Pub Date : 2026-02-07DOI: 10.1016/j.ijmecsci.2026.111366
Zichuan Li , Jiajie Fan , Guoqi Zhang
<div><div>This study is motivated by a conceptual inconsistency in the physical interpretation of eight-chain hyperelastic theory, which arises from the combined effect of two distinct issues: the use of the marginal projection distribution <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>z</mi></mrow></msub><mrow><mo>(</mo><mrow><mo>|</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span> as a surrogate for the full probability density of end-to-end distance <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>r</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, and the subsequent reliance on a root mean square (RMS) approximation step in the micro–macro averaging of chain stretch. We first revisit this probabilistic mismatch by reformulating the probability density function of freely-jointed chains (FJCs) in terms of the squared end-to-end vector <span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, thereby restoring consistency on chain-level statistics. Building on this formulation, the micro–macro mapping averaging of chain conformational free energy is constructed directly in terms of <span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, leading to a one-step mean-field approximation that avoids RMS averaging. The modified probability transformation is examined by Monte Carlo sampling at the microscopic level. To account for interchain interactions, <span><math><mi>q</mi></math></span>-mean statistical description of micro tube confinement was incorporated, leading to the appearance of the general invariant <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>q</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>q</mi></mrow></msubsup></mrow></math></span>. The resulting continuum constitutive model is assessed against multiaxial experimental data for several polymer networks, including vulcanized natural rubber, Entec Enflex S4035A thermoplastic elastomer, Tetra-PEG, and isoprene rubber vulcanizate. Comparisons with three existing hyperelastic strain energy formulations, the extended eight-chain, extended tube models, and the four-parameter ”comprehensive” model, demonstrate comparable phenomenological accuracy of the current model while providing a clearer and more consistent micro–macro physical interpretation of model parameters. A parametric study further illustrates how the dimensionless parameters <span><math><mi>n</mi></math></span> and <span><math><mi>q</mi></math></span> govern the shape of the macroscopic stress–strain re
{"title":"A new physics-motivated constitutive model of hyperelastic polymer networks","authors":"Zichuan Li , Jiajie Fan , Guoqi Zhang","doi":"10.1016/j.ijmecsci.2026.111366","DOIUrl":"10.1016/j.ijmecsci.2026.111366","url":null,"abstract":"<div><div>This study is motivated by a conceptual inconsistency in the physical interpretation of eight-chain hyperelastic theory, which arises from the combined effect of two distinct issues: the use of the marginal projection distribution <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>z</mi></mrow></msub><mrow><mo>(</mo><mrow><mo>|</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span> as a surrogate for the full probability density of end-to-end distance <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>r</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, and the subsequent reliance on a root mean square (RMS) approximation step in the micro–macro averaging of chain stretch. We first revisit this probabilistic mismatch by reformulating the probability density function of freely-jointed chains (FJCs) in terms of the squared end-to-end vector <span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, thereby restoring consistency on chain-level statistics. Building on this formulation, the micro–macro mapping averaging of chain conformational free energy is constructed directly in terms of <span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, leading to a one-step mean-field approximation that avoids RMS averaging. The modified probability transformation is examined by Monte Carlo sampling at the microscopic level. To account for interchain interactions, <span><math><mi>q</mi></math></span>-mean statistical description of micro tube confinement was incorporated, leading to the appearance of the general invariant <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>q</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>q</mi></mrow></msubsup></mrow></math></span>. The resulting continuum constitutive model is assessed against multiaxial experimental data for several polymer networks, including vulcanized natural rubber, Entec Enflex S4035A thermoplastic elastomer, Tetra-PEG, and isoprene rubber vulcanizate. Comparisons with three existing hyperelastic strain energy formulations, the extended eight-chain, extended tube models, and the four-parameter ”comprehensive” model, demonstrate comparable phenomenological accuracy of the current model while providing a clearer and more consistent micro–macro physical interpretation of model parameters. A parametric study further illustrates how the dimensionless parameters <span><math><mi>n</mi></math></span> and <span><math><mi>q</mi></math></span> govern the shape of the macroscopic stress–strain re","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"314 ","pages":"Article 111366"},"PeriodicalIF":9.4,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-07DOI: 10.1016/j.ijmecsci.2026.111361
Chang-Yeon Gu, Min Hyeok Choi, Min Sang Ju, Dohun Kim, Sung Woo Ma, Tae-Ik Lee, Taek-Soo Kim
{"title":"Nonlinear Warpage Modeling of Dielectric-Controlled Carrier Wafers","authors":"Chang-Yeon Gu, Min Hyeok Choi, Min Sang Ju, Dohun Kim, Sung Woo Ma, Tae-Ik Lee, Taek-Soo Kim","doi":"10.1016/j.ijmecsci.2026.111361","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111361","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"42 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The emerging all-solid-state batteries (ASSBs) hold significant promise for next-generation energy storage, yet their mechanical reliability under dynamic impact loading remains a critical challenge. During service, external dynamic loads with high strain rates can induce excessive crack propagation and catastrophic failure, posing substantial risks to structural integrity and electrochemical performance. This study establishes a multiphysics-coupled framework to investigate the dynamic fracture mechanisms within the composite cathode of ASSBs under impact conditions by integrating chemo-mechanical interactions. The model incorporates a bond-based peridynamic framework for active materials (AM), an interface model couples the electrochemical parameters governing charging processes, and a Johnson–Cook (JC) constitutive model for bond-type interactions in the solid electrolytes (SE) to characterize the strain rate-dependent behavior. We systematically investigate the effects of strain rate-dependent impact loading on fracture propagation modes and electrochemical performance degradation in composite cathode. The findings elucidate the multi-physics failure mechanisms under dynamic loading scenarios, providing critical insights for designing next-generation solid-state batteries with enhanced mechanical integrity and safety.
{"title":"Peridynamic modeling of impact induced electrochemical degradation in all-solid-state batteries","authors":"Zhewen Zhang, Xiaoxun Li, Sheng Qian, Youlin Zhu, Lianfu Qiu, Xiaofei Wang, Qi Tong","doi":"10.1016/j.ijmecsci.2026.111328","DOIUrl":"10.1016/j.ijmecsci.2026.111328","url":null,"abstract":"<div><div>The emerging all-solid-state batteries (ASSBs) hold significant promise for next-generation energy storage, yet their mechanical reliability under dynamic impact loading remains a critical challenge. During service, external dynamic loads with high strain rates can induce excessive crack propagation and catastrophic failure, posing substantial risks to structural integrity and electrochemical performance. This study establishes a multiphysics-coupled framework to investigate the dynamic fracture mechanisms within the composite cathode of ASSBs under impact conditions by integrating chemo-mechanical interactions. The model incorporates a bond-based peridynamic framework for active materials (AM), an interface model couples the electrochemical parameters governing charging processes, and a Johnson–Cook (JC) constitutive model for bond-type interactions in the solid electrolytes (SE) to characterize the strain rate-dependent behavior. We systematically investigate the effects of strain rate-dependent impact loading on fracture propagation modes and electrochemical performance degradation in composite cathode. The findings elucidate the multi-physics failure mechanisms under dynamic loading scenarios, providing critical insights for designing next-generation solid-state batteries with enhanced mechanical integrity and safety.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"314 ","pages":"Article 111328"},"PeriodicalIF":9.4,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-06DOI: 10.1016/j.ijmecsci.2026.111364
J.C. Cheng , T. Yang , L. Wang , J.Y. Hua , J.Y. Huang , L.X. He , W. Feng , Y. Cai , Q.Y. Wang , S.N. Luo
High-speed ballistic impacts are carried out with high-speed photography on 2-mm thick CrCoNi alloy plates with 5-mm spherical stainless steel projectiles within the impact velocity range of 5141436 m s−1. Post-impact samples are characterized by optical imaging, microhardness, electron backscatter diffraction and transmission electron microscopy. With increasing impact velocity, bulging, complete plugging and fragmentation occur sequentially. The ballistic limit velocity for the investigated projectile–target combination is 530 m s−1, significantly higher than that of CrMnFeCoNi plate (495 m s−1). The area of the crater/bullet hole exhibits a linear relationship with projectile kinetic energy loss. Dislocations, stacking faults, Lomer–Cottrell locks, deformation bands and various twin variants, contribute to enhanced strain-hardening capacity and penetration resistance. The bending of the target plate induced by low-velocity impact leads to additional plastic deformation and higher microhardness. Based on the Johnson–Cook constitutive model and the damage criterion, the finite element simulations effectively reproduce the ballistic impact experiments. Molecular dynamics simulations reproduce microstructural evolution at the atomic scale. The and twin variants are simultaneously activated, because of the equivalence of the twin planes and twin directions of these two variants relative to the impact direction. This study presents the high-velocity perforation failure behavior of this medium-entropy alloy, elucidates the deformation and damage mechanisms, and provide valuable insights for its safety assessment and material/structural optimization design in extreme loading environments.
在514 ~ 1436 m s−1的冲击速度范围内,采用高速摄影技术对5mm球形不锈钢弹丸在2mm厚CrCoNi合金板上进行高速弹道冲击。通过光学成像、显微硬度、电子背散射衍射和透射电镜对撞击后样品进行表征。随着冲击速度的增加,胀形、完全堵塞和破碎依次发生。弹靶组合的弹道极限速度为530 m s−1,显著高于crmnnfeconi板的极限速度(495 m s−1)。弹坑/弹孔面积与弹丸动能损失呈线性关系。位错、层错、lomo - cottrell锁、变形带和各种孪晶变体有助于增强应变硬化能力和抗渗透能力。低速冲击引起的靶板弯曲导致额外的塑性变形和更高的显微硬度。基于Johnson-Cook本构模型和损伤准则的有限元模拟能够有效地再现弹道冲击实验。分子动力学模拟在原子尺度上再现微观结构的演变。111112和111112双生变体同时被激活,因为这两个变体的双生平面和双生方向相对于1’10撞击方向是等价的。本研究展示了这种中熵合金的高速穿孔破坏行为,阐明了其变形和损伤机制,为其在极端载荷环境下的安全性评估和材料/结构优化设计提供了有价值的见解。
{"title":"High-velocity perforation of medium-entropy CrCoNi thin plates by spherical projectiles","authors":"J.C. Cheng , T. Yang , L. Wang , J.Y. Hua , J.Y. Huang , L.X. He , W. Feng , Y. Cai , Q.Y. Wang , S.N. Luo","doi":"10.1016/j.ijmecsci.2026.111364","DOIUrl":"10.1016/j.ijmecsci.2026.111364","url":null,"abstract":"<div><div>High-speed ballistic impacts are carried out with high-speed photography on 2-mm thick CrCoNi alloy plates with 5-mm spherical stainless steel projectiles within the impact velocity range of 514<span><math><mo>−</mo></math></span>1436 m<!--> <!-->s<sup>−1</sup>. Post-impact samples are characterized by optical imaging, microhardness, electron backscatter diffraction and transmission electron microscopy. With increasing impact velocity, bulging, complete plugging and fragmentation occur sequentially. The ballistic limit velocity for the investigated projectile–target combination is 530 m<!--> <!-->s<sup>−1</sup>, significantly higher than that of CrMnFeCoNi plate (495 m<!--> <!-->s<sup>−1</sup>). The area of the crater/bullet hole exhibits a linear relationship with projectile kinetic energy loss. Dislocations, stacking faults, Lomer–Cottrell locks, deformation bands and various twin variants, contribute to enhanced strain-hardening capacity and penetration resistance. The bending of the target plate induced by low-velocity impact leads to additional plastic deformation and higher microhardness. Based on the Johnson–Cook constitutive model and the damage criterion, the finite element simulations effectively reproduce the ballistic impact experiments. Molecular dynamics simulations reproduce microstructural evolution at the atomic scale. The <span><math><mrow><mfenced><mrow><mn>111</mn></mrow></mfenced><mfenced><mrow><mn>11</mn><mover><mrow><mn>2</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></mfenced></mrow></math></span> and <span><math><mrow><mfenced><mrow><mn>11</mn><mover><mrow><mn>1</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></mfenced><mfenced><mrow><mn>112</mn></mrow></mfenced></mrow></math></span> twin variants are simultaneously activated, because of the equivalence of the twin planes and twin directions of these two variants relative to the <span><math><mfenced><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>̄</mo></mrow></mover><mn>10</mn></mrow></mfenced></math></span> impact direction. This study presents the high-velocity perforation failure behavior of this medium-entropy alloy, elucidates the deformation and damage mechanisms, and provide valuable insights for its safety assessment and material/structural optimization design in extreme loading environments.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"314 ","pages":"Article 111364"},"PeriodicalIF":9.4,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-06DOI: 10.1016/j.ijmecsci.2026.111358
Jiao Wang, Nan Gao, Weiqiu Chen
{"title":"Global-to-Local Control of Interface and Corner States","authors":"Jiao Wang, Nan Gao, Weiqiu Chen","doi":"10.1016/j.ijmecsci.2026.111358","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111358","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"1 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}