Pub Date : 2024-06-26DOI: 10.1126/scirobotics.adl2007
Zhengxing Li, Yaou Duan, Fangyu Zhang, Hao Luan, Wei-Ting Shen, Yiyan Yu, Nianfei Xian, Zhongyuan Guo, Edward Zhang, Lu Yin, Ronnie H. Fang, Weiwei Gao, Liangfang Zhang, Joseph Wang
Cytokines have been identified as key contributors to the development of inflammatory bowel disease (IBD), yet conventional treatments often prove inadequate and carry substantial side effects. Here, we present an innovative biohybrid robotic system, termed “algae-MΦNP-robot,” for addressing IBD by actively neutralizing colonic cytokine levels. Our approach combines moving green microalgae with macrophage membrane–coated nanoparticles (MΦNPs) to efficiently capture proinflammatory cytokines “on the fly.” The dynamic algae-MΦNP-robots outperformed static counterparts by enhancing cytokine removal through continuous movement, better distribution, and extended retention in the colon. This system is encapsulated in an oral capsule, which shields it from gastric acidity and ensures functionality upon reaching the targeted disease site. The resulting algae-MΦNP-robot capsule effectively regulated cytokine levels, facilitating the healing of damaged epithelial barriers. It showed markedly improved prevention and treatment efficacy in a mouse model of IBD and demonstrated an excellent biosafety profile. Overall, our biohybrid algae-MΦNP-robot system offers a promising and efficient solution for IBD, addressing cytokine-related inflammation effectively.
{"title":"Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease","authors":"Zhengxing Li, Yaou Duan, Fangyu Zhang, Hao Luan, Wei-Ting Shen, Yiyan Yu, Nianfei Xian, Zhongyuan Guo, Edward Zhang, Lu Yin, Ronnie H. Fang, Weiwei Gao, Liangfang Zhang, Joseph Wang","doi":"10.1126/scirobotics.adl2007","DOIUrl":"10.1126/scirobotics.adl2007","url":null,"abstract":"<div >Cytokines have been identified as key contributors to the development of inflammatory bowel disease (IBD), yet conventional treatments often prove inadequate and carry substantial side effects. Here, we present an innovative biohybrid robotic system, termed “algae-MΦNP-robot,” for addressing IBD by actively neutralizing colonic cytokine levels. Our approach combines moving green microalgae with macrophage membrane–coated nanoparticles (MΦNPs) to efficiently capture proinflammatory cytokines “on the fly.” The dynamic algae-MΦNP-robots outperformed static counterparts by enhancing cytokine removal through continuous movement, better distribution, and extended retention in the colon. This system is encapsulated in an oral capsule, which shields it from gastric acidity and ensures functionality upon reaching the targeted disease site. The resulting algae-MΦNP-robot capsule effectively regulated cytokine levels, facilitating the healing of damaged epithelial barriers. It showed markedly improved prevention and treatment efficacy in a mouse model of IBD and demonstrated an excellent biosafety profile. Overall, our biohybrid algae-MΦNP-robot system offers a promising and efficient solution for IBD, addressing cytokine-related inflammation effectively.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1126/scirobotics.adr0223
{"title":"Erratum for the Research Article “Fully neuromorphic vision and control for autonomous drone flight” by F. Paredes-Vallés et al.","authors":"","doi":"10.1126/scirobotics.adr0223","DOIUrl":"10.1126/scirobotics.adr0223","url":null,"abstract":"","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1126/scirobotics.adq6387
Tom Ziemke
Aiming for “humanlike” or “natural” interactions can make social robots and their limitations more difficult to understand.
以 "类人 "或 "自然 "互动为目标,会让人更难理解社交机器人及其局限性。
{"title":"Ironies of social robotics","authors":"Tom Ziemke","doi":"10.1126/scirobotics.adq6387","DOIUrl":"10.1126/scirobotics.adq6387","url":null,"abstract":"<div >Aiming for “humanlike” or “natural” interactions can make social robots and their limitations more difficult to understand.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1126/scirobotics.adq1501
Nathan F. Lepora
Advancing robot hand dexterity with optical tactile sensing raises questions about humanoid robotics.
利用光学触觉传感技术提高机器人手部灵巧性提出了仿人机器人技术方面的问题。
{"title":"The future lies in a pair of tactile hands","authors":"Nathan F. Lepora","doi":"10.1126/scirobotics.adq1501","DOIUrl":"10.1126/scirobotics.adq1501","url":null,"abstract":"<div >Advancing robot hand dexterity with optical tactile sensing raises questions about humanoid robotics.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1126/scirobotics.adl1995
Paul E. Glick, J. Bob Balaram, Michael R. Davidson, Elizabeth Lyons, Michael T. Tolley
Lessons from the CubeSat and Mars Exploration programs may guide the infusion of robotics for planetary science and exploration.
从立方体卫星和火星探测计划中汲取的经验教训可以为行星科学和探测注入机器人技术提供指导。
{"title":"The role of low-cost robots in the future of spaceflight","authors":"Paul E. Glick, J. Bob Balaram, Michael R. Davidson, Elizabeth Lyons, Michael T. Tolley","doi":"10.1126/scirobotics.adl1995","DOIUrl":"10.1126/scirobotics.adl1995","url":null,"abstract":"<div >Lessons from the CubeSat and Mars Exploration programs may guide the infusion of robotics for planetary science and exploration.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1126/scirobotics.adi6424
Steve A. Chien, Gianfranco Visentin, Connor Basich
Robotic spacecraft enable exploration of our Solar System beyond our human presence. Although spacecraft have explored every planet in the Solar System, the frontiers of space robotics are at the cutting edge of landers, rovers, and now atmospheric explorers, where robotic spacecraft must interact intimately with their environment to explore beyond the reach of flyby and orbital remote sensing. Here, we describe the tremendous growth in space robotics missions in the past 7 years, with many new entities participating in missions to the surface of the Moon, Mars, and beyond. We also describe the recent development of aerial missions to planets and moons, as exemplified by the Ingenuity helicopter on Mars and the Dragonfly mission to Titan. We focus on suborbital robotics—landers, rovers, and aerial vehicles—with associated challenges in sensing, manipulation, mobility, and system-level autonomy.
{"title":"Exploring beyond Earth using space robotics","authors":"Steve A. Chien, Gianfranco Visentin, Connor Basich","doi":"10.1126/scirobotics.adi6424","DOIUrl":"10.1126/scirobotics.adi6424","url":null,"abstract":"<div >Robotic spacecraft enable exploration of our Solar System beyond our human presence. Although spacecraft have explored every planet in the Solar System, the frontiers of space robotics are at the cutting edge of landers, rovers, and now atmospheric explorers, where robotic spacecraft must interact intimately with their environment to explore beyond the reach of flyby and orbital remote sensing. Here, we describe the tremendous growth in space robotics missions in the past 7 years, with many new entities participating in missions to the surface of the Moon, Mars, and beyond. We also describe the recent development of aerial missions to planets and moons, as exemplified by the Ingenuity helicopter on Mars and the Dragonfly mission to Titan. We focus on suborbital robotics—landers, rovers, and aerial vehicles—with associated challenges in sensing, manipulation, mobility, and system-level autonomy.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1126/scirobotics.adi6421
Dario Izzo, Emmanuel Blazquez, Robin Ferede, Sebastien Origer, Christophe De Wagter, Guido C. H. E. de Croon
This Review discusses the main results obtained in training end-to-end neural architectures for guidance and control of interplanetary transfers, planetary landings, and close-proximity operations, highlighting the successful learning of optimality principles by the underlying neural models. Spacecraft and drones aimed at exploring our solar system are designed to operate in conditions where the smart use of onboard resources is vital to the success or failure of the mission. Sensorimotor actions are thus often derived from high-level, quantifiable, optimality principles assigned to each task, using consolidated tools in optimal control theory. The planned actions are derived on the ground and transferred on board, where controllers have the task of tracking the uploaded guidance profile. Here, we review recent trends based on the use of end-to-end networks, called guidance and control networks (G&CNets), which allow spacecraft to depart from such an architecture and to embrace the onboard computation of optimal actions. In this way, the sensor information is transformed in real time into optimal plans, thus increasing mission autonomy and robustness. We then analyze drone racing as an ideal gym environment to test these architectures on real robotic platforms and thus increase confidence in their use in future space exploration missions. Drone racing not only shares with spacecraft missions both limited onboard computational capabilities and similar control structures induced from the optimality principle sought but also entails different levels of uncertainties and unmodeled effects and a very different dynamical timescale.
{"title":"Optimality principles in spacecraft neural guidance and control","authors":"Dario Izzo, Emmanuel Blazquez, Robin Ferede, Sebastien Origer, Christophe De Wagter, Guido C. H. E. de Croon","doi":"10.1126/scirobotics.adi6421","DOIUrl":"10.1126/scirobotics.adi6421","url":null,"abstract":"<div >This Review discusses the main results obtained in training end-to-end neural architectures for guidance and control of interplanetary transfers, planetary landings, and close-proximity operations, highlighting the successful learning of optimality principles by the underlying neural models. Spacecraft and drones aimed at exploring our solar system are designed to operate in conditions where the smart use of onboard resources is vital to the success or failure of the mission. Sensorimotor actions are thus often derived from high-level, quantifiable, optimality principles assigned to each task, using consolidated tools in optimal control theory. The planned actions are derived on the ground and transferred on board, where controllers have the task of tracking the uploaded guidance profile. Here, we review recent trends based on the use of end-to-end networks, called guidance and control networks (G&CNets), which allow spacecraft to depart from such an architecture and to embrace the onboard computation of optimal actions. In this way, the sensor information is transformed in real time into optimal plans, thus increasing mission autonomy and robustness. We then analyze drone racing as an ideal gym environment to test these architectures on real robotic platforms and thus increase confidence in their use in future space exploration missions. Drone racing not only shares with spacecraft missions both limited onboard computational capabilities and similar control structures induced from the optimality principle sought but also entails different levels of uncertainties and unmodeled effects and a very different dynamical timescale.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adi6421","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1126/scirobotics.adj9769
Luca Rosalia, Sophie X. Wang, Caglar Ozturk, Wei Huang, Jean Bonnemain, Rachel Beatty, Garry P. Duffy, Christopher T. Nguyen, Ellen T. Roche
Our understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to enable control over both disease progression and reversal, hindering their clinical relevance. Here, we describe a method for progressive and reversible aortic banding based on an implantable expandable actuator that can be finely tuned to modulate aortic banding and debanding in a rat model. Through catheterization, imaging, and histologic studies, we demonstrate that our platform can recapitulate the hemodynamic and structural changes associated with pressure overload in a controllable manner. We leveraged soft robotics to enable noninvasive aortic debanding, demonstrating that these changes can be partly reversed because of cessation of the biomechanical stimulus. By recapitulating longitudinal disease progression and reversibility, this animal model could elucidate fundamental mechanisms of cardiac remodeling and optimize timing of intervention for pressure overload.
{"title":"Soft robotic platform for progressive and reversible aortic constriction in a small-animal model","authors":"Luca Rosalia, Sophie X. Wang, Caglar Ozturk, Wei Huang, Jean Bonnemain, Rachel Beatty, Garry P. Duffy, Christopher T. Nguyen, Ellen T. Roche","doi":"10.1126/scirobotics.adj9769","DOIUrl":"10.1126/scirobotics.adj9769","url":null,"abstract":"<div >Our understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to enable control over both disease progression and reversal, hindering their clinical relevance. Here, we describe a method for progressive and reversible aortic banding based on an implantable expandable actuator that can be finely tuned to modulate aortic banding and debanding in a rat model. Through catheterization, imaging, and histologic studies, we demonstrate that our platform can recapitulate the hemodynamic and structural changes associated with pressure overload in a controllable manner. We leveraged soft robotics to enable noninvasive aortic debanding, demonstrating that these changes can be partly reversed because of cessation of the biomechanical stimulus. By recapitulating longitudinal disease progression and reversibility, this animal model could elucidate fundamental mechanisms of cardiac remodeling and optimize timing of intervention for pressure overload.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1126/scirobotics.adi2377
Yu Meng Zhou, Cameron J. Hohimer, Harrison T. Young, Connor M. McCann, David Pont-Esteban, Umut S. Civici, Yichu Jin, Patrick Murphy, Diana Wagner, Tazzy Cole, Nathan Phipps, Haedo Cho, Franchesco Bertacchi, Isabella Pignataro, Tommaso Proietti, Conor J. Walsh
Repetitive overhead tasks during factory work can cause shoulder injuries resulting in impaired health and productivity loss. Soft wearable upper extremity robots have the potential to be effective injury prevention tools with minimal restrictions using soft materials and active controls. We present the design and evaluation of a portable inflatable shoulder wearable robot for assisting industrial workers during shoulder-elevated tasks. The robot is worn like a shirt with integrated textile pneumatic actuators, inertial measurement units, and a portable actuation unit. It can provide up to 6.6 newton-meters of torque to support the shoulder and cycle assistance on and off at six times per minute. From human participant evaluations during simulated industrial tasks, the robot reduced agonist muscle activities (anterior, middle, and posterior deltoids and biceps brachii) by up to 40% with slight changes in joint angles of less than 7% range of motion while not increasing antagonistic muscle activity (latissimus dorsi) in current sample size. Comparison of controller parameters further highlighted that higher assistance magnitude and earlier assistance timing resulted in statistically significant muscle activity reductions. During a task circuit with dynamic transitions among the tasks, the kinematics-based controller of the robot showed robustness to misinflations (96% true negative rate and 91% true positive rate), indicating minimal disturbances to the user when assistance was not required. A preliminary evaluation of a pressure modulation profile also highlighted a trade-off between user perception and hardware demands. Finally, five automotive factory workers used the robot in a pilot manufacturing area and provided feedback.
{"title":"A portable inflatable soft wearable robot to assist the shoulder during industrial work","authors":"Yu Meng Zhou, Cameron J. Hohimer, Harrison T. Young, Connor M. McCann, David Pont-Esteban, Umut S. Civici, Yichu Jin, Patrick Murphy, Diana Wagner, Tazzy Cole, Nathan Phipps, Haedo Cho, Franchesco Bertacchi, Isabella Pignataro, Tommaso Proietti, Conor J. Walsh","doi":"10.1126/scirobotics.adi2377","DOIUrl":"10.1126/scirobotics.adi2377","url":null,"abstract":"<div >Repetitive overhead tasks during factory work can cause shoulder injuries resulting in impaired health and productivity loss. Soft wearable upper extremity robots have the potential to be effective injury prevention tools with minimal restrictions using soft materials and active controls. We present the design and evaluation of a portable inflatable shoulder wearable robot for assisting industrial workers during shoulder-elevated tasks. The robot is worn like a shirt with integrated textile pneumatic actuators, inertial measurement units, and a portable actuation unit. It can provide up to 6.6 newton-meters of torque to support the shoulder and cycle assistance on and off at six times per minute. From human participant evaluations during simulated industrial tasks, the robot reduced agonist muscle activities (anterior, middle, and posterior deltoids and biceps brachii) by up to 40% with slight changes in joint angles of less than 7% range of motion while not increasing antagonistic muscle activity (latissimus dorsi) in current sample size. Comparison of controller parameters further highlighted that higher assistance magnitude and earlier assistance timing resulted in statistically significant muscle activity reductions. During a task circuit with dynamic transitions among the tasks, the kinematics-based controller of the robot showed robustness to misinflations (96% true negative rate and 91% true positive rate), indicating minimal disturbances to the user when assistance was not required. A preliminary evaluation of a pressure modulation profile also highlighted a trade-off between user perception and hardware demands. Finally, five automotive factory workers used the robot in a pilot manufacturing area and provided feedback.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adi2377","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1126/scirobotics.adk3925
Rachel Blau, Abdulhameed Abdal, Nicholas Root, Alexander X. Chen, Tarek Rafeedi, Robert Ramji, Yi Qie, Taewoo Kim, Anthony Navarro, Jason Chin, Laura L. Becerra, Samuel J. Edmunds, Samantha M. Russman, Shadi A. Dayeh, David P. Fenning, Romke Rouw, Darren J. Lipomi
Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.
{"title":"Conductive block copolymer elastomers and psychophysical thresholding for accurate haptic effects","authors":"Rachel Blau, Abdulhameed Abdal, Nicholas Root, Alexander X. Chen, Tarek Rafeedi, Robert Ramji, Yi Qie, Taewoo Kim, Anthony Navarro, Jason Chin, Laura L. Becerra, Samuel J. Edmunds, Samantha M. Russman, Shadi A. Dayeh, David P. Fenning, Romke Rouw, Darren J. Lipomi","doi":"10.1126/scirobotics.adk3925","DOIUrl":"10.1126/scirobotics.adk3925","url":null,"abstract":"<div >Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}