首页 > 最新文献

Science Robotics最新文献

英文 中文
Self-organizing nervous systems for robot swarms 机器人群的自组织神经系统
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-11-13 DOI: 10.1126/scirobotics.adl5161
Weixu Zhu, Sinan Oğuz, Mary Katherine Heinrich, Michael Allwright, Mostafa Wahby, Anders Lyhne Christensen, Emanuele Garone, Marco Dorigo
We present the self-organizing nervous system (SoNS), a robot swarm architecture based on self-organized hierarchy. The SoNS approach enables robots to autonomously establish, maintain, and reconfigure dynamic multilevel system architectures. For example, a robot swarm consisting of n independent robots could transform into a single n–robot SoNS and then into several independent smaller SoNSs, where each SoNS uses a temporary and dynamic hierarchy. Leveraging the SoNS approach, we showed that sensing, actuation, and decision-making can be coordinated in a locally centralized way without sacrificing the benefits of scalability, flexibility, and fault tolerance, for which swarm robotics is usually studied. In several proof-of-concept robot missions—including binary decision-making and search and rescue—we demonstrated that the capabilities of the SoNS approach greatly advance the state of the art in swarm robotics. The missions were conducted with a real heterogeneous aerial-ground robot swarm, using a custom-developed quadrotor platform. We also demonstrated the scalability of the SoNS approach in swarms of up to 250 robots in a physics-based simulator and demonstrated several types of system fault tolerance in simulation and reality.
我们提出了自组织神经系统(SoNS),这是一种基于自组织层次结构的机器人群架构。SoNS 方法使机器人能够自主建立、维护和重新配置动态多级系统结构。例如,由 n 个独立机器人组成的机器人群可以转变为一个 n 个机器人的 SoNS,然后再转变为多个独立的小型 SoNS,其中每个 SoNS 都使用临时的动态层次结构。利用 SoNS 方法,我们证明了感知、执行和决策可以通过局部集中的方式进行协调,而不会牺牲可扩展性、灵活性和容错性等优点,而这些正是研究蜂群机器人技术的通常目的。在几个概念验证机器人任务(包括二进制决策和搜索救援)中,我们证明了 SoNS 方法的能力大大推进了蜂群机器人技术的发展。这些任务是利用一个定制开发的四旋翼平台,通过一个真实的异构空地机器人群来完成的。我们还在基于物理的模拟器中演示了 SoNS 方法在多达 250 个机器人群中的可扩展性,并在模拟和现实中演示了几种类型的系统容错。
{"title":"Self-organizing nervous systems for robot swarms","authors":"Weixu Zhu,&nbsp;Sinan Oğuz,&nbsp;Mary Katherine Heinrich,&nbsp;Michael Allwright,&nbsp;Mostafa Wahby,&nbsp;Anders Lyhne Christensen,&nbsp;Emanuele Garone,&nbsp;Marco Dorigo","doi":"10.1126/scirobotics.adl5161","DOIUrl":"10.1126/scirobotics.adl5161","url":null,"abstract":"<div >We present the self-organizing nervous system (SoNS), a robot swarm architecture based on self-organized hierarchy. The SoNS approach enables robots to autonomously establish, maintain, and reconfigure dynamic multilevel system architectures. For example, a robot swarm consisting of <i>n</i> independent robots could transform into a single <i>n</i>–robot SoNS and then into several independent smaller SoNSs, where each SoNS uses a temporary and dynamic hierarchy. Leveraging the SoNS approach, we showed that sensing, actuation, and decision-making can be coordinated in a locally centralized way without sacrificing the benefits of scalability, flexibility, and fault tolerance, for which swarm robotics is usually studied. In several proof-of-concept robot missions—including binary decision-making and search and rescue—we demonstrated that the capabilities of the SoNS approach greatly advance the state of the art in swarm robotics. The missions were conducted with a real heterogeneous aerial-ground robot swarm, using a custom-developed quadrotor platform. We also demonstrated the scalability of the SoNS approach in swarms of up to 250 robots in a physics-based simulator and demonstrated several types of system fault tolerance in simulation and reality.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 96","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adl5161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing scientific discovery with the aid of robotics. 借助机器人技术推动科学发现。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-30 DOI: 10.1126/scirobotics.adt3842
Amos Matsiko

Robots can be powerful tools to advance basic scientific discovery.

机器人可以成为推动基础科学发现的强大工具。
{"title":"Advancing scientific discovery with the aid of robotics.","authors":"Amos Matsiko","doi":"10.1126/scirobotics.adt3842","DOIUrl":"https://doi.org/10.1126/scirobotics.adt3842","url":null,"abstract":"<p><p>Robots can be powerful tools to advance basic scientific discovery.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":"eadt3842"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement learning-based framework for whale rendezvous via autonomous sensing robots. 基于强化学习的自主感知机器人鲸鱼会合框架。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-30 DOI: 10.1126/scirobotics.adn7299
Ninad Jadhav, Sushmita Bhattacharya, Daniel Vogt, Yaniv Aluma, Pernille Tønnesen, Akarsh Prabhakara, Swarun Kumar, Shane Gero, Robert J Wood, Stephanie Gil

Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning-based routing (autonomy module) and synthetic aperture radar-based very high frequency (VHF) signal-based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an "engineered whale"-a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists.

与抹香鲸会合进行生物观测因其长时间的潜水模式而具有挑战性。在此,我们提出了一个算法框架,该框架开发了基于多代理强化学习的路由选择(自主模块)和基于合成孔径雷达甚高频(VHF)信号的方位估计(传感模块),以最大限度地提高自主机器人与抹香鲸会合的机会。传感模块与常用于追踪野生动物的低能耗甚高频标签兼容。自主模块利用对鲸鱼发声、甚高频标签和鲸鱼潜水行为的现场噪声方位测量,在模拟中实现机器人团队与多头鲸鱼的时间关键性会合。我们在抹香鲸的原生栖息地进行了海上实验,使用了 "工程鲸"--一艘装有甚高频发射标签的快艇,模拟了五种不同的鲸鱼运动轨迹。传感模块与标签的中位方位误差为 10.55°。利用声学传感器和传感模块对工程鲸的方位测量,我们的自主模块在后处理中使用三个机器人在 500 米交会距离内的总交会成功率为 81.31%。第二类实地实验使用声学方位测量法测量了三头未标记抹香鲸的方位,结果显示,使用两个机器人进行后处理,在 1000 米交会距离上的总交会成功率为 68.68%。我们还利用海洋生物学家收集的抹香鲸目视相遇数据集进行了多项消融研究,进一步验证了这些算法。
{"title":"Reinforcement learning-based framework for whale rendezvous via autonomous sensing robots.","authors":"Ninad Jadhav, Sushmita Bhattacharya, Daniel Vogt, Yaniv Aluma, Pernille Tønnesen, Akarsh Prabhakara, Swarun Kumar, Shane Gero, Robert J Wood, Stephanie Gil","doi":"10.1126/scirobotics.adn7299","DOIUrl":"10.1126/scirobotics.adn7299","url":null,"abstract":"<p><p>Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning-based routing (autonomy module) and synthetic aperture radar-based very high frequency (VHF) signal-based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an \"engineered whale\"-a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":"eadn7299"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the sense of self through robotics. 通过机器人了解自我意识。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-30 DOI: 10.1126/scirobotics.adn2733
Tony J Prescott, Kai Vogeley, Agnieszka Wykowska

Robotics can play a useful role in the scientific understanding of the sense of self, both through the construction of embodied models of the self and through the use of robots as experimental probes to explore the human self. In both cases, the embodiment of the robot allows us to devise and test hypotheses about the nature of the self, with regard to its development, its manifestation in behavior, and the diversity of selves in humans, animals, and, potentially, machines. This paper reviews robotics research that addresses the topic of the self-the minimal self, the extended self, and disorders of the self-and highlights future directions and open challenges in understanding the self through constructing its components in artificial systems. An emerging view is that key phenomena of the self can be generated in robots with suitably configured sensor and actuator systems and a layered cognitive architecture involving networks of predictive models.

机器人技术可以在科学理解自我意识方面发挥有益的作用,既可以通过构建自我的具身模型,也可以通过使用机器人作为探索人类自我的实验探针。在这两种情况下,机器人的化身都能让我们设计和测试有关自我本质的假设,包括自我的发展、自我在行为中的表现,以及人类、动物和潜在机器中自我的多样性。本文回顾了涉及自我主题的机器人研究--最小自我、扩展自我和自我失调,并强调了通过在人工系统中构建自我的组成部分来理解自我的未来方向和挑战。一种新出现的观点认为,通过适当配置传感器和执行器系统以及涉及预测模型网络的分层认知架构,可以在机器人中生成自我的关键现象。
{"title":"Understanding the sense of self through robotics.","authors":"Tony J Prescott, Kai Vogeley, Agnieszka Wykowska","doi":"10.1126/scirobotics.adn2733","DOIUrl":"https://doi.org/10.1126/scirobotics.adn2733","url":null,"abstract":"<p><p>Robotics can play a useful role in the scientific understanding of the sense of self, both through the construction of embodied models of the self and through the use of robots as experimental probes to explore the human self. In both cases, the embodiment of the robot allows us to devise and test hypotheses about the nature of the self, with regard to its development, its manifestation in behavior, and the diversity of selves in humans, animals, and, potentially, machines. This paper reviews robotics research that addresses the topic of the self-the minimal self, the extended self, and disorders of the self-and highlights future directions and open challenges in understanding the self through constructing its components in artificial systems. An emerging view is that key phenomena of the self can be generated in robots with suitably configured sensor and actuator systems and a layered cognitive architecture involving networks of predictive models.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":"eadn2733"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmented dexterity: How robots can enhance human surgical skills 增强灵巧性:机器人如何提高人类的外科手术技能。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-30 DOI: 10.1126/scirobotics.adr5247
Ken Goldberg, Gary Guthart
Advances in AI and robotics have the potential to enhance the dexterity of human surgeons.
人工智能和机器人技术的进步有可能提高人类外科医生的灵巧性。
{"title":"Augmented dexterity: How robots can enhance human surgical skills","authors":"Ken Goldberg,&nbsp;Gary Guthart","doi":"10.1126/scirobotics.adr5247","DOIUrl":"10.1126/scirobotics.adr5247","url":null,"abstract":"<div >Advances in AI and robotics have the potential to enhance the dexterity of human surgeons.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-driven aerial robots advance whale research. 人工智能驱动的空中机器人推进鲸鱼研究。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-30 DOI: 10.1126/scirobotics.adt1955
Haluk Bayram

Aerial robots assisted with artificial intelligence improve real-time wildlife monitoring of sperm whales.

人工智能辅助的空中机器人改善了对抹香鲸的实时野生动物监测。
{"title":"AI-driven aerial robots advance whale research.","authors":"Haluk Bayram","doi":"10.1126/scirobotics.adt1955","DOIUrl":"https://doi.org/10.1126/scirobotics.adt1955","url":null,"abstract":"<p><p>Aerial robots assisted with artificial intelligence improve real-time wildlife monitoring of sperm whales.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":"eadt1955"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming science labs into automated factories of discovery 将科学实验室改造成自动化发现工厂
IF 25 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-23 DOI: 10.1126/scirobotics.adm6991
Angelos Angelopoulos, James F. Cahoon, Ron Alterovitz
Laboratories in chemistry, biochemistry, and materials science are at the leading edge of technology, discovering molecules and materials to unlock capabilities in energy, catalysis, biotechnology, sustainability, electronics, and more. Yet, most modern laboratories resemble factories from generations past, with a large reliance on humans manually performing synthesis and characterization tasks. Robotics and automation can enable scientific experiments to be conducted faster, more safely, more accurately, and with greater reproducibility, allowing scientists to tackle large societal problems in domains such as health and energy on a shorter timescale. We define five levels of laboratory automation, from laboratory assistance to full automation. We also introduce robotics research challenges that arise when increasing levels of automation and when increasing the generality of tasks within the laboratory. Robots are poised to transform science labs into automated factories of discovery that accelerate scientific progress.
化学、生物化学和材料科学实验室处于技术的前沿,它们发现的分子和材料能够开启能源、催化、生物技术、可持续发展、电子等领域的能力。然而,大多数现代实验室与过去的工厂相似,主要依靠人类手动完成合成和表征任务。机器人技术和自动化可使科学实验更快、更安全、更准确地进行,并具有更高的可重复性,从而使科学家能够在更短的时间内解决健康和能源等领域的重大社会问题。我们定义了实验室自动化的五个级别,从实验室辅助到完全自动化。我们还介绍了在提高自动化水平和增加实验室内任务的通用性时出现的机器人研究挑战。机器人有望将科学实验室转变为加速科学进步的自动化发现工厂。
{"title":"Transforming science labs into automated factories of discovery","authors":"Angelos Angelopoulos, James F. Cahoon, Ron Alterovitz","doi":"10.1126/scirobotics.adm6991","DOIUrl":"https://doi.org/10.1126/scirobotics.adm6991","url":null,"abstract":"Laboratories in chemistry, biochemistry, and materials science are at the leading edge of technology, discovering molecules and materials to unlock capabilities in energy, catalysis, biotechnology, sustainability, electronics, and more. Yet, most modern laboratories resemble factories from generations past, with a large reliance on humans manually performing synthesis and characterization tasks. Robotics and automation can enable scientific experiments to be conducted faster, more safely, more accurately, and with greater reproducibility, allowing scientists to tackle large societal problems in domains such as health and energy on a shorter timescale. We define five levels of laboratory automation, from laboratory assistance to full automation. We also introduce robotics research challenges that arise when increasing levels of automation and when increasing the generality of tasks within the laboratory. Robots are poised to transform science labs into automated factories of discovery that accelerate scientific progress.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"1 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ted Chiang imagines a computational theory of robots 特德-蒋(Ted Chiang)设想了一种机器人计算理论。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-23 DOI: 10.1126/scirobotics.adt3828
Robin R. Murphy
Two short science fiction stories, “Exhalation” and “Seventy-Two Letters”, explore robots inside and out.
两篇科幻短篇小说《呼气》和《七十二封信》探讨了机器人的内在和外在。
{"title":"Ted Chiang imagines a computational theory of robots","authors":"Robin R. Murphy","doi":"10.1126/scirobotics.adt3828","DOIUrl":"10.1126/scirobotics.adt3828","url":null,"abstract":"<div >Two short science fiction stories, “Exhalation” and “Seventy-Two Letters”, explore robots inside and out.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paleoinspired robotics as an experimental approach to the history of life 受古生物启发的机器人技术是研究生命史的一种实验方法
IF 25 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-23 DOI: 10.1126/scirobotics.adn1125
Michael Ishida, Fidji Berio, Valentina Di Santo, Neil H. Shubin, Fumiya Iida
Paleontologists must confront the challenge of studying the forms and functions of extinct species for which data from preserved fossils are extremely limited, yielding only a fragmented picture of life in deep time. In response to this hurdle, we describe the nascent field of paleoinspired robotics, an innovative method that builds upon established techniques in bioinspired robotics, enabling the exploration of the biology of ancient organisms and their evolutionary trajectories. This Review presents ways in which robotic platforms can fill gaps in existing research using the exemplars of notable transitions in vertebrate locomotion. We examine recent case studies in experimental paleontology, highlighting substantial contributions made by engineering and robotics techniques, and further assess how the efficient application of robotic technologies in close collaboration with paleontologists and biologists can offer additional insights into the study of evolution that were previously unattainable.
古生物学家必须面对研究已灭绝物种的形态和功能这一挑战,因为从保存下来的化石中获得的数据极为有限,只能获得深部生命的片段图景。为了应对这一挑战,我们介绍了古生物启发机器人学这一新兴领域,这是一种建立在生物启发机器人学已有技术基础上的创新方法,能够探索古生物的生物学特性及其进化轨迹。本综述以脊椎动物运动的显著转变为例,介绍了机器人平台填补现有研究空白的方法。我们研究了最近在实验古生物学方面的案例研究,强调了工程学和机器人技术所做出的重大贡献,并进一步评估了如何通过与古生物学家和生物学家密切合作,有效地应用机器人技术,为进化研究提供更多以前无法获得的见解。
{"title":"Paleoinspired robotics as an experimental approach to the history of life","authors":"Michael Ishida, Fidji Berio, Valentina Di Santo, Neil H. Shubin, Fumiya Iida","doi":"10.1126/scirobotics.adn1125","DOIUrl":"https://doi.org/10.1126/scirobotics.adn1125","url":null,"abstract":"Paleontologists must confront the challenge of studying the forms and functions of extinct species for which data from preserved fossils are extremely limited, yielding only a fragmented picture of life in deep time. In response to this hurdle, we describe the nascent field of paleoinspired robotics, an innovative method that builds upon established techniques in bioinspired robotics, enabling the exploration of the biology of ancient organisms and their evolutionary trajectories. This Review presents ways in which robotic platforms can fill gaps in existing research using the exemplars of notable transitions in vertebrate locomotion. We examine recent case studies in experimental paleontology, highlighting substantial contributions made by engineering and robotics techniques, and further assess how the efficient application of robotic technologies in close collaboration with paleontologists and biologists can offer additional insights into the study of evolution that were previously unattainable.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"93 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotic manipulation of cardiomyocytes to identify gap junction modifiers for arrhythmogenic cardiomyopathy 用机器人操纵心肌细胞识别心律失常性心肌病的间隙连接修饰因子
IF 25 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-23 DOI: 10.1126/scirobotics.adm8233
Wenkun Dou, Guanqiao Shan, Qili Zhao, Manpreet Malhi, Aojun Jiang, Zhuoran Zhang, Andrés González-Guerra, Shaojie Fu, Junhui Law, Robert M. Hamilton, Juan A. Bernal, Xinyu Liu, Yu Sun, Jason T. Maynes
Arrhythmogenic cardiomyopathy (ACM) is a leading cause of sudden cardiac death among young adults. Aberrant gap junction remodeling has been linked to disease-causative mutations in plakophilin-2 ( PKP2 ). Although gap junctions are a key therapeutic target, measurement of gap junction function in preclinical disease models is technically challenging. To quantify gap junction function with high precision and high consistency, we developed a robotic cell manipulation system with visual feedback from digital holographic microscopy for three-dimensional and label-free imaging of human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs). The robotic system can accurately determine the dynamic height changes in the cells’ contraction and resting phases, microinject drug-treated healthy and diseased iPSC-CMs in their resting phase with constant injection depth across all cells, and deposit a membrane-impermeable dye that solely diffuses between cells through gap junctions for measuring the gap junction diffusion function. The robotic system was applied toward a targeted drug screen to identify gap junction modulators and potential therapeutics for ACM. Five compounds were found to dose-dependently enhance gap junction permeability in cardiomyocytes with PKP2 knockdown. In addition, PCO 400 (pinacidil) reduced beating irregularity in a mouse model of ACM expressing mutant PKP2 (R735X). These results highlight the utility of the robotic cell manipulation system to efficiently assess gap junction function in a relevant preclinical disease model, thus providing a technique to advance drug discovery for ACM and other gap junction–mediated diseases.
心律失常性心肌病(ACM)是青壮年心脏性猝死的主要原因。间隙连接重塑异常与 plakophilin-2 (PKP2)的致病突变有关。虽然间隙连接是一个关键的治疗靶点,但在临床前疾病模型中测量间隙连接的功能在技术上具有挑战性。为了高精度、高一致性地量化间隙连接功能,我们开发了一种机器人细胞操纵系统,该系统利用数字全息显微镜的视觉反馈,对人类诱导多能干细胞衍生的心肌细胞(iPSC-CMs)进行三维无标记成像。该机器人系统能准确测定细胞收缩期和静息期的动态高度变化,以恒定的注射深度对静息期的健康和患病 iPSC-CMs 进行显微注射,并沉积仅通过间隙连接在细胞间扩散的膜渗透性染料,以测量间隙连接扩散功能。该机器人系统被用于靶向药物筛选,以确定间隙连接调节剂和治疗 ACM 的潜在疗法。结果发现,在 PKP2 被敲除的心肌细胞中,有五种化合物能按剂量依赖性地增强缝隙连接的通透性。此外,在表达突变型 PKP2(R735X)的 ACM 小鼠模型中,PCO 400(pinacidil)减少了跳动不规则性。这些结果凸显了机器人细胞操纵系统在相关临床前疾病模型中有效评估间隙连接功能的实用性,从而为推动治疗 ACM 和其他间隙连接介导疾病的药物发现提供了一种技术。
{"title":"Robotic manipulation of cardiomyocytes to identify gap junction modifiers for arrhythmogenic cardiomyopathy","authors":"Wenkun Dou, Guanqiao Shan, Qili Zhao, Manpreet Malhi, Aojun Jiang, Zhuoran Zhang, Andrés González-Guerra, Shaojie Fu, Junhui Law, Robert M. Hamilton, Juan A. Bernal, Xinyu Liu, Yu Sun, Jason T. Maynes","doi":"10.1126/scirobotics.adm8233","DOIUrl":"https://doi.org/10.1126/scirobotics.adm8233","url":null,"abstract":"Arrhythmogenic cardiomyopathy (ACM) is a leading cause of sudden cardiac death among young adults. Aberrant gap junction remodeling has been linked to disease-causative mutations in plakophilin-2 ( <jats:italic>PKP2</jats:italic> ). Although gap junctions are a key therapeutic target, measurement of gap junction function in preclinical disease models is technically challenging. To quantify gap junction function with high precision and high consistency, we developed a robotic cell manipulation system with visual feedback from digital holographic microscopy for three-dimensional and label-free imaging of human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs). The robotic system can accurately determine the dynamic height changes in the cells’ contraction and resting phases, microinject drug-treated healthy and diseased iPSC-CMs in their resting phase with constant injection depth across all cells, and deposit a membrane-impermeable dye that solely diffuses between cells through gap junctions for measuring the gap junction diffusion function. The robotic system was applied toward a targeted drug screen to identify gap junction modulators and potential therapeutics for ACM. Five compounds were found to dose-dependently enhance gap junction permeability in cardiomyocytes with <jats:italic>PKP2</jats:italic> knockdown. In addition, PCO 400 (pinacidil) reduced beating irregularity in a mouse model of ACM expressing mutant PKP2 (R735X). These results highlight the utility of the robotic cell manipulation system to efficiently assess gap junction function in a relevant preclinical disease model, thus providing a technique to advance drug discovery for ACM and other gap junction–mediated diseases.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"2 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science Robotics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1