Pub Date : 2025-02-19DOI: 10.1126/scirobotics.adw1608
Robin R Murphy
The family movie The Wild Robot illustrates the rigors of real-world field robotics.
{"title":"It is hard to be a robot in the wild.","authors":"Robin R Murphy","doi":"10.1126/scirobotics.adw1608","DOIUrl":"https://doi.org/10.1126/scirobotics.adw1608","url":null,"abstract":"<p><p>The family movie <i>The Wild Robot</i> illustrates the rigors of real-world field robotics.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 99","pages":"eadw1608"},"PeriodicalIF":26.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Florian Hartmann, Mrudhula Baskaran, Gaetan Raynaud, Mehdi Benbedda, Karen Mulleners, Herbert Shea
Navigating and exploring the surfaces of bodies of water allow swimming robots to perform a range of measurements while efficiently communicating and harvesting energy from the Sun. Such environments are often highly unstructured and cluttered with plant matter, animals, and debris, which require robots to move swiftly. We report a fast (5.1 centimeters per second translation and 195 degrees per second rotation), centimeter-scale swimming robot with high maneuverability and autonomous untethered operation. Locomotion is enabled by a pair of soft, millimeter-thin, undulating pectoral fins, in which traveling waves are electrically excited to generate propulsion. The actuators, robot design, and power supply are codesigned to enable high-performance locomotion in a scaled-down system. A single soft electrohydraulic actuator per side generates the traveling wave. A compact and lightweight power supply enables untethered operation, made possible by decreasing the operating voltage of the electrohydraulic actuators to below 500 volts and their power consumption to 35 milliwatts. By an experimental study and by modeling, we determined optimum dimensions and operating conditions across designs and size scales. The robots navigate through narrow spaces and through grassy plants and push objects weighing more than 16 times their body weight. Such robots can allow exploration of complex environments as well as continuous measurement of plant and water parameters for aquafarming.
{"title":"Highly agile flat swimming robot","authors":"Florian Hartmann, Mrudhula Baskaran, Gaetan Raynaud, Mehdi Benbedda, Karen Mulleners, Herbert Shea","doi":"","DOIUrl":"","url":null,"abstract":"<div >Navigating and exploring the surfaces of bodies of water allow swimming robots to perform a range of measurements while efficiently communicating and harvesting energy from the Sun. Such environments are often highly unstructured and cluttered with plant matter, animals, and debris, which require robots to move swiftly. We report a fast (5.1 centimeters per second translation and 195 degrees per second rotation), centimeter-scale swimming robot with high maneuverability and autonomous untethered operation. Locomotion is enabled by a pair of soft, millimeter-thin, undulating pectoral fins, in which traveling waves are electrically excited to generate propulsion. The actuators, robot design, and power supply are codesigned to enable high-performance locomotion in a scaled-down system. A single soft electrohydraulic actuator per side generates the traveling wave. A compact and lightweight power supply enables untethered operation, made possible by decreasing the operating voltage of the electrohydraulic actuators to below 500 volts and their power consumption to 35 milliwatts. By an experimental study and by modeling, we determined optimum dimensions and operating conditions across designs and size scales. The robots navigate through narrow spaces and through grassy plants and push objects weighing more than 16 times their body weight. Such robots can allow exploration of complex environments as well as continuous measurement of plant and water parameters for aquafarming.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 99","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nana Obayashi, David Howard, Kyle L. Walker, Jonas Jørgensen, Maks Gepner, Dan Sameoto, Adam Stokes, Fumiya Iida, Josie Hughes
A shift toward a democratized, bimodal model of research would allow soft robotics to realize its full potential.
{"title":"A democratized bimodal model of research for soft robotics: Integrating slow and fast science","authors":"Nana Obayashi, David Howard, Kyle L. Walker, Jonas Jørgensen, Maks Gepner, Dan Sameoto, Adam Stokes, Fumiya Iida, Josie Hughes","doi":"","DOIUrl":"","url":null,"abstract":"<div >A shift toward a democratized, bimodal model of research would allow soft robotics to realize its full potential.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 99","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The family movie The Wild Robot illustrates the rigors of real-world field robotics.
{"title":"It is hard to be a robot in the wild","authors":"Robin R. Murphy","doi":"","DOIUrl":"","url":null,"abstract":"<div >The family movie <i>The Wild Robot</i> illustrates the rigors of real-world field robotics.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 99","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.1126/scirobotics.adr0721
Florian Hartmann, Mrudhula Baskaran, Gaetan Raynaud, Mehdi Benbedda, Karen Mulleners, Herbert Shea
Navigating and exploring the surfaces of bodies of water allow swimming robots to perform a range of measurements while efficiently communicating and harvesting energy from the Sun. Such environments are often highly unstructured and cluttered with plant matter, animals, and debris, which require robots to move swiftly. We report a fast (5.1 centimeters per second translation and 195 degrees per second rotation), centimeter-scale swimming robot with high maneuverability and autonomous untethered operation. Locomotion is enabled by a pair of soft, millimeter-thin, undulating pectoral fins, in which traveling waves are electrically excited to generate propulsion. The actuators, robot design, and power supply are codesigned to enable high-performance locomotion in a scaled-down system. A single soft electrohydraulic actuator per side generates the traveling wave. A compact and lightweight power supply enables untethered operation, made possible by decreasing the operating voltage of the electrohydraulic actuators to below 500 volts and their power consumption to 35 milliwatts. By an experimental study and by modeling, we determined optimum dimensions and operating conditions across designs and size scales. The robots navigate through narrow spaces and through grassy plants and push objects weighing more than 16 times their body weight. Such robots can allow exploration of complex environments as well as continuous measurement of plant and water parameters for aquafarming.
{"title":"Highly agile flat swimming robot","authors":"Florian Hartmann, Mrudhula Baskaran, Gaetan Raynaud, Mehdi Benbedda, Karen Mulleners, Herbert Shea","doi":"10.1126/scirobotics.adr0721","DOIUrl":"https://doi.org/10.1126/scirobotics.adr0721","url":null,"abstract":"Navigating and exploring the surfaces of bodies of water allow swimming robots to perform a range of measurements while efficiently communicating and harvesting energy from the Sun. Such environments are often highly unstructured and cluttered with plant matter, animals, and debris, which require robots to move swiftly. We report a fast (5.1 centimeters per second translation and 195 degrees per second rotation), centimeter-scale swimming robot with high maneuverability and autonomous untethered operation. Locomotion is enabled by a pair of soft, millimeter-thin, undulating pectoral fins, in which traveling waves are electrically excited to generate propulsion. The actuators, robot design, and power supply are codesigned to enable high-performance locomotion in a scaled-down system. A single soft electrohydraulic actuator per side generates the traveling wave. A compact and lightweight power supply enables untethered operation, made possible by decreasing the operating voltage of the electrohydraulic actuators to below 500 volts and their power consumption to 35 milliwatts. By an experimental study and by modeling, we determined optimum dimensions and operating conditions across designs and size scales. The robots navigate through narrow spaces and through grassy plants and push objects weighing more than 16 times their body weight. Such robots can allow exploration of complex environments as well as continuous measurement of plant and water parameters for aquafarming.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"11 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.1126/scirobotics.adw3630
Amos Matsiko
Somatosensory cortex stimulation enabled restoration of tactile feedback, permitting bionic hand users to discern objects.
{"title":"Restoration of tactile sensation in bionic hands.","authors":"Amos Matsiko","doi":"10.1126/scirobotics.adw3630","DOIUrl":"https://doi.org/10.1126/scirobotics.adw3630","url":null,"abstract":"<p><p>Somatosensory cortex stimulation enabled restoration of tactile feedback, permitting bionic hand users to discern objects.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 99","pages":"eadw3630"},"PeriodicalIF":26.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.1126/scirobotics.adr2708
Nana Obayashi, David Howard, Kyle L Walker, Jonas Jørgensen, Maks Gepner, Dan Sameoto, Adam Stokes, Fumiya Iida, Josie Hughes
A shift toward a democratized, bimodal model of research would allow soft robotics to realize its full potential.
{"title":"A democratized bimodal model of research for soft robotics: Integrating slow and fast science.","authors":"Nana Obayashi, David Howard, Kyle L Walker, Jonas Jørgensen, Maks Gepner, Dan Sameoto, Adam Stokes, Fumiya Iida, Josie Hughes","doi":"10.1126/scirobotics.adr2708","DOIUrl":"10.1126/scirobotics.adr2708","url":null,"abstract":"<p><p>A shift toward a democratized, bimodal model of research would allow soft robotics to realize its full potential.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 99","pages":"eadr2708"},"PeriodicalIF":26.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.1126/scirobotics.adp7700
Nicholas R. Posselli, Eileen S. Hwang, Zachary J. Olson, Aaron Nagiel, Paul S. Bernstein, Jake J. Abbott
Therapeutic protocols involving subretinal injection, which hold the promise of saving or restoring sight, are challenging for surgeons because they are at the limits of human motor and perceptual abilities. Excessive or insufficient indentation of the injection cannula into the retina or motion of the cannula with respect to the retina can result in retinal trauma or incorrect placement of the therapeutic product. Robotic assistance can potentially enable the surgeon to more precisely position the injection cannula and maintain its position for a prolonged period of time. However, head motion is common among patients undergoing eye surgery, complicating subretinal injections, yet it is often not considered in the evaluation of robotic assistance. No prior study has both included head motion during an evaluation of robotic assistance and demonstrated a significant improvement in the ability to perform subretinal injections compared with the manual approach. In a hybrid ex vivo and in situ study in which an enucleated eye was mounted on a human volunteer, we demonstrate that head-mounting a high-precision teleoperated surgical robot to passively reduce undesirable relative motion between the robot and the eye results in a bleb-formation success rate on moving eyes that is significantly higher than the manual success rates reported in the literature even on stationary enucleated eyes.
{"title":"Head-mounted surgical robots are an enabling technology for subretinal injections","authors":"Nicholas R. Posselli, Eileen S. Hwang, Zachary J. Olson, Aaron Nagiel, Paul S. Bernstein, Jake J. Abbott","doi":"10.1126/scirobotics.adp7700","DOIUrl":"https://doi.org/10.1126/scirobotics.adp7700","url":null,"abstract":"Therapeutic protocols involving subretinal injection, which hold the promise of saving or restoring sight, are challenging for surgeons because they are at the limits of human motor and perceptual abilities. Excessive or insufficient indentation of the injection cannula into the retina or motion of the cannula with respect to the retina can result in retinal trauma or incorrect placement of the therapeutic product. Robotic assistance can potentially enable the surgeon to more precisely position the injection cannula and maintain its position for a prolonged period of time. However, head motion is common among patients undergoing eye surgery, complicating subretinal injections, yet it is often not considered in the evaluation of robotic assistance. No prior study has both included head motion during an evaluation of robotic assistance and demonstrated a significant improvement in the ability to perform subretinal injections compared with the manual approach. In a hybrid ex vivo and in situ study in which an enucleated eye was mounted on a human volunteer, we demonstrate that head-mounting a high-precision teleoperated surgical robot to passively reduce undesirable relative motion between the robot and the eye results in a bleb-formation success rate on moving eyes that is significantly higher than the manual success rates reported in the literature even on stationary enucleated eyes.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"20 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cultured muscle tissue serves as a power source in biohybrid robots that demonstrate diverse motions. However, current designs typically only drive simple substrates on a small scale, limiting flexibility and controllability. To address this, we proposed a biohybrid hand with multijointed fingers powered by multiple muscle tissue actuators (MuMuTAs), bundles of thin muscle tissues. The MuMuTA can provide linear actuation with high contractile force (~8 millinewtons) and high contractile length (~4 millimeters), which can be converted into the flexion of multijointed fingers by a cable-driven mechanism. We successfully powered the biohybrid hand achieving individual control of fingers and a variety of motions using different signaling controls. This study showcases the potential of MuMuTAs as a driving source for advanced biohybrid robotics.
{"title":"Biohybrid hand actuated by multiple human muscle tissues","authors":"Xinzhu Ren, Yuya Morimoto, Shoji Takeuchi","doi":"","DOIUrl":"","url":null,"abstract":"<div >Cultured muscle tissue serves as a power source in biohybrid robots that demonstrate diverse motions. However, current designs typically only drive simple substrates on a small scale, limiting flexibility and controllability. To address this, we proposed a biohybrid hand with multijointed fingers powered by multiple muscle tissue actuators (MuMuTAs), bundles of thin muscle tissues. The MuMuTA can provide linear actuation with high contractile force (~8 millinewtons) and high contractile length (~4 millimeters), which can be converted into the flexion of multijointed fingers by a cable-driven mechanism. We successfully powered the biohybrid hand achieving individual control of fingers and a variety of motions using different signaling controls. This study showcases the potential of MuMuTAs as a driving source for advanced biohybrid robotics.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 99","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John F. Zimmerman, Daniel J. Drennan, James Ikeda, Qianru Jin, Herdeline Ann M. Ardoña, Sean L. Kim, Ryoma Ishii, Kevin Kit Parker
In biomimetic design, researchers recreate existing biological structures to form functional devices. For biohybrid robotic swimmers assembled with tissue engineering, this is problematic because most devices operate at different length scales than their naturally occurring counterparts, resulting in reduced performance. To overcome these challenges, here, we demonstrate how machine learning–directed optimization (ML-DO) can be used to inform the design of a biohybrid robot, outperforming other nonlinear optimization techniques, such as Bayesian optimization, in the selection of high-performance geometries. We show how this approach can be used to maximize the thrust generated by a tissue-engineered mobuliform miniray. This results in devices that can swim at the millimeter scale while more closely preserving natural locomotive scaling laws. Overall, this work provides a quantitatively rigorous approach for the engineering design of muscular structure-function relationships in an automated fashion.
{"title":"Bioinspired design of a tissue-engineered ray with machine learning","authors":"John F. Zimmerman, Daniel J. Drennan, James Ikeda, Qianru Jin, Herdeline Ann M. Ardoña, Sean L. Kim, Ryoma Ishii, Kevin Kit Parker","doi":"","DOIUrl":"","url":null,"abstract":"<div >In biomimetic design, researchers recreate existing biological structures to form functional devices. For biohybrid robotic swimmers assembled with tissue engineering, this is problematic because most devices operate at different length scales than their naturally occurring counterparts, resulting in reduced performance. To overcome these challenges, here, we demonstrate how machine learning–directed optimization (ML-DO) can be used to inform the design of a biohybrid robot, outperforming other nonlinear optimization techniques, such as Bayesian optimization, in the selection of high-performance geometries. We show how this approach can be used to maximize the thrust generated by a tissue-engineered mobuliform miniray. This results in devices that can swim at the millimeter scale while more closely preserving natural locomotive scaling laws. Overall, this work provides a quantitatively rigorous approach for the engineering design of muscular structure-function relationships in an automated fashion.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 99","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}