Pub Date : 2023-06-01DOI: 10.1016/j.ppees.2023.125728
Karolin Eisenschmid , Sarina Jabbusch , Marcus A. Koch
As global warming progresses, plants may be forced to adapt to drastically changing environmental conditions. Arctic-alpine plants have been among the first to experience the effects of climate change. As a result, cold acclimation and freezing tolerance may become increasingly crucial for the survival as winter warming events and earlier snowmelt will cause increased exposure to occasional frost. The tribe Cochlearieae in the mustard family (Brassicaceae) offers an instructive system for studying cold adaptation in evolutionary terms, as the two sister genera Ionopsidium and Cochlearia are distributed among different ecological habitats throughout the European continent and the far north into circumarctic regions. By applying an electrolyte leakage assay to leaves obtained from plants cultivated under controlled temperature regimes in growth chambers, the freezing tolerance of different Ionopsidium and Cochlearia species was assessed measuring lethal freezing temperature values (LT50 and LT100), thereby allowing for a comparison across different species and accessions in their responses to cold. We hypothesized that, owing to varying selection pressures, geographically distant species would differ in freezing tolerance. Despite Ionopsidium occurring under warm and dry Mediterranean conditions and Cochlearia species distributed often at cold habitats, all accessions exhibited similar cold responses. The results may indicate that physiological adaptations of primary metabolic pathways to different stressors, such as salinity and drought, may confer an additional tolerance to cold; this is because all these stressors induce osmotic challenges.
{"title":"Evolutionary footprints of cold adaptation in arctic-alpine Cochlearia (Brassicaceae) – Evidence from freezing experiments and electrolyte leakage","authors":"Karolin Eisenschmid , Sarina Jabbusch , Marcus A. Koch","doi":"10.1016/j.ppees.2023.125728","DOIUrl":"10.1016/j.ppees.2023.125728","url":null,"abstract":"<div><p><span><span>As global warming progresses, plants may be forced to adapt to drastically changing environmental conditions. Arctic-alpine plants have been among the first to experience the </span>effects of climate change<span><span>. As a result, cold acclimation and freezing tolerance may become increasingly crucial for the survival as winter warming events and earlier snowmelt will cause increased exposure to occasional frost. The tribe Cochlearieae in the </span>mustard family (Brassicaceae) offers an instructive system for studying cold adaptation in evolutionary terms, as the two sister genera </span></span><em>Ionopsidium</em> and <span><em>Cochlearia</em></span><span><span> are distributed among different ecological habitats throughout the European continent and the far north into circumarctic regions. By applying an electrolyte leakage assay to leaves obtained from </span>plants cultivated<span> under controlled temperature regimes in growth chambers, the freezing tolerance of different </span></span><em>Ionopsidium</em> and <em>Cochlearia</em> species was assessed measuring lethal freezing temperature values (<em>LT</em><sub><em>50</em></sub> and <em>LT</em><sub><em>100</em></sub>), thereby allowing for a comparison across different species and accessions in their responses to cold. We hypothesized that, owing to varying selection pressures, geographically distant species would differ in freezing tolerance. Despite <em>Ionopsidium</em> occurring under warm and dry Mediterranean conditions and <em>Cochlearia</em><span> species distributed often at cold habitats, all accessions exhibited similar cold responses. The results may indicate that physiological adaptations of primary metabolic pathways to different stressors, such as salinity and drought, may confer an additional tolerance to cold; this is because all these stressors induce osmotic challenges.</span></p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"59 ","pages":"Article 125728"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43799892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.ppees.2023.125734
Giacomo Puglielli , Enrico Tordoni , Lauri Laanisto , Jesse M. Kalwij , Michael J. Hutchings , Aelys M. Humphreys
Efforts to understand the mechanisms explaining the relationship between abiotic stress tolerance and range size and filling have hitherto yielded contradictory results. Unlike previous studies that have focused on single stress factors, we here examine the extent to which range size and filling can be explained by tolerance of multiple abiotic stressors (cold, shade, drought and waterlogging). As range metrics, we used range size and filling (the ratio between actual and potential range) for 331 European and North American temperate woody plant species. Stress tolerance strategies were expressed as a multivariate axis reflecting a cold/waterlogging-drought tolerance trade-off. We used mixed models to evaluate the relationship between range size/filling and this multivariate stress tolerance axis, using latitude as a covariate, and phylogeny and plant functional type as random effects. Range size and stress tolerance were negatively correlated, mostly independently of latitude and continent. Thus, cold/wet-tolerant species had the largest range sizes and cold-sensitive/drought-tolerant species the smallest. In contrast, range filling mostly depended on latitude. Our results show that abiotic stress tolerance can explain interspecific differences in range size, and to a lesser extent range filling, which sets up predictions for range size variation in plants that go beyond latitude.
{"title":"Abiotic stress tolerance can explain range size and filling in temperate woody plants","authors":"Giacomo Puglielli , Enrico Tordoni , Lauri Laanisto , Jesse M. Kalwij , Michael J. Hutchings , Aelys M. Humphreys","doi":"10.1016/j.ppees.2023.125734","DOIUrl":"10.1016/j.ppees.2023.125734","url":null,"abstract":"<div><p><span><span>Efforts to understand the mechanisms explaining the relationship between abiotic stress tolerance and range size and filling have hitherto yielded contradictory results. Unlike previous studies that have focused on single stress factors, we here examine the extent to which range size and filling can be explained by tolerance of multiple abiotic stressors (cold, shade, drought and waterlogging). As range metrics, we used range size and filling (the ratio between actual and potential range) for 331 European and North American temperate </span>woody plant species. Stress tolerance strategies were expressed as a multivariate axis reflecting a cold/waterlogging-drought tolerance trade-off. We used mixed models to evaluate the relationship between range size/filling and this multivariate stress tolerance axis, using latitude as a covariate, and phylogeny and </span>plant functional type as random effects. Range size and stress tolerance were negatively correlated, mostly independently of latitude and continent. Thus, cold/wet-tolerant species had the largest range sizes and cold-sensitive/drought-tolerant species the smallest. In contrast, range filling mostly depended on latitude. Our results show that abiotic stress tolerance can explain interspecific differences in range size, and to a lesser extent range filling, which sets up predictions for range size variation in plants that go beyond latitude.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"59 ","pages":"Article 125734"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44613492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.ppees.2023.125731
Carlos M. Galván-Cisneros , Markus Gastauer , Jhonny Capichoni Massante , Pedro Manuel Villa , João Augusto Alves Meira-Neto
Dense and species-rich understory communities have been commonly found in old or abandoned stands of Eucalyptus plantations in the Cerrado domain presenting plant species and ecological niches that suggest a repository of the original biodiversity. This repository depends on the largely unknown effect of Eucalyptus plantations on their understories. We addressed this issue by testing if the effect of Eucalyptus trees on the assembly of Cerrado communities causes environmental filtering or competitive exclusion. For the test, 40 plots (20 inside stands and 20 outside) were allocated and all woody plants with a circumference at the ground level equal to or greater than 10 cm were sampled. Species richness, diversity indexes and species turnover were determined. The phylogenetic structure was evaluated at different scales using the values of Mean Pairwise Distance (MPD), the Mean Nearest Taxon Distance (MNTD), the Net Relatedness Index (NRI) and the Nearest Taxon Index (NTI), as well as phylobetadiversity indices. The metrics of alpha and beta phylogenetic diversity (NTI, MNTD, NRI and MPD, betaMPD and betaMNTD) fell within the random expectation in each plant community, suggesting a phylogenetic uniformity, but fewer plants of the Fabaceae family than expected by chance were detected outside Eucalyptus stands suggesting that this family is filtered in inside Eucalyptus stands. Species richness is lower inside than outside Eucalyptus stands. The pattern is congruent with simultaneous environmental filtering and competitive exclusion in a context of niche conservatism which means that functional traits are conserved within phylogenetic lineages.
{"title":"Simultaneous competition and environmental filtering in woody communities of the understory of Eucalyptus plantations in the Cerrado","authors":"Carlos M. Galván-Cisneros , Markus Gastauer , Jhonny Capichoni Massante , Pedro Manuel Villa , João Augusto Alves Meira-Neto","doi":"10.1016/j.ppees.2023.125731","DOIUrl":"10.1016/j.ppees.2023.125731","url":null,"abstract":"<div><p><span>Dense and species-rich understory communities have been commonly found in old or abandoned stands of </span><span><em>Eucalyptus</em></span><span><span><span> plantations in the Cerrado domain presenting </span>plant species and </span>ecological niches that suggest a repository of the original biodiversity. This repository depends on the largely unknown effect of </span><em>Eucalyptus</em> plantations on their understories. We addressed this issue by testing if the effect of <em>Eucalyptus</em><span><span> trees on the assembly of Cerrado communities causes environmental filtering or competitive exclusion. For the test, 40 plots (20 inside stands and 20 outside) were allocated and all woody plants with a circumference at the ground level equal to or greater than 10 cm were sampled. Species richness, diversity indexes and species turnover were determined. The phylogenetic structure was evaluated at different scales using the values of Mean Pairwise Distance (MPD), the Mean Nearest Taxon Distance (MNTD), the Net Relatedness Index (NRI) and the Nearest Taxon Index (NTI), as well as phylobetadiversity indices. The metrics of alpha and beta phylogenetic diversity (NTI, MNTD, NRI and MPD, betaMPD and betaMNTD) fell within the random expectation in each plant community, suggesting a phylogenetic uniformity, but fewer plants of the </span>Fabaceae family than expected by chance were detected outside </span><em>Eucalyptus</em> stands suggesting that this family is filtered in inside <em>Eucalyptus</em> stands. Species richness is lower inside than outside <em>Eucalyptus</em> stands. The pattern is congruent with simultaneous environmental filtering and competitive exclusion in a context of niche conservatism which means that functional traits are conserved within phylogenetic lineages.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"59 ","pages":"Article 125731"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42781442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.ppees.2023.125733
Valentí Rull
<div><p><span>In a recent paper, the author demonstrated that, in contrast with the prevailing view of eventual gradual regional differentiation from a hypothetical Cretaceous pantropical<span><span> mangrove belt around the Tethys Sea, the Caribbean mangroves originated de novo in the </span>Eocene after the evolutionary appearance of the first mangrove-forming tree species known for the region, the ancestor of the extant </span></span><em>Pelliciera</em>. This paper represents a second step in the analysis of the evolution of Caribbean mangroves dealing with the most important change experienced by these communities, occurring across the Eocene<img>Oligocene transition (EOT), which is termed here the Caribbean mangrove revolution. This shift consisted of the disappearance of the primeval <em>Pelliciera</em> mangroves and their replacement by mangrove communities dominated by <span><em>Rhizophora</em></span><span>, a newly emerged mangrove tree that still dominates extant Caribbean mangroves. This paper first reviews the available literature on the EOT global disruption (tectonic and paleogeographic reorganizations, ocean circulation, cooling, Antarctic glaciation, sea-level fall) and its regional manifestations in the study area, along with the corresponding biotic responses. This provides the paleoenvironmental framework with which to analyze the EOT mangrove revolution using the >80 pollen records available for the region. In the circum-Caribbean region, cooling of 3–6 °C and a sea-level fall of 67 m were recorded between 33.8 and 33.5 Ma, which led to significant shifts in dispersal pathways and barriers, as well as in marine paleocurrents. Late Eocene mangroves were dominated by the autochthonous </span><em>Pelliciera</em> (up to 60% of pollen assemblages), while <em>Rhizophora</em>, which likely arrived from the Indo-Pacific region by long-distance dispersal, was absent or very scarce. After the EOT, the situation was radically different, as the mangroves were widely dominated by <em>Rhizophora,</em> and <em>Pelliciera</em>, when present, was a subordinate mangrove element (<10%). At the same time, <em>Pelliciera</em>, which had been restricted to a small patch (Central America and NW South America or CA/NWSA) during the Eocene, expanded its range across the Caribbean and beyond, always as a minor component of <em>Rhizophora</em> mangroves. The dominance shift could have been due to the EOT cooling, by favoring the expansion of the euryclimatic and vagile <em>Rhizophora</em> over the stenoclimatic <em>Pelliciera</em>, of limited dispersal ability. This is considered a case of competitor coexistence by niche segregation. In addition, <em>Rhizophora</em> could have facilitated the expansion of <em>Pelliciera</em><span><span> by providing refuge against environmental and biotic stressors, notably light intensity and </span>salinity. The Eocene </span><em>Pelliciera</em><span><span> mangroves never returned, but this species survived to
{"title":"Eocene/Oligocene global disruption and the revolution of Caribbean mangroves","authors":"Valentí Rull","doi":"10.1016/j.ppees.2023.125733","DOIUrl":"10.1016/j.ppees.2023.125733","url":null,"abstract":"<div><p><span>In a recent paper, the author demonstrated that, in contrast with the prevailing view of eventual gradual regional differentiation from a hypothetical Cretaceous pantropical<span><span> mangrove belt around the Tethys Sea, the Caribbean mangroves originated de novo in the </span>Eocene after the evolutionary appearance of the first mangrove-forming tree species known for the region, the ancestor of the extant </span></span><em>Pelliciera</em>. This paper represents a second step in the analysis of the evolution of Caribbean mangroves dealing with the most important change experienced by these communities, occurring across the Eocene<img>Oligocene transition (EOT), which is termed here the Caribbean mangrove revolution. This shift consisted of the disappearance of the primeval <em>Pelliciera</em> mangroves and their replacement by mangrove communities dominated by <span><em>Rhizophora</em></span><span>, a newly emerged mangrove tree that still dominates extant Caribbean mangroves. This paper first reviews the available literature on the EOT global disruption (tectonic and paleogeographic reorganizations, ocean circulation, cooling, Antarctic glaciation, sea-level fall) and its regional manifestations in the study area, along with the corresponding biotic responses. This provides the paleoenvironmental framework with which to analyze the EOT mangrove revolution using the >80 pollen records available for the region. In the circum-Caribbean region, cooling of 3–6 °C and a sea-level fall of 67 m were recorded between 33.8 and 33.5 Ma, which led to significant shifts in dispersal pathways and barriers, as well as in marine paleocurrents. Late Eocene mangroves were dominated by the autochthonous </span><em>Pelliciera</em> (up to 60% of pollen assemblages), while <em>Rhizophora</em>, which likely arrived from the Indo-Pacific region by long-distance dispersal, was absent or very scarce. After the EOT, the situation was radically different, as the mangroves were widely dominated by <em>Rhizophora,</em> and <em>Pelliciera</em>, when present, was a subordinate mangrove element (<10%). At the same time, <em>Pelliciera</em>, which had been restricted to a small patch (Central America and NW South America or CA/NWSA) during the Eocene, expanded its range across the Caribbean and beyond, always as a minor component of <em>Rhizophora</em> mangroves. The dominance shift could have been due to the EOT cooling, by favoring the expansion of the euryclimatic and vagile <em>Rhizophora</em> over the stenoclimatic <em>Pelliciera</em>, of limited dispersal ability. This is considered a case of competitor coexistence by niche segregation. In addition, <em>Rhizophora</em> could have facilitated the expansion of <em>Pelliciera</em><span><span> by providing refuge against environmental and biotic stressors, notably light intensity and </span>salinity. The Eocene </span><em>Pelliciera</em><span><span> mangroves never returned, but this species survived to ","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"59 ","pages":"Article 125733"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44722101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.ppees.2023.125730
Ivana Rešetnik , Peter Schönswetter , Martina Temunović , Michael H.J. Barfuss , Božo Frajman
Heteroploid Knautia sect. Trichera constitutes a taxonomically intricate assemblage of taxa with highly complex genetic architecture, which is mirrored in high morphological variability and blurred boundaries among the species. Here, we aim to disentangle the relationships among the xerophytic taxa from the Dinaric Mountains on the western Balkan Peninsula, which, based on relative genome size estimations, comprise di-, tetra- and hexaploid populations. Our analyses of amplified fragment length polymorphisms (AFLP) revealed a clear genetic differentiation among the diploid members, which are also morphologically clearly divergent. On the other hand, the phylogenetic structure among tetraploid and hexaploid populations as well as the ties with their diploid progenitors are complex, conferring unclear boundaries among species. Tetraploids were intermingled among the divergent diploid lineages, suggesting recurrent polyploidisation and/or extensive gene flow across sympatric lineages, whereas hexaploids clustered in two groups, pointing to two separate origins. In line with the genetic pattern, there is a high overlap in morphological characters across and within different ploidies. Nevertheless, comparisons of environmental niches showed differentiation among the ploidy levels, with the niche of hexaploids being most divergent. It is thus obvious that dynamic polyploid evolution, virtual lack of crossing barriers among polyploid cytotypes pertaining to different species, and exceedingly variable morphology along with the uniformity of reproductive characters preclude establishing a clear-cut taxonomic structure. Still, albeit generally corroborating previous observations for K. sect. Trichera as a whole, our study restricted to a limited geographic and taxonomic assemblage yielded constructive insights towards a workable taxonomic framework in this complex system. As a result, we propose a revised taxonomic treatment, including description of a new species, Knautia ehrendorferi, but we are aware that species identifications will remain challenging also in the future.
{"title":"Diploid chastity vs. polyploid promiscuity – Extensive gene flow among polyploid cytotypes blurs genetic, morphological and taxonomic boundaries among Dinaric taxa of Knautia (Caprifoliaceae)","authors":"Ivana Rešetnik , Peter Schönswetter , Martina Temunović , Michael H.J. Barfuss , Božo Frajman","doi":"10.1016/j.ppees.2023.125730","DOIUrl":"https://doi.org/10.1016/j.ppees.2023.125730","url":null,"abstract":"<div><p>Heteroploid <em>Knautia</em> sect. <em>Trichera</em> constitutes a taxonomically intricate assemblage of taxa with highly complex genetic architecture, which is mirrored in high morphological variability and blurred boundaries among the species. Here, we aim to disentangle the relationships among the xerophytic taxa from the Dinaric Mountains on the western Balkan Peninsula, which, based on relative genome size estimations, comprise di-, tetra- and hexaploid populations. Our analyses of amplified fragment length polymorphisms (AFLP) revealed a clear genetic differentiation among the diploid members, which are also morphologically clearly divergent. On the other hand, the phylogenetic structure among tetraploid and hexaploid populations as well as the ties with their diploid progenitors are complex, conferring unclear boundaries among species. Tetraploids were intermingled among the divergent diploid lineages, suggesting recurrent polyploidisation and/or extensive gene flow across sympatric lineages, whereas hexaploids clustered in two groups, pointing to two separate origins. In line with the genetic pattern, there is a high overlap in morphological characters across and within different ploidies. Nevertheless, comparisons of environmental niches showed differentiation among the ploidy levels, with the niche of hexaploids being most divergent. It is thus obvious that dynamic polyploid evolution, virtual lack of crossing barriers among polyploid cytotypes pertaining to different species, and exceedingly variable morphology along with the uniformity of reproductive characters preclude establishing a clear-cut taxonomic structure. Still, albeit generally corroborating previous observations for <em>K.</em> sect. <em>Trichera</em> as a whole, our study restricted to a limited geographic and taxonomic assemblage yielded constructive insights towards a workable taxonomic framework in this complex system. As a result, we propose a revised taxonomic treatment, including description of a new species, <em>Knautia ehrendorferi</em>, but we are aware that species identifications will remain challenging also in the future.</p></div><div><h3>Data availability</h3><p>Data will be made available on request.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"59 ","pages":"Article 125730"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50193581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.ppees.2023.125729
Klára Koupilová , Tomáš Koubek , Marek Kasner , Zdeněk Janovský
Pollinator-transmitted pathogens typically hinder sexual reproduction of their hosts and affect pollen flow among remaining healthy individuals in a population. The extent to which a pathogen also influences host’s population growth depends on the importance of sexual reproduction for the host’s life cycle. Such pathogen impact cannot be traced by measuring only the vital rates directly affected by the pathogen, and thus a study of the host’s entire life cycle is necessary. In this study, we aimed to quantify the effects of the pollinator-transmitted anther smut pathogen Microbotryum carthusianorum on population growth rate in three populations of the long-lived perennial Dianthus carthusianorum. We followed plant individuals over three years and measured their size, disease state, and reproduction. We then constructed an Integral Projection Model (IPM). To evaluate the pathogen impact, we performed a stochastic analysis of the IPM for real diseased populations as well as for simulated populations without the pathogen. As the populations also hosted predispersal seed predators, the same approach was used to evaluate their impact. Stochastic population growth rates indicated two of the real populations to be increasing, and one to be declining. Comparison with the simulated healthy populations showed that the pathogen impact on the growth rate was negative and relatively strong, because the growth rate was highly sensitive to changes in sexual reproduction. However, the pathogen did not appear to cause the decline in the one decreasing population, since the growth rate there was impaired more substantially by high rates of predispersal seed predation and low germination rates than by the castration of diseased flowers. Overall, our study suggests that D. carthusianorum is highly vulnerable to biotic interactions affecting sexual reproduction pathway. Additionally, our study illustrated several complexities in disease dynamics (e.g., occurrence of partially or fully asymptomatic plants) that need to be incorporated into the assessment of the impact of pollinator-transmitted pathogens on long-lived perennials.
{"title":"Anther smut pathogens as important drivers of population dynamics of long-lived perennial plants: A case study of Dianthus carthusianorum","authors":"Klára Koupilová , Tomáš Koubek , Marek Kasner , Zdeněk Janovský","doi":"10.1016/j.ppees.2023.125729","DOIUrl":"10.1016/j.ppees.2023.125729","url":null,"abstract":"<div><p><span>Pollinator-transmitted pathogens<span> typically hinder sexual reproduction of their hosts and affect pollen flow among remaining healthy individuals in a population. The extent to which a pathogen also influences host’s population growth depends on the importance of sexual reproduction for the host’s life cycle. Such pathogen impact cannot be traced by measuring only the vital rates directly affected by the pathogen, and thus a study of the host’s entire life cycle is necessary. In this study, we aimed to quantify the effects of the pollinator-transmitted anther smut pathogen </span></span><span><em>Microbotryum</em><em> carthusianorum</em></span><span> on population growth rate in three populations of the long-lived perennial </span><em>Dianthus carthusianorum.</em><span><span> We followed plant individuals over three years and measured their size, disease state, and reproduction. We then constructed an Integral Projection Model (IPM). To evaluate the pathogen impact, we performed a stochastic analysis of the IPM for real diseased populations as well as for simulated populations without the pathogen. As the populations also hosted predispersal seed predators, the same approach was used to evaluate their impact. Stochastic population growth rates indicated two of the real populations to be increasing, and one to be declining. Comparison with the simulated healthy populations showed that the pathogen impact on the growth rate was negative and relatively strong, because the growth rate was highly sensitive to changes in sexual reproduction. However, the pathogen did not appear to cause the decline in the one decreasing population, since the growth rate there was impaired more substantially by high rates of predispersal </span>seed predation and low germination rates than by the castration of diseased flowers. Overall, our study suggests that </span><em>D. carthusianorum</em> is highly vulnerable to biotic interactions affecting sexual reproduction pathway. Additionally, our study illustrated several complexities in disease dynamics (e.g., occurrence of partially or fully asymptomatic plants) that need to be incorporated into the assessment of the impact of pollinator-transmitted pathogens on long-lived perennials.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"59 ","pages":"Article 125729"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47970073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.ppees.2023.125721
Jan Pergl , Michaela Vítková , Martin Hejda , Josef Kutlvašr , Petr Petřík , Jiří Sádlo , Martin Vojík , Šárka Dvořáčková , Richard Fleischhans , Anna Lučanová , Petr Pyšek
It has been established by research on plant invasions that soil biota and availability of nutrients affect the processes of alien species establishment and spread. So far, attention was mainly on alien invaders, although some native species (expansive), vigorously spread in human-influenced landscapes and also transform the habitats they colonize. Based on indirect gradient ordination analysis of vegetation relevés dominated by five native (Calamagrostis epigejos, Filipendula ulmaria, Phalaris arundinacea, Rubus idaeus, Urtica dioica) and five alien taxa (Impatiens glandulifera, Lupinus polyphyllus, Telekia speciosa, Reynoutria sp., Solidago canadensis agg.) in the Czech Republic, Central Europe, we identified pairs of species differing by origin (native vs alien) and growing in similar habitats. In the resulting 10 pairs, we tested the net effect of species origin on the following soil characteristics: (i) physical properties, (ii) nutrient availability, and (iii) biological activity. We found that the impact of alien invasive and native expansive species on soil cannot be explained simply by species’ origin as a factor. Regardless of the origin, a statistically significant effect was recorded only for factors expressing nitrogen supply at the peak of the vegetation season and soil biological activity. Differences in impacts attributable to origin were only verified for individual pairs, being most pronounced between the alien Lupinus and its native counterparts Calamagrostis and Filipendula, and least between Solidago vs Calamagrostis, and Telekia vs Rubus. Both invasive alien and expansive native dominant plants can alter the rate of decomposition by changing the litter quality and availability of nutrients, mainly inorganic nitrogen. Therefore, management actions to preserve or restore diversity and mitigate the negative impacts of dominant species should be focused both on native and alien species.
{"title":"Plant-soil interactions in the communities dominated by alien and native plants","authors":"Jan Pergl , Michaela Vítková , Martin Hejda , Josef Kutlvašr , Petr Petřík , Jiří Sádlo , Martin Vojík , Šárka Dvořáčková , Richard Fleischhans , Anna Lučanová , Petr Pyšek","doi":"10.1016/j.ppees.2023.125721","DOIUrl":"10.1016/j.ppees.2023.125721","url":null,"abstract":"<div><p><span>It has been established by research on plant invasions that soil biota and availability of nutrients affect the processes of alien species establishment and spread. So far, attention was mainly on alien invaders, although some native species (expansive), vigorously spread in human-influenced landscapes and also transform the habitats they colonize. Based on indirect gradient ordination analysis of vegetation relevés dominated by five native (</span><span><span><span><em>Calamagrostis</em><em> epigejos, </em></span><span>Filipendula ulmaria</span><span><em>, </em><em>Phalaris arundinacea</em><em>, </em></span></span><em>Rubus</em><span><em> idaeus, </em><em>Urtica dioica</em></span></span>) and five alien taxa (<span><span><em>Impatiens glandulifera</em><em>, </em></span><em>Lupinus polyphyllus</em><span><em>, Telekia speciosa, </em><em>Reynoutria</em></span></span> sp., <span><em>Solidago</em><em> canadensis</em></span> agg.) in the Czech Republic, Central Europe, we identified pairs of species differing by origin (native vs alien) and growing in similar habitats. In the resulting 10 pairs, we tested the net effect of species origin on the following soil characteristics: (i) physical properties, (ii) nutrient availability, and (iii) biological activity. We found that the impact of alien invasive and native expansive species on soil cannot be explained simply by species’ origin as a factor. Regardless of the origin, a statistically significant effect was recorded only for factors expressing nitrogen supply at the peak of the vegetation season and soil biological activity. Differences in impacts attributable to origin were only verified for individual pairs, being most pronounced between the alien <em>Lupinus</em> and its native counterparts <em>Calamagrostis</em> and <em>Filipendula</em>, and least between <em>Solidago</em> vs <em>Calamagrostis,</em> and <em>Telekia</em> vs <em>Rubus</em><span>. Both invasive alien and expansive native dominant plants can alter the rate of decomposition by changing the litter quality and availability of nutrients, mainly inorganic nitrogen. Therefore, management actions to preserve or restore diversity and mitigate the negative impacts of dominant species should be focused both on native and alien species.</span></p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"59 ","pages":"Article 125721"},"PeriodicalIF":3.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43278480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.ppees.2023.125717
Amir Hossein Pahlevani , Božo Frajman
The Hyrcanian forests positioned along the southern and south-western shores of the Caspian Sea and the Euxine-Colchic forests along the southern and eastern shores of the Black Sea (western Asia) are renowned as hotspots of biodiversity and represent major refugia of Eurasian Tertiary relict forest species. One of them was considered to be Euphorbia amygdaloides (Euphorbia sect. Patellares), a forest species with wide distribution from northern Africa across Europe to western Asia. Using nuclear ribosomal ITS and plastid ndhF–trnL sequences we here show that the western Asian populations previously treated as E. amygdaloides are clearly divergent from European E. amygdaloides and actually pertain to two new species, which are also morphologically different. The newly described E. sylvicola is widespread in the Hyrcanian and Euxine-Colchic forests and is morphologically most similar to E. amygdaloides, with which it also shares its genome size. On the other hand, E. caspica is endemic to the Hyrcanian forests in Iran and is most closely related to another western Asian species, E. macroceras, with which it partly overlaps in distribution. Both species have also similar genome size, slightly lower from that of E. amygdaloides and E. sylvicola, but morphologically E. caspica resembles more E. amygdaloides than E. macroceras. Our study uncovered cryptic diversity in the forests of western Asia that had remained hidden due to slow rates of morphological evolution, i.e. morphological stasis, commonly observed in other Tertiary forest relict species, and highlights the Euxine-Colchic and especially the Hyrcanian forests as important centres of biodiversity and endemism.
{"title":"Widespread, but less than assumed: Populations of Euphorbia amygdaloides (Euphorbiaceae) from western Asia represent two new cryptic species","authors":"Amir Hossein Pahlevani , Božo Frajman","doi":"10.1016/j.ppees.2023.125717","DOIUrl":"10.1016/j.ppees.2023.125717","url":null,"abstract":"<div><p>The Hyrcanian forests positioned along the southern and south-western shores of the Caspian Sea and the Euxine-Colchic forests along the southern and eastern shores of the Black Sea (western Asia) are renowned as hotspots of biodiversity and represent major refugia of Eurasian Tertiary relict forest species. One of them was considered to be <em>Euphorbia amygdaloides</em> (<em>Euphorbia</em> sect. <em>Patellares</em>), a forest species with wide distribution from northern Africa across Europe to western Asia. Using nuclear ribosomal ITS and plastid <em>ndhF–trnL</em> sequences we here show that the western Asian populations previously treated as <em>E. amygdaloides</em> are clearly divergent from European <em>E. amygdaloides</em> and actually pertain to two new species, which are also morphologically different. The newly described <em>E. sylvicola</em> is widespread in the Hyrcanian and Euxine-Colchic forests and is morphologically most similar to <em>E. amygdaloides</em>, with which it also shares its genome size. On the other hand, <em>E. caspica</em> is endemic to the Hyrcanian forests in Iran and is most closely related to another western Asian species, <em>E. macroceras</em>, with which it partly overlaps in distribution. Both species have also similar genome size, slightly lower from that of <em>E. amygdaloides</em> and <em>E. sylvicola</em>, but morphologically <em>E. caspica</em> resembles more <em>E. amygdaloides</em> than <em>E. macroceras</em>. Our study uncovered cryptic diversity in the forests of western Asia that had remained hidden due to slow rates of morphological evolution, i.e. morphological stasis, commonly observed in other Tertiary forest relict species, and highlights the Euxine-Colchic and especially the Hyrcanian forests as important centres of biodiversity and endemism.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"58 ","pages":"Article 125717"},"PeriodicalIF":3.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44052322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.ppees.2022.125702
Ruymán David Cedrés-Perdomo , Raquel Hernández-Hernández , Brent C. Emerson , Juana María González-Mancebo
In non-fire prone ecosystems, like some subtropical humid forests, fire produces habitat destruction and intensifies land degradation by inducing changes in native species composition, soil properties and erosive processes. Bryophytes are key components of the Macaronesian laurel forests playing an important role in regulating water cycling and microclimate. Ecological and taxonomical bryophytes groups have distinct ecological and physiological requirements and may respond in a different way to the same fire events. Therefore, analysing post fire recovery of bryophyte communities represents a key step towards a better understanding of forest fire drivers and post fire management. We investigated how species richness and composition of different ecological and taxonomical bryophyte groups varied in 1158 samples within a fire chronosequence from 5 to 57 years in the best-preserved laurel forest from Canary Islands (Garajonay National Park) analysing communities in terms of differences with comparable surrounding old growth unburnt stands. Epiphyte, terricolous and saxicolous bryophytes were sampled at each plot and the influence of the time since fire was analyzed together with environmental variables (temperature, precipitation, mist precipitation and elevation) and forest structure variables. Our results indicate that there is no general pattern of post fire recolonization, as recolonization varies depending on the ecological and phylogenetic groups considered. Climate and forest structure play an important role in post-fire recolonization, such that time since fire is not the most important variable influencing richness and composition. The results increase the understanding of the processes that shape compositional patterns in groups with high dispersal capacities and high microclimate dependence, such as mosses and liverworts.
{"title":"Multiple responses of bryophytes in a chronosequence of burnt areas in non-fire prone subtropical cloud forests","authors":"Ruymán David Cedrés-Perdomo , Raquel Hernández-Hernández , Brent C. Emerson , Juana María González-Mancebo","doi":"10.1016/j.ppees.2022.125702","DOIUrl":"10.1016/j.ppees.2022.125702","url":null,"abstract":"<div><p>In non-fire prone ecosystems, like some subtropical humid forests, fire produces habitat destruction and intensifies land degradation by inducing changes in native species composition, soil properties and erosive processes. Bryophytes are key components of the Macaronesian laurel forests playing an important role in regulating water cycling and microclimate. Ecological and taxonomical bryophytes groups have distinct ecological and physiological requirements and may respond in a different way to the same fire events. Therefore, analysing post fire recovery of bryophyte communities represents a key step towards a better understanding of forest fire drivers and post fire management. We investigated how species richness and composition of different ecological and taxonomical bryophyte groups varied in 1158 samples within a fire chronosequence from 5 to 57 years in the best-preserved laurel forest from Canary Islands (Garajonay National Park) analysing communities in terms of differences with comparable surrounding old growth unburnt stands. Epiphyte, terricolous and saxicolous bryophytes were sampled at each plot and the influence of the time since fire was analyzed together with environmental variables (temperature, precipitation, mist precipitation and elevation) and forest structure variables. Our results indicate that there is no general pattern of post fire recolonization, as recolonization varies depending on the ecological and phylogenetic groups considered. Climate and forest structure play an important role in post-fire recolonization, such that time since fire is not the most important variable influencing richness and composition. The results increase the understanding of the processes that shape compositional patterns in groups with high dispersal capacities and high microclimate dependence, such as mosses and liverworts.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":"58 ","pages":"Article 125702"},"PeriodicalIF":3.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43862120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}