, the micropores evolved into mesopores and macropores. There was a critical strain rate that caused the ratio of effective porosity to total porosity to shift from increasing to decreasing. Furthermore, the fracture roughness was shown to be positively correlated with the ratio and negatively correlated with seepage fractal dimension. The research findings can provide theoretical guidance for the safer and more efficient CBM exploitation.
{"title":"Research on petrophysical properties and porosity evolution of fractured coal mass under cyclic impact for coalbed methane exploitation","authors":"Penglong Li , Ning Luo , Yunchen Suo , Cheng Zhai , Weifu Sun","doi":"10.1016/j.gete.2023.100533","DOIUrl":"10.1016/j.gete.2023.100533","url":null,"abstract":"<div><p>In the process of coalbed methane (CBM) extraction, coal seam penetration modification is frequently subjected to several cycle impact due to drilling-blasting method and deflagration fracturing method. Therefore, the split Hopkinson pressure bar (SHPB) was utilized to investigate the impact cycle effect and confining pressure effect on dynamic behavior of coal. Furthermore, the low-field nuclear magnetic resonance (NMR) was utilized to evaluate the modification of multiscale pore before and after 5 cycles impacts. Finally, the 3D profile scanner was utilized to quantify fracture surfaces and assess fracture roughness variation. The results showed that there existed the 6 MPa critical confining pressure that altered the dynamic mechanical properties of coal. Due to the combined effect of the confining pressure and cycle impact, the damage variable based on the energy method showed a log-normal distribution. With increasing strain rate, the micropores evolved into mesopores and macropores. There was a critical strain rate that caused the ratio of effective porosity to total porosity to shift from increasing to decreasing. Furthermore, the fracture roughness was shown to be positively correlated with the ratio and negatively correlated with seepage fractal dimension. The research findings can provide theoretical guidance for the safer and more efficient CBM exploitation.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100533"},"PeriodicalIF":5.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823001028/pdfft?md5=a9f596f9d5d6be2b1704e4876d2de05e&pid=1-s2.0-S2352380823001028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139029551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Significant efforts are made to reduce the carbon dioxide concentrations in the atmosphere as part of a global scheme that aims to mitigate climate change. Carbon geological storage involves the storage of CO2 permanently in a subsurface reservoir, commonly a brine saturated aquifer, or a depleted reservoir. Carbon dioxide is also injected for enhanced oil or gas recovery (EOR/EGR). This work applies a material balance to CO2 for injection and storage in a single-phase dry and/or condensate gas reservoirs. The developed framework based on piston-like displacement can be either used for pressurising depleted gas reservoirs with CO2 or for EGR. Sensitivity studies of carbon dioxide injection in pressure depleted gas reservoirs and piston-like injection under water drive are presented for various production rates and initial reservoir pressures. Monte Carlo simulations are conducted for combinations of porosity and permeability of different formations such as sandstone, shale, and unconsolidated sand. The results show that CO2 piston-like injection in EGR is more efficient compared to first depleting the reservoir and then injecting CO2 as it controls the water influx. The recovery factors in CO2 EGR are almost insensitive to initial pressures and production rates for both single-phase and condensate gas. Higher permeability formations are much more effective, however, a formation with very high permeability may lead to stability problems.
{"title":"A screening tool for carbon dioxide injection in gas reservoirs based on the material balance approach","authors":"Matheos Giakoumi , Charalampos Konstantinou , Christine Ehlig-Economides , Panos Papanastasiou","doi":"10.1016/j.gete.2023.100532","DOIUrl":"10.1016/j.gete.2023.100532","url":null,"abstract":"<div><p>Significant efforts are made to reduce the carbon dioxide concentrations in the atmosphere as part of a global scheme that aims to mitigate climate change. Carbon geological storage involves the storage of CO<sub>2</sub> permanently in a subsurface reservoir, commonly a brine saturated aquifer, or a depleted reservoir. Carbon dioxide is also injected for enhanced oil or gas recovery (EOR/EGR). This work applies a material balance to CO<sub>2</sub> for injection and storage in a single-phase dry and/or condensate gas reservoirs. The developed framework based on piston-like displacement can be either used for pressurising depleted gas reservoirs with CO<sub>2</sub> or for EGR. Sensitivity studies of carbon dioxide injection in pressure depleted gas reservoirs and piston-like injection under water drive are presented for various production rates and initial reservoir pressures. Monte Carlo simulations are conducted for combinations of porosity and permeability of different formations such as sandstone, shale, and unconsolidated sand. The results show that CO<sub>2</sub> piston-like injection in EGR is more efficient compared to first depleting the reservoir and then injecting CO<sub>2</sub> as it controls the water influx. The recovery factors in CO<sub>2</sub> EGR are almost insensitive to initial pressures and production rates for both single-phase and condensate gas. Higher permeability formations are much more effective, however, a formation with very high permeability may lead to stability problems.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100532"},"PeriodicalIF":5.1,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823001016/pdfft?md5=27b187377eaf94d01c08c859d6cc0efe&pid=1-s2.0-S2352380823001016-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.1016/j.gete.2023.100531
Yu Lu, John S. McCartney
This paper focuses on understanding trends in the swelling potential of MX80 bentonite under temperatures up to 200 °C using a high-pressure cell. The free swelling behavior of expansive clays under high temperature and high fluid pressure conditions that may be encountered in geological repositories for high-level radioactive waste is important as the swelling potential is closely linked with key transition points on the physical and chemical properties of these clays. Free swell tests performed at temperatures ranging from 22 to 200 °C under sufficient pressure to ensure that the pore water remains as a superheated liquid were performed to assess whether the swell index of bentonite follows similar non-monotonic trends with temperature as observed in the literature for the cation exchange capacity. The measured swell indices follow an increasing-decreasing trend with a transition close to 100 °C. The experimental results can be used to guide parameter selection in long-term simulations on the buffer behavior of the buffer material, which requires an understanding of temperature effects on the coupled thermal-hydraulic-mechanical properties governing these processes.
本文的重点是利用高压池了解 MX80 膨润土在高达 200 °C 的温度条件下的膨胀势趋势。膨胀性粘土在高温高压条件下的自由膨胀行为非常重要,因为膨胀势与这些粘土物理和化学特性的关键转变点密切相关。为了评估膨润土的膨胀指数是否与文献中观察到的阳离子交换容量一样,随温度的变化呈现类似的非单调趋势,我们在 22 至 200 °C 的温度范围内进行了自由膨胀试验,并施加了足够的压力以确保孔隙水保持为过热液体。测得的膨胀指数呈递增-递减趋势,在接近 100 °C 时出现过渡。实验结果可用于指导对缓冲材料的缓冲行为进行长期模拟的参数选择,这需要了解温度对这些过程的热-水-机械耦合特性的影响。
{"title":"Free swelling behavior of MX80 bentonite under elevated temperatures up to 200 °C","authors":"Yu Lu, John S. McCartney","doi":"10.1016/j.gete.2023.100531","DOIUrl":"10.1016/j.gete.2023.100531","url":null,"abstract":"<div><p>This paper focuses on understanding trends in the swelling potential of MX80 bentonite under temperatures up to 200 °C using a high-pressure cell. The free swelling behavior of expansive clays under high temperature and high fluid pressure conditions that may be encountered in geological repositories for high-level radioactive waste is important as the swelling potential is closely linked with key transition points on the physical and chemical properties of these clays. Free swell tests performed at temperatures ranging from 22 to 200 °C under sufficient pressure to ensure that the pore water remains as a superheated liquid were performed to assess whether the swell index of bentonite follows similar non-monotonic trends with temperature as observed in the literature for the cation exchange capacity. The measured swell indices follow an increasing-decreasing trend with a transition close to 100 °C. The experimental results can be used to guide parameter selection in long-term simulations on the buffer behavior of the buffer material, which requires an understanding of temperature effects on the coupled thermal-hydraulic-mechanical properties governing these processes.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100531"},"PeriodicalIF":5.1,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823001004/pdfft?md5=862ee1599c955f0ca49bd52543e2c94c&pid=1-s2.0-S2352380823001004-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138742669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial-induced calcium carbonate precipitation (MICP) is a new biotechnology that can be used to improve the strength of soils. Unsaturated soils are common in nature and saturation is a significant factor affecting the efficiency of bio-cementation. This study investigated the properties of MICP under different grouting saturation conditions. Unconfined compressive strength (UCS) tests confirmed that biocemented sand could get higher strength under unsaturated grouting conditions with the same calcium carbonate content which helps reduce the material cost. Scanning electron microscopy (SEM) test results show that at lower saturation, the size and amount of calcium carbonate crystals were insufficient but calcium carbonate mainly gathered between the particles. At higher saturation, larger calcium carbonate crystals were produced and exited in pores and on the particle surface, increasing the filling effect. Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) test results show that the dominant calcium carbonate morphology detected in samples was calcite, which was the most stable one. X-ray computed tomography (CT) test results show that after cementation, the measured contact surface area became uniform and the coordination number was higher. The flow direction of bacteria and the cementing solution did not induce significant anisotropy in the cementation process. The effective cementation and content of calcium carbonate jointly influenced the improvement of soil mechanical properties.
微生物诱导碳酸钙沉淀(MICP)是一种新的生物技术,可用于提高土壤强度。非饱和土壤在自然界很常见,饱和度是影响生物固结效率的一个重要因素。本研究调查了 MICP 在不同饱和度条件下的特性。非收缩抗压强度(UCS)测试证实,在碳酸钙含量相同的情况下,生物水泥砂在非饱和饱和条件下可获得更高的强度,这有助于降低材料成本。扫描电子显微镜(SEM)测试结果表明,在较低的饱和度下,碳酸钙晶体的尺寸和数量不足,但碳酸钙主要聚集在颗粒之间。饱和度越高,生成的碳酸钙晶体越大,并从孔隙中和颗粒表面排出,增加了填充效果。能量色散 X 射线光谱(EDS)和 X 射线衍射(XRD)测试结果表明,样品中检测到的主要碳酸钙形态是方解石,这是最稳定的形态。X 射线计算机断层扫描(CT)测试结果表明,胶结后,测得的接触表面积变得均匀,配位数也更高。在胶结过程中,细菌和胶结液的流动方向没有引起砂的各向异性。有效固结和碳酸钙含量共同影响了土壤力学性能的改善。
{"title":"Micro-macro investigation on bio-cemented sand under different grouting saturation: An effective enhancement method","authors":"Ji-Peng Wang, Meng-Chen Li, Meng Qi, Shangqi Ge, Abdelali Dadda","doi":"10.1016/j.gete.2023.100530","DOIUrl":"10.1016/j.gete.2023.100530","url":null,"abstract":"<div><p>Microbial-induced calcium carbonate precipitation (MICP) is a new biotechnology that can be used to improve the strength of soils. Unsaturated soils are common in nature and saturation is a significant factor affecting the efficiency of bio-cementation. This study investigated the properties of MICP under different grouting saturation conditions. Unconfined compressive strength (UCS) tests confirmed that biocemented sand could get higher strength under unsaturated grouting conditions with the same calcium carbonate content which helps reduce the material cost. Scanning electron microscopy (SEM) test results show that at lower saturation, the size and amount of calcium carbonate crystals were insufficient but calcium carbonate mainly gathered between the particles. At higher saturation, larger calcium carbonate crystals were produced and exited in pores and on the particle surface, increasing the filling effect. Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) test results show that the dominant calcium carbonate morphology detected in samples was calcite, which was the most stable one. X-ray computed tomography (CT) test results show that after cementation, the measured contact surface area became uniform and the coordination number was higher. The flow direction of bacteria and the cementing solution did not induce significant anisotropy in the cementation process. The effective cementation and content of calcium carbonate jointly influenced the improvement of soil mechanical properties.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100530"},"PeriodicalIF":5.1,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823000990/pdfft?md5=50d312b97751ba261a00a9b40cf240af&pid=1-s2.0-S2352380823000990-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138742630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-16DOI: 10.1016/j.gete.2023.100529
Hyun Chul Yoon , Jihoon Kim
In this study, we numerically analyze the effect of capillary pressure on gas hydrate deposits through coupled flow and geomechanics simulation, with a focus on the scaled capillary pressure. The scaled effect is predicated on sediment pore-size variations resulting from hydrate dissociation or formation, leading to non-monotonic capillary pressure curves influenced by two primary factors: alterations in pore space and gas saturation. Specifically, hydrate dissociation may increase pore space, thereby reducing capillary pressure. Conversely, enhanced gas saturation owing to dissociation can elevate capillary pressure. We employ a scaled capillary pressure model, accounting for porosity fluctuations caused by hydrate formation or dissociation. Additionally, equivalent pore pressure is utilized to ensure the numerical stability and accuracy in scenarios of strong capillarity. The numerical experiments incorporate two distinct methodologies for hydrate dissociation: heat injection and depressurization. In the heat injection scenario, sensitivity analyses are conducted using a range of model parameters, exhibiting characteristic non-monotonic capillary pressure behaviors attributable to the aforementioned competing factors. Regarding the depressurization approach, the UBGH2-6 site in the Ulleung Basin, East Sea, South Korea, is selected as a real-world field case. Over a 30-day gas production simulation, we observe notable enhancements in hydrate dissociation, signifying improved productivity, and distinctive geomechanical responses, under the influence of the scaled model. This investigation demonstrates that the scaled capillary pressure model, upon the hydrate or ice (i.e., solid) phase change, with coupled flow and geomechanics is crucial for accurate modeling of gas hydrate deposits.
{"title":"The impacts of scaled capillary pressure combined with coupled flow and geomechanics on gas hydrate deposits","authors":"Hyun Chul Yoon , Jihoon Kim","doi":"10.1016/j.gete.2023.100529","DOIUrl":"10.1016/j.gete.2023.100529","url":null,"abstract":"<div><p>In this study, we numerically analyze the effect of capillary pressure on gas hydrate deposits through coupled flow and geomechanics simulation, with a focus on the scaled capillary pressure. The scaled effect is predicated on sediment pore-size variations resulting from hydrate dissociation or formation, leading to non-monotonic capillary pressure curves influenced by two primary factors: alterations in pore space and gas saturation. Specifically, hydrate dissociation may increase pore space, thereby reducing capillary pressure. Conversely, enhanced gas saturation owing to dissociation can elevate capillary pressure. We employ a scaled capillary pressure model, accounting for porosity fluctuations caused by hydrate formation or dissociation. Additionally, equivalent pore pressure is utilized to ensure the numerical stability and accuracy in scenarios of strong capillarity. The numerical experiments incorporate two distinct methodologies for hydrate dissociation: heat injection and depressurization. In the heat injection scenario, sensitivity analyses are conducted using a range of model parameters, exhibiting characteristic non-monotonic capillary pressure behaviors attributable to the aforementioned competing factors. Regarding the depressurization approach, the UBGH2-6 site in the Ulleung Basin, East Sea, South Korea, is selected as a real-world field case. Over a 30-day gas production simulation, we observe notable enhancements in hydrate dissociation, signifying improved productivity, and distinctive geomechanical responses, under the influence of the scaled model. This investigation demonstrates that the scaled capillary pressure model, upon the hydrate or ice (i.e., solid) phase change, with coupled flow and geomechanics is crucial for accurate modeling of gas hydrate deposits.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100529"},"PeriodicalIF":5.1,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823000989/pdfft?md5=2307e0f7fb0fae56fbd1f70865278b60&pid=1-s2.0-S2352380823000989-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138689465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1016/j.gete.2023.100528
E. Tamayo-Mas , J.F. Harrington , I.P. Damians , S. Olivella , E. Radeisen , J. Rutqvist , Y. Wang
Understanding the impact of repository gas, generated from degradation of waste and its interaction with the host rock, is essential when assessing the performance and safety function of long-term disposal systems for radioactive waste. Numerical models based on conventional multi-phase flow theory have historically been applied to predict the outcome and impact of gas flow on different repository components. However, they remain unable to describe the full complexity of the physical processes observed in water-saturated experiments (e.g., creation of dilatant pathways) and thus, the development of novel representations for their description is required when assessing fully saturated clay-based systems. This was the primary focus of Task A within the international cooperative project DECOVALEX-2019 (D-2019) and refinement of these approaches is the primary focus of this study (Task B in the current phase of DECOVALEX-2023).
This paper summarises development of enhanced numerical representations of key processes and compares the performance of each model against high-quality laboratory test data. Experimental data reveals that gas percolation in water-saturated compacted bentonite is characterised by four key features: (i) a quiescence phase, followed by (ii) the gas breakthrough, which leads to a (iii) peak value, which is then followed by (iv) a negative decay. Three models based on the multiphase flow theory have been developed. These models can provide good initial values and reasonable responses for gas breakthrough (although some of them still predict a too-smooth response). Peak gas pressure values are in general reasonably well captured, although maximum radial stress differences are observed at 48 mm from the base of the sample. Here, numerical peak values of 12.8 MPa are predicted, whereas experimental values are about 11 MPa. These models are also capable of providing a reasonable representation of the negative pressure decay following peak pressure. However, other key specific features (such as the timing of gas breakthrough) still require a better representation. The model simulations and their comparison with experimental data show that these models need to be further improved with respect to model parameter calibration, the numerical representation of spatial heterogeneities in material properties and flow localisation, and the upscaling of the related physical processes and parameters. To further understand gas flow localisation, a new conceptual model has been developed, which shows that discrete channels can possibly be induced through the instability of gas-bentonite interface during gas injection, thus providing a new perspective for modeling gas percolation in low-permeability deformable media.
{"title":"Advective gas flow in bentonite: Development and comparison of enhanced multi-phase numerical approaches","authors":"E. Tamayo-Mas , J.F. Harrington , I.P. Damians , S. Olivella , E. Radeisen , J. Rutqvist , Y. Wang","doi":"10.1016/j.gete.2023.100528","DOIUrl":"10.1016/j.gete.2023.100528","url":null,"abstract":"<div><p>Understanding the impact of repository gas, generated from degradation of waste and its interaction with the host rock, is essential when assessing the performance and safety function of long-term disposal systems for radioactive waste. Numerical models based on conventional multi-phase flow theory have historically been applied to predict the outcome and impact of gas flow on different repository components. However, they remain unable to describe the full complexity of the physical processes observed in water-saturated experiments (e.g., creation of dilatant pathways) and thus, the development of novel representations for their description is required when assessing fully saturated clay-based systems. This was the primary focus of Task A within the international cooperative project DECOVALEX-2019 (D-2019) and refinement of these approaches is the primary focus of this study (Task B in the current phase of DECOVALEX-2023).</p><p>This paper summarises development of enhanced numerical representations of key processes and compares the performance of each model against high-quality laboratory test data. Experimental data reveals that gas percolation in water-saturated compacted bentonite is characterised by four key features: (i) a quiescence phase, followed by (ii) the gas breakthrough, which leads to a (iii) peak value, which is then followed by (iv) a negative decay. Three models based on the multiphase flow theory have been developed. These models can provide good initial values and reasonable responses for gas breakthrough (although some of them still predict a too-smooth response). Peak gas pressure values are in general reasonably well captured, although maximum radial stress differences are observed at 48 mm from the base of the sample. Here, numerical peak values of 12.8 MPa are predicted, whereas experimental values are about 11 MPa. These models are also capable of providing a reasonable representation of the negative pressure decay following peak pressure. However, other key specific features (such as the timing of gas breakthrough) still require a better representation. The model simulations and their comparison with experimental data show that these models need to be further improved with respect to model parameter calibration, the numerical representation of spatial heterogeneities in material properties and flow localisation, and the upscaling of the related physical processes and parameters. To further understand gas flow localisation, a new conceptual model has been developed, which shows that discrete channels can possibly be induced through the instability of gas-bentonite interface during gas injection, thus providing a new perspective for modeling gas percolation in low-permeability deformable media.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100528"},"PeriodicalIF":5.1,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823000977/pdfft?md5=f6f17782995b0f1cb2431eb6d09c9389&pid=1-s2.0-S2352380823000977-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138680772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1016/j.gete.2023.100527
XiaoJie Tang, ManMan Hu
Exposure of geomaterials to an acidic environment is frequently encountered in modern-day geo-energy and geo-environmental engineering activities, in e.g. incorporation of chemical stimulation for unconventional shale gas exploitation, enhanced geothermal systems, geological carbon sequestration, and the long-term regional stability in carbonate-rich coastal areas. The Multiphysics-involved process for each application is complex and an optimised control calls for a better understanding on the coupling mechanism of the chemical, hydraulic and mechanical fields. This laboratory-based study aims to provide a quantitative calibration and derivation of the key coupling parameters accommodating our recently proposed framework of reactive chemo-mechanics, using a bio-cemented rock-like material as a representative for dissolvable rocks. The advantage of bio-cemented specimens (here by microbially induced carbonate precipitation) over natural rocks lies in their more uniform grain-bond structure and laboratory tunable calcite content. An experimental setup is introduced for investigating the role of calcite content on the mechanical and hydraulic properties of bio-cemented silica sands, followed by uniaxial tests on the bio-cemented specimens immersed in acidic environment to allow a reactive chemo-mechanical setting. Our results show that bio-cemented samples appear to be more “resilient” to an acidified aqueous environment in terms of less strength degradation compared to natural carbonate-rich rocks. Ductile failure mode is observed in the bio-cemented specimens within a certain range of the calcium carbonate content and a brittle-to-ductile transition in the failure mode occurs when the calcite content in the specimen decreases. With the calibrated model and the derived coupling parameters, we further illustrate an example of numerical prediction on the mechanical response of bio-cemented specimens under varying acidic environments and loading rates.
{"title":"On the resilience of bio-cemented silica sands in chemically reactive environment","authors":"XiaoJie Tang, ManMan Hu","doi":"10.1016/j.gete.2023.100527","DOIUrl":"10.1016/j.gete.2023.100527","url":null,"abstract":"<div><p>Exposure of geomaterials to an acidic environment is frequently encountered in modern-day geo-energy and geo-environmental engineering activities, in e.g. incorporation of chemical stimulation for unconventional shale gas exploitation, enhanced geothermal systems, geological carbon sequestration, and the long-term regional stability in carbonate-rich coastal areas. The Multiphysics-involved process for each application is complex and an optimised control calls for a better understanding on the coupling mechanism of the chemical, hydraulic and mechanical fields. This laboratory-based study aims to provide a quantitative calibration and derivation of the key coupling parameters accommodating our recently proposed framework of reactive chemo-mechanics, using a bio-cemented rock-like material as a representative for dissolvable rocks. The advantage of bio-cemented specimens (here by microbially induced carbonate precipitation) over natural rocks lies in their more uniform grain-bond structure and laboratory tunable calcite content. An experimental setup is introduced for investigating the role of calcite content on the mechanical and hydraulic properties of bio-cemented silica sands, followed by uniaxial tests on the bio-cemented specimens immersed in acidic environment to allow a reactive chemo-mechanical setting. Our results show that bio-cemented samples appear to be more “resilient” to an acidified aqueous environment in terms of less strength degradation compared to natural carbonate-rich rocks. Ductile failure mode is observed in the bio-cemented specimens within a certain range of the calcium carbonate content and a brittle-to-ductile transition in the failure mode occurs when the calcite content in the specimen decreases. With the calibrated model and the derived coupling parameters, we further illustrate an example of numerical prediction on the mechanical response of bio-cemented specimens under varying acidic environments and loading rates.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100527"},"PeriodicalIF":5.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823000965/pdfft?md5=8e116cd198ccf0288805f551569484d0&pid=1-s2.0-S2352380823000965-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138575506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1016/j.gete.2023.100524
Kaixuan Qiu , Shiming Wei
Organic matter which is scattered uniformly in shale can respond to the applied stress and result in the variation of stress field. However, the effects of organic matter content in organic-rich shale on stress interference have not been well considered during developing infill-wells. A fully coupled numerical model is proposed in this paper to consider the whole flow spectrum of shale gas and investigate the effect of organic matter content on stress variation and fracture propagation in infill-well. Through simulating the production and fracturing process with only one set of code, some conclusions can be drawn that the alteration angle of the maximum horizontal principal stress increases and then decreases with the production time. Furthermore, the shrinkage of organic matter enlarges the alteration angle and the magnitude of the maximum horizontal principal stress. Certainly, the optimal fracturing effect in the infill-wells vary due to the different mass fraction of organic matter. This study not only helps to understand the effect of mass fraction of organic matter on stress variation and fracture propagation, but also provides theoretical support for increasing production from shale gas reservoirs.
{"title":"Evaluating the effect of organic matter contained in shale on hydraulic fracturing of infill-well","authors":"Kaixuan Qiu , Shiming Wei","doi":"10.1016/j.gete.2023.100524","DOIUrl":"10.1016/j.gete.2023.100524","url":null,"abstract":"<div><p>Organic matter which is scattered uniformly in shale can respond to the applied stress and result in the variation of stress field. However, the effects of organic matter content in organic-rich shale on stress interference have not been well considered during developing infill-wells. A fully coupled numerical model is proposed in this paper to consider the whole flow spectrum of shale gas and investigate the effect of organic matter content on stress variation and fracture propagation in infill-well. Through simulating the production and fracturing process with only one set of code, some conclusions can be drawn that the alteration angle of the maximum horizontal principal stress increases and then decreases with the production time. Furthermore, the shrinkage of organic matter enlarges the alteration angle and the magnitude of the maximum horizontal principal stress. Certainly, the optimal fracturing effect in the infill-wells vary due to the different mass fraction of organic matter. This study not only helps to understand the effect of mass fraction of organic matter on stress variation and fracture propagation, but also provides theoretical support for increasing production from shale gas reservoirs.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100524"},"PeriodicalIF":5.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235238082300093X/pdfft?md5=8e427adda00637c6490d7b69cf0485c0&pid=1-s2.0-S235238082300093X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-09DOI: 10.1016/j.gete.2023.100525
Runhua Feng , Joel Sarout , Jeremie Dautriat , Yousef M. Al Ghuwainim , Reza Rezaee , Mohammad Sarmadivaleh
Brittleness Index (BI) is a critical parameter characterising the deformation regime of geo-materials, covering the range from purely brittle (fractures) to ductile (plastic flow). A variety of BI models have been developed based on rock properties such as mineralogy, elastic parameters, or constitutive law. However, very few of them are based on the hydro-mechanical interactions emerging in underground engineering applications. In this study, we propose a BI model based on the partitioning of the injection energy EI into non-seismic deformation energy Ed associated with hydraulic fracture propagation. To calculate the Ed, we apply a model for temporal fracturing area (Ad) within the penny-shaped fracture; and we also correlate the wellbore pressure and the three-dimensional strain induced by hydraulic fracturing of the different types of rock samples subjected to true triaxial stress conditions (TTSC), either σv = 6.5 MPa, σH = 3 MPa, σh = 1.5 MPa or σv = 15 MPa, σH = 10 MPa, σh = 5 MPa. As a comparison, the BI is also quantified based on the existing models: (i) acoustic measurement from Rickman et al. (2008), and (ii) the Mohr-Coulomb’s criteria from Papanastasiou et al. (2016). The Ed ranges between 32.4% and 90.6% of the total injection energy EI, which is slightly higher than the value reported from field-scale data (15% to 80%), but comparable to laboratory-derived data (18% to 94%) from literature. The results show that the predictions based on our proposed energy-based BI model are qualitatively consistent with Papanastasiou et al.’s, but less so with Rickman et al.’s. Our BI model is shown to be stress-dependent and capable of capturing the brittle-to-ductile behaviour of geomaterials subjected to hydraulic fracturing. This study demonstrates that our BI model opens a new way for quantifying the brittleness index regarding to realistic fracture propagation scenarios in field.
脆性指数(BI)是表征岩土材料变形机制的一个关键参数,涵盖了从纯脆(断裂)到韧性(塑性流动)的范围。目前已根据矿物学、弹性参数或构成法等岩石特性开发出多种 BI 模型。然而,很少有模型是基于地下工程应用中出现的水力机械相互作用。在本研究中,我们提出了一种 BI 模型,其基础是将注入能 EI 分解为与水力裂缝传播相关的非地震变形能 Ed。为了计算 Ed,我们在笔形裂缝内应用了一个时间压裂面积 (Ad) 模型;我们还将井筒压力与不同类型岩石样本在真实三轴应力条件 (TTSC) 下(σv = 6.5 MPa、σH = 3 MPa、σh = 1.5 MPa 或 σv = 15 MPa、σH = 10 MPa、σh = 5 MPa)由水力压裂引起的三维应变相关联。作为比较,还根据现有模型对 BI 进行了量化:(i) Rickman 等人(2008 年)的声学测量;(ii) Papanastasiou 等人(2016 年)的 Mohr-Coulomb 标准。Ed 值介于总注入能量 EI 的 32.4% 到 90.6% 之间,略高于现场规模数据的报告值(15% 到 80%),但与文献中的实验室数据(18% 到 94%)相当。结果表明,根据我们提出的基于能量的 BI 模型所做的预测与 Papanastasiou 等人的预测在质量上是一致的,但与 Rickman 等人的预测则不太一致。研究表明,我们的 BI 模型与应力有关,能够捕捉到受水力压裂作用的岩土材料从脆到韧性的行为。这项研究表明,我们的脆性指数模型为量化脆性指数开辟了一条新的途径,使之适用于现场的实际裂缝扩展情况。
{"title":"Laboratory validation of a new hydro-mechanical energy-based brittleness index model for hydraulic fracturing","authors":"Runhua Feng , Joel Sarout , Jeremie Dautriat , Yousef M. Al Ghuwainim , Reza Rezaee , Mohammad Sarmadivaleh","doi":"10.1016/j.gete.2023.100525","DOIUrl":"10.1016/j.gete.2023.100525","url":null,"abstract":"<div><p>Brittleness Index (BI) is a critical parameter characterising the deformation regime of geo-materials, covering the range from purely brittle (fractures) to ductile (plastic flow). A variety of BI models have been developed based on rock properties such as mineralogy, elastic parameters, or constitutive law. However, very few of them are based on the hydro-mechanical interactions emerging in underground engineering applications. In this study, we propose a BI model based on the partitioning of the injection energy <em>E</em><sub><em>I</em></sub> into non-seismic deformation energy <em>E</em><sub><em>d</em></sub> associated with hydraulic fracture propagation. To calculate the <em>E</em><sub><em>d</em></sub>, we apply a model for temporal fracturing area (<em>A</em><sub><em>d</em></sub>) within the penny-shaped fracture; and we also correlate the wellbore pressure and the three-dimensional strain induced by hydraulic fracturing of the different types of rock samples subjected to true triaxial stress conditions (TTSC), either σ<sub>v</sub> = 6.5 MPa, σ<sub>H</sub> = 3 MPa, σ<sub>h</sub> = 1.5 MPa or σ<sub>v</sub> = 15 MPa, σ<sub>H</sub> = 10 MPa, σ<sub>h</sub> = 5 MPa. As a comparison, the BI is also quantified based on the existing models: (i) acoustic measurement from Rickman et al. (2008), and (ii) the Mohr-Coulomb’s criteria from Papanastasiou et al. (2016). The <em>E</em><sub><em>d</em></sub> ranges between 32.4% and 90.6% of the total injection energy <em>E</em><sub><em>I</em></sub>, which is slightly higher than the value reported from field-scale data (15% to 80%), but comparable to laboratory-derived data (18% to 94%) from literature. The results show that the predictions based on our proposed energy-based BI model are qualitatively consistent with Papanastasiou et al.’s, but less so with Rickman et al.’s. Our BI model is shown to be stress-dependent and capable of capturing the brittle-to-ductile behaviour of geomaterials subjected to hydraulic fracturing. This study demonstrates that our BI model opens a new way for quantifying the brittleness index regarding to realistic fracture propagation scenarios in field.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100525"},"PeriodicalIF":5.1,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823000941/pdfft?md5=af76e64351c6e87d145ab156f8febb4a&pid=1-s2.0-S2352380823000941-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138575898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}