Pub Date : 2024-12-11DOI: 10.1126/scirobotics.adu2915
Monroe Kennedy, Ayanna Howard
Black in Robotics, a nonprofit organization, has had recent success, but it is the ongoing community participation that will sustain its efforts.
非营利组织Black in Robotics最近取得了一些成功,但只有社区的持续参与才能维持它的努力。
{"title":"Black in Robotics: Improving community and equity in the field of robotics.","authors":"Monroe Kennedy, Ayanna Howard","doi":"10.1126/scirobotics.adu2915","DOIUrl":"https://doi.org/10.1126/scirobotics.adu2915","url":null,"abstract":"<p><p>Black in Robotics, a nonprofit organization, has had recent success, but it is the ongoing community participation that will sustain its efforts.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 97","pages":"eadu2915"},"PeriodicalIF":26.1,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1126/scirobotics.ado3939
Jaemin Eom, Sung Yol Yu, Woongbae Kim, Chunghoon Park, Kristine Yoonseo Lee, Kyu-Jin Cho
Humans use their dexterous fingers and adaptable palm in various multiobject grasping strategies to efficiently move multiple objects together in various situations. Advanced manipulation skills, such as finger-to-palm translation and palm-to-finger translation, enhance the dexterity in multiobject grasping. These translational movements allow the fingers to transfer the grasped objects to the palm for storage, enabling the fingers to freely perform various pick-and-place tasks while the palm stores multiple objects. However, conventional grippers, although able to handle multiple objects simultaneously, lack this integrated functionality, which combines the palm’s storage with the fingers’ precise placement. Here, we introduce a gripper for multiobject grasping that applies translational movements of fingertips to leverage the synergistic use of fingers and the palm for enhanced pick-and-place functionality. The proposed gripper consists of four fingers and an adaptive conveyor palm. The fingers sequentially grasp and transfer objects to the palm, where the objects are stored simultaneously, allowing the gripper to move multiple objects at once. Furthermore, by reversing this process, the fingers retrieve the stored objects and place them one by one in the desired position and orientation. A finger design for simple object translating and a palm design for simultaneous object storing were proposed and validated. In addition, the time efficiency and pick-and-place capabilities of the developed gripper were demonstrated. Our work shows the potential of finger translation to enhance functionality and broaden the applicability of multiobject grasping.
{"title":"MOGrip: Gripper for multiobject grasping in pick-and-place tasks using translational movements of fingers","authors":"Jaemin Eom, Sung Yol Yu, Woongbae Kim, Chunghoon Park, Kristine Yoonseo Lee, Kyu-Jin Cho","doi":"10.1126/scirobotics.ado3939","DOIUrl":"10.1126/scirobotics.ado3939","url":null,"abstract":"<div >Humans use their dexterous fingers and adaptable palm in various multiobject grasping strategies to efficiently move multiple objects together in various situations. Advanced manipulation skills, such as finger-to-palm translation and palm-to-finger translation, enhance the dexterity in multiobject grasping. These translational movements allow the fingers to transfer the grasped objects to the palm for storage, enabling the fingers to freely perform various pick-and-place tasks while the palm stores multiple objects. However, conventional grippers, although able to handle multiple objects simultaneously, lack this integrated functionality, which combines the palm’s storage with the fingers’ precise placement. Here, we introduce a gripper for multiobject grasping that applies translational movements of fingertips to leverage the synergistic use of fingers and the palm for enhanced pick-and-place functionality. The proposed gripper consists of four fingers and an adaptive conveyor palm. The fingers sequentially grasp and transfer objects to the palm, where the objects are stored simultaneously, allowing the gripper to move multiple objects at once. Furthermore, by reversing this process, the fingers retrieve the stored objects and place them one by one in the desired position and orientation. A finger design for simple object translating and a palm design for simultaneous object storing were proposed and validated. In addition, the time efficiency and pick-and-place capabilities of the developed gripper were demonstrated. Our work shows the potential of finger translation to enhance functionality and broaden the applicability of multiobject grasping.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 97","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1126/scirobotics.adp3593
Hong Han, Xiaotian Ma, Weiting Deng, Junhang Zhang, Songsong Tang, On Shun Pak, Lailai Zhu, Ernesto Criado-Hidalgo, Chen Gong, Emil Karshalev, Jounghyun Yoo, Ming You, Ann Liu, Canran Wang, Hao K. Shen, Payal N. Patel, Claire L. Hays, Peter J. Gunnarson, Lei Li, Yang Zhang, John O. Dabiri, Lihong V. Wang, Mikhail G. Shapiro, Di Wu, Qifa Zhou, Julia R. Greer, Wei Gao
Micro- and nanorobots excel in navigating the intricate and often inaccessible areas of the human body, offering immense potential for applications such as disease diagnosis, precision drug delivery, detoxification, and minimally invasive surgery. Despite their promise, practical deployment faces hurdles, including achieving stable propulsion in complex in vivo biological environments, real-time imaging and localization through deep tissue, and precise remote control for targeted therapy and ensuring high therapeutic efficacy. To overcome these obstacles, we introduce a hydrogel-based, imaging-guided, bioresorbable acoustic microrobot (BAM) designed to navigate the human body with high stability. Constructed using two-photon polymerization, a BAM comprises magnetic nanoparticles and therapeutic agents integrated into its hydrogel matrix for precision control and drug delivery. The microrobot features an optimized surface chemistry with a hydrophobic inner layer to substantially enhance microbubble retention in biofluids with multiday functionality and a hydrophilic outer layer to minimize aggregation and promote timely degradation. The dual-opening bubble-trapping cavity design enables a BAM to maintain consistent and efficient acoustic propulsion across a range of biological fluids. Under focused ultrasound stimulation, the entrapped microbubbles oscillate and enhance the contrast for real-time ultrasound imaging, facilitating precise tracking and control of BAM movement through wireless magnetic navigation. Moreover, the hydrolysis-driven biodegradability of BAMs ensures its safe dissolution after treatment, posing no risk of long-term residual harm. Thorough in vitro and in vivo experimental evidence demonstrates the promising capabilities of BAMs in biomedical applications. This approach shows promise for advancing minimally invasive medical interventions and targeted therapeutic delivery.
{"title":"Imaging-guided bioresorbable acoustic hydrogel microrobots","authors":"Hong Han, Xiaotian Ma, Weiting Deng, Junhang Zhang, Songsong Tang, On Shun Pak, Lailai Zhu, Ernesto Criado-Hidalgo, Chen Gong, Emil Karshalev, Jounghyun Yoo, Ming You, Ann Liu, Canran Wang, Hao K. Shen, Payal N. Patel, Claire L. Hays, Peter J. Gunnarson, Lei Li, Yang Zhang, John O. Dabiri, Lihong V. Wang, Mikhail G. Shapiro, Di Wu, Qifa Zhou, Julia R. Greer, Wei Gao","doi":"10.1126/scirobotics.adp3593","DOIUrl":"10.1126/scirobotics.adp3593","url":null,"abstract":"<div >Micro- and nanorobots excel in navigating the intricate and often inaccessible areas of the human body, offering immense potential for applications such as disease diagnosis, precision drug delivery, detoxification, and minimally invasive surgery. Despite their promise, practical deployment faces hurdles, including achieving stable propulsion in complex in vivo biological environments, real-time imaging and localization through deep tissue, and precise remote control for targeted therapy and ensuring high therapeutic efficacy. To overcome these obstacles, we introduce a hydrogel-based, imaging-guided, bioresorbable acoustic microrobot (BAM) designed to navigate the human body with high stability. Constructed using two-photon polymerization, a BAM comprises magnetic nanoparticles and therapeutic agents integrated into its hydrogel matrix for precision control and drug delivery. The microrobot features an optimized surface chemistry with a hydrophobic inner layer to substantially enhance microbubble retention in biofluids with multiday functionality and a hydrophilic outer layer to minimize aggregation and promote timely degradation. The dual-opening bubble-trapping cavity design enables a BAM to maintain consistent and efficient acoustic propulsion across a range of biological fluids. Under focused ultrasound stimulation, the entrapped microbubbles oscillate and enhance the contrast for real-time ultrasound imaging, facilitating precise tracking and control of BAM movement through wireless magnetic navigation. Moreover, the hydrolysis-driven biodegradability of BAMs ensures its safe dissolution after treatment, posing no risk of long-term residual harm. Thorough in vitro and in vivo experimental evidence demonstrates the promising capabilities of BAMs in biomedical applications. This approach shows promise for advancing minimally invasive medical interventions and targeted therapeutic delivery.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 97","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1126/scirobotics.ado1010
Benjamin Rivière, John Lathrop, Soon-Jo Chung
The ability of a robot to plan complex behaviors with real-time computation, rather than adhering to predesigned or offline-learned routines, alleviates the need for specialized algorithms or training for each problem instance. Monte Carlo tree search is a powerful planning algorithm that strategically explores simulated future possibilities, but it requires a discrete problem representation that is irreconcilable with the continuous dynamics of the physical world. We present Spectral Expansion Tree Search (SETS), a real-time, tree-based planner that uses the spectrum of the locally linearized system to construct a low-complexity and approximately equivalent discrete representation of the continuous world. We prove that SETS converges to a bound of the globally optimal solution for continuous, deterministic, and differentiable Markov decision processes, a broad class of problems that includes underactuated nonlinear dynamics, nonconvex reward functions, and unstructured environments. We experimentally validated SETS on drone, spacecraft, and ground vehicle robots and one numerical experiment, each of which is not directly solvable with existing methods. We successfully show that SETS automatically discovers a diverse set of optimal behaviors and motion trajectories in real time.
{"title":"Monte Carlo tree search with spectral expansion for planning with dynamical systems","authors":"Benjamin Rivière, John Lathrop, Soon-Jo Chung","doi":"10.1126/scirobotics.ado1010","DOIUrl":"10.1126/scirobotics.ado1010","url":null,"abstract":"<div >The ability of a robot to plan complex behaviors with real-time computation, rather than adhering to predesigned or offline-learned routines, alleviates the need for specialized algorithms or training for each problem instance. Monte Carlo tree search is a powerful planning algorithm that strategically explores simulated future possibilities, but it requires a discrete problem representation that is irreconcilable with the continuous dynamics of the physical world. We present Spectral Expansion Tree Search (SETS), a real-time, tree-based planner that uses the spectrum of the locally linearized system to construct a low-complexity and approximately equivalent discrete representation of the continuous world. We prove that SETS converges to a bound of the globally optimal solution for continuous, deterministic, and differentiable Markov decision processes, a broad class of problems that includes underactuated nonlinear dynamics, nonconvex reward functions, and unstructured environments. We experimentally validated SETS on drone, spacecraft, and ground vehicle robots and one numerical experiment, each of which is not directly solvable with existing methods. We successfully show that SETS automatically discovers a diverse set of optimal behaviors and motion trajectories in real time.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 97","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1126/scirobotics.adn4542
Elgar Kanhere, Théo Calais, Snehal Jain, Aby Raj Plamootil Mathai, Aaron Chooi, Thileepan Stalin, Vincent Sebastian Joseph, Pablo Valdivia y Alvarado
Soft robotics hardware, with numerous applications ranging from health care to exploration of unstructured environments, suffers from limited life cycles, which lead to waste generation and poor sustainability. Soft robots combine soft or hybrid components via complex assembly and disassembly workflows, which complicate the repair of broken components, hinder upgradability, and ultimately reduce their life spans. In this work, an advanced extrusion-based additive manufacturing process, in situ free-form liquid three-dimensional printing (iFL3DP), was developed to facilitate functional upgrades and repairs in soft robots. A yield-stress hydrogel—a type of material that can maintain its shape until sufficient stress is applied—was first printed directly onto the robot surface, serving as a support for printing new components. This technique enabled the fabrication of advanced components with seamless integration onto already assembled robots. These components could combine multiple materials with intricate geometries, including overhangs and high–aspect ratio shapes, that are considerably challenging to manufacture and integrate via traditional methods such as casting. This approach was successfully applied to upgrade an existing soft robot by adding three advanced functionalities: whisker-like sensors for tactile feedback, a grasping mechanism, and a multifunctional passive whisker array. This study showcases the easy repairability of features, new and old, substantially extending the robot’s life span. This workflow has potential to enhance the sustainable development of soft robots.
{"title":"Upgrading and extending the life cycle of soft robots with in situ free-form liquid three-dimensional printing","authors":"Elgar Kanhere, Théo Calais, Snehal Jain, Aby Raj Plamootil Mathai, Aaron Chooi, Thileepan Stalin, Vincent Sebastian Joseph, Pablo Valdivia y Alvarado","doi":"10.1126/scirobotics.adn4542","DOIUrl":"10.1126/scirobotics.adn4542","url":null,"abstract":"<div >Soft robotics hardware, with numerous applications ranging from health care to exploration of unstructured environments, suffers from limited life cycles, which lead to waste generation and poor sustainability. Soft robots combine soft or hybrid components via complex assembly and disassembly workflows, which complicate the repair of broken components, hinder upgradability, and ultimately reduce their life spans. In this work, an advanced extrusion-based additive manufacturing process, in situ free-form liquid three-dimensional printing (iFL3DP), was developed to facilitate functional upgrades and repairs in soft robots. A yield-stress hydrogel—a type of material that can maintain its shape until sufficient stress is applied—was first printed directly onto the robot surface, serving as a support for printing new components. This technique enabled the fabrication of advanced components with seamless integration onto already assembled robots. These components could combine multiple materials with intricate geometries, including overhangs and high–aspect ratio shapes, that are considerably challenging to manufacture and integrate via traditional methods such as casting. This approach was successfully applied to upgrade an existing soft robot by adding three advanced functionalities: whisker-like sensors for tactile feedback, a grasping mechanism, and a multifunctional passive whisker array. This study showcases the easy repairability of features, new and old, substantially extending the robot’s life span. This workflow has potential to enhance the sustainable development of soft robots.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 97","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1126/scirobotics.adu0906
Marquise D Bell
Developing spaces that foster and embrace diverse perspectives and backgrounds with intentionality benefits everyone involved.
发展空间,培养和包容不同的观点和背景,有意地使每个人都受益。
{"title":"Promoting diverse and inclusive spaces with intentionality.","authors":"Marquise D Bell","doi":"10.1126/scirobotics.adu0906","DOIUrl":"https://doi.org/10.1126/scirobotics.adu0906","url":null,"abstract":"<p><p>Developing spaces that foster and embrace diverse perspectives and backgrounds with intentionality benefits everyone involved.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 97","pages":"eadu0906"},"PeriodicalIF":26.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142781964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1126/scirobotics.adu2844
Nikita Jasmine Greenidge
From St. Lucia to the United Kingdom, my PhD journey highlights minorities' challenges in academia and the need to foster diverse talent.
从圣卢西亚到英国,我的博士之旅凸显了少数族裔在学术界面临的挑战,以及培养多元化人才的必要性。
{"title":"The cold truth about robotics research in the United Kingdom as a Caribbean woman.","authors":"Nikita Jasmine Greenidge","doi":"10.1126/scirobotics.adu2844","DOIUrl":"https://doi.org/10.1126/scirobotics.adu2844","url":null,"abstract":"<p><p>From St. Lucia to the United Kingdom, my PhD journey highlights minorities' challenges in academia and the need to foster diverse talent.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 97","pages":"eadu2844"},"PeriodicalIF":26.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142781965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Increasingly functional microscopic machines are poised to have massive technical influence in areas including targeted drug delivery, precise surgical interventions, and environmental remediation. Such functionalities would increase markedly if collections of these microscopic machines were able to coordinate their function to achieve cooperative emergent behaviors. Implementing such coordination, however, requires a scalable strategy for synchronization—a key stumbling block for achieving collective behaviors of multiple autonomous microscopic units. Here, we show that pulse-coupled complementary metal-oxide semiconductor oscillators offer a tangible solution for such scalable synchronization. Specifically, we designed low-power oscillating modules with attached mechanical elements that exchange electronic pulses to advance their neighbor’s phase until the entire system is synchronized with the fastest oscillator or “leader.” We showed that this strategy is amenable to different oscillator connection topologies. The cooperative behaviors were robust to disturbances that scrambled the synchronization. In addition, when connections between oscillators were severed, the resulting subgroups synchronized on their own. This advance opens the door to functionalities in microscopic robot swarms that were once considered out of reach, ranging from autonomously induced fluidic transport to drive chemical reactions to cooperative building of physical structures at the microscale.
{"title":"Coordinated behavior of autonomous microscopic machines through local electronic pulse coupling","authors":"Milad Taghavi, Wei Wang, Kyubum Shim, Jinsong Zhang, Itai Cohen, Alyssa Apsel","doi":"10.1126/scirobotics.adn8067","DOIUrl":"10.1126/scirobotics.adn8067","url":null,"abstract":"<div >Increasingly functional microscopic machines are poised to have massive technical influence in areas including targeted drug delivery, precise surgical interventions, and environmental remediation. Such functionalities would increase markedly if collections of these microscopic machines were able to coordinate their function to achieve cooperative emergent behaviors. Implementing such coordination, however, requires a scalable strategy for synchronization—a key stumbling block for achieving collective behaviors of multiple autonomous microscopic units. Here, we show that pulse-coupled complementary metal-oxide semiconductor oscillators offer a tangible solution for such scalable synchronization. Specifically, we designed low-power oscillating modules with attached mechanical elements that exchange electronic pulses to advance their neighbor’s phase until the entire system is synchronized with the fastest oscillator or “leader.” We showed that this strategy is amenable to different oscillator connection topologies. The cooperative behaviors were robust to disturbances that scrambled the synchronization. In addition, when connections between oscillators were severed, the resulting subgroups synchronized on their own. This advance opens the door to functionalities in microscopic robot swarms that were once considered out of reach, ranging from autonomously induced fluidic transport to drive chemical reactions to cooperative building of physical structures at the microscale.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 96","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adn8067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1126/scirobotics.adp2309
Minh Tri Luu, Jonathan F. Berengut, Jiahe Li, Jing-Bing Chen, Jasleen Kaur Daljit Singh, Kanako Coffi Dit Glieze, Matthew Turner, Karuna Skipper, Sreelakshmi Meppat, Hannah Fowler, William Close, Jonathan P. K. Doye, Ali Abbas, Shelley F. J. Wickham
In cells, proteins rapidly self-assemble into sophisticated nanomachines. Bioinspired self-assembly approaches, such as DNA origami, have been used to achieve complex three-dimensional (3D) nanostructures and devices. However, current synthetic systems are limited by low yields in hierarchical assembly and challenges in rapid and efficient reconfiguration between diverse structures. Here, we developed a modular system of DNA origami “voxels” with programmable 3D connections. We demonstrate multifunctional pools of up to 12 unique voxels that can assemble into many shapes, prototyping 50 structures. Programmable switching of local connections between flexible and rigid states achieved rapid and reversible reconfiguration of global structures in three dimensions. Multistep assembly pathways were then explored to increase the yield. Voxels were assembled via flexible chain intermediates into rigid structures, increasing yield up to 100-fold. We envision that foldable chains of DNA origami voxels can achieve increased complexity in reconfigurable nanomaterials, providing modular components for the assembly of nanorobotic systems with future applications in synthetic biology, assembly of inorganic materials, and nanomedicine.
在细胞中,蛋白质可快速自组装成精密的纳米机器。受生物启发的自组装方法(如 DNA 折纸)已被用于实现复杂的三维(3D)纳米结构和器件。然而,目前的合成系统受限于分层组装的低产量,以及在不同结构之间快速高效地重新配置所面临的挑战。在这里,我们开发了一种具有可编程三维连接的 DNA 折纸 "体块 "模块化系统。我们展示了由多达 12 个独特体块组成的多功能池,这些体块可以组装成多种形状,原型结构多达 50 种。局部连接在柔性和刚性状态之间的可编程切换实现了三维全局结构的快速可逆重组。然后探索了多步骤组装途径,以提高产量。体素通过柔性链中间体组装成刚性结构,产量提高了 100 倍。我们设想,DNA 折纸体块的可折叠链可以增加可重构纳米材料的复杂性,为纳米机器人系统的组装提供模块化组件,未来可应用于合成生物学、无机材料组装和纳米医学。
{"title":"Reconfigurable nanomaterials folded from multicomponent chains of DNA origami voxels","authors":"Minh Tri Luu, Jonathan F. Berengut, Jiahe Li, Jing-Bing Chen, Jasleen Kaur Daljit Singh, Kanako Coffi Dit Glieze, Matthew Turner, Karuna Skipper, Sreelakshmi Meppat, Hannah Fowler, William Close, Jonathan P. K. Doye, Ali Abbas, Shelley F. J. Wickham","doi":"10.1126/scirobotics.adp2309","DOIUrl":"10.1126/scirobotics.adp2309","url":null,"abstract":"<div >In cells, proteins rapidly self-assemble into sophisticated nanomachines. Bioinspired self-assembly approaches, such as DNA origami, have been used to achieve complex three-dimensional (3D) nanostructures and devices. However, current synthetic systems are limited by low yields in hierarchical assembly and challenges in rapid and efficient reconfiguration between diverse structures. Here, we developed a modular system of DNA origami “voxels” with programmable 3D connections. We demonstrate multifunctional pools of up to 12 unique voxels that can assemble into many shapes, prototyping 50 structures. Programmable switching of local connections between flexible and rigid states achieved rapid and reversible reconfiguration of global structures in three dimensions. Multistep assembly pathways were then explored to increase the yield. Voxels were assembled via flexible chain intermediates into rigid structures, increasing yield up to 100-fold. We envision that foldable chains of DNA origami voxels can achieve increased complexity in reconfigurable nanomaterials, providing modular components for the assembly of nanorobotic systems with future applications in synthetic biology, assembly of inorganic materials, and nanomedicine.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 96","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1126/scirobotics.adl0842
Henry Hess, Parag Katira, Juan B. Rodriguez III
Molecular motors generate force to individually power molecular machines or collectively drive macroscopic actuators. The force output of molecular and macroscale motors appears to be constrained by the same scaling law relating motor force and mass. Here, potential origins of these universal performance characteristics are discussed and the implications examined.
{"title":"The force has limits: Molecular motors in robotics","authors":"Henry Hess, Parag Katira, Juan B. Rodriguez III","doi":"10.1126/scirobotics.adl0842","DOIUrl":"10.1126/scirobotics.adl0842","url":null,"abstract":"<div >Molecular motors generate force to individually power molecular machines or collectively drive macroscopic actuators. The force output of molecular and macroscale motors appears to be constrained by the same scaling law relating motor force and mass. Here, potential origins of these universal performance characteristics are discussed and the implications examined.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 96","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}