首页 > 最新文献

International Journal of Mechanical Sciences最新文献

英文 中文
A pretraining-finetuning computational framework for material homogenization 材料均匀化的预训练-微调计算框架
IF 9.4 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-12 DOI: 10.1016/j.ijmecsci.2026.111388
Yizheng Wang , Xiang Li , Ziming Yan , Shuaifeng Ma , Jinshuai Bai , Bokai Liu , Xiaoying Zhuang , Timon Rabczuk , Yinghua Liu
Homogenization is a fundamental tool for studying multiscale physical phenomena. Traditional numerical homogenization methods, heavily reliant on finite element analysis, demand significant computational resources, especially for complex geometries, materials, and high-resolution problems. To address these challenges, we propose PreFine-Homo, a novel numerical homogenization framework comprising two phases: pretraining and fine-tuning. In the pretraining phase, a Fourier Neural Operator (FNO) is trained on large datasets to learn the mapping from input geometries and material properties to displacement fields. In the fine-tuning phase, the pretrained predictions serve as initial solutions for iterative algorithms, drastically reducing the number of iterations needed for convergence. The pretraining phase of PreFine-Homo delivers homogenization results up to 1000 times faster than conventional methods, while the fine-tuning phase further enhances accuracy. Moreover, the fine-tuning phase grants PreFine-Homo improved generalization capabilities, enabling continuous learning and improvement as data availability increases. We validate PreFine-Homo by predicting the effective elastic tensor for 3D periodic materials, specifically Triply Periodic Minimal Surfaces (TPMS). The results demonstrate that PreFine-Homo achieves high precision, exceptional efficiency, robust learning capabilities, and strong extrapolation ability, establishing it as a powerful tool for multiscale homogenization tasks. The source code is publicly available at: https://github.com/yizheng-wang/HomoGenius.
均匀化是研究多尺度物理现象的基本工具。传统的数值均匀化方法严重依赖于有限元分析,需要大量的计算资源,特别是对于复杂的几何形状,材料和高分辨率问题。为了解决这些挑战,我们提出了PreFine-Homo,这是一个新的数值均匀化框架,包括两个阶段:预训练和微调。在预训练阶段,在大数据集上训练傅里叶神经算子(FNO)来学习从输入几何形状和材料属性到位移场的映射。在微调阶段,预训练的预测作为迭代算法的初始解决方案,大大减少收敛所需的迭代次数。PreFine-Homo的预训练阶段提供的均质结果比传统方法快1000倍,而微调阶段进一步提高了准确性。此外,微调阶段赋予PreFine-Homo改进的泛化能力,使其能够随着数据可用性的增加而持续学习和改进。我们通过预测三维周期材料,特别是三周期最小曲面(TPMS)的有效弹性张量来验证PreFine-Homo。结果表明,PreFine-Homo具有高精度、高效、稳健的学习能力和较强的外推能力,是解决多尺度均匀化问题的有力工具。源代码可以在:https://github.com/yizheng-wang/HomoGenius上公开获得。
{"title":"A pretraining-finetuning computational framework for material homogenization","authors":"Yizheng Wang ,&nbsp;Xiang Li ,&nbsp;Ziming Yan ,&nbsp;Shuaifeng Ma ,&nbsp;Jinshuai Bai ,&nbsp;Bokai Liu ,&nbsp;Xiaoying Zhuang ,&nbsp;Timon Rabczuk ,&nbsp;Yinghua Liu","doi":"10.1016/j.ijmecsci.2026.111388","DOIUrl":"10.1016/j.ijmecsci.2026.111388","url":null,"abstract":"<div><div>Homogenization is a fundamental tool for studying multiscale physical phenomena. Traditional numerical homogenization methods, heavily reliant on finite element analysis, demand significant computational resources, especially for complex geometries, materials, and high-resolution problems. To address these challenges, we propose PreFine-Homo, a novel numerical homogenization framework comprising two phases: pretraining and fine-tuning. In the pretraining phase, a Fourier Neural Operator (FNO) is trained on large datasets to learn the mapping from input geometries and material properties to displacement fields. In the fine-tuning phase, the pretrained predictions serve as initial solutions for iterative algorithms, drastically reducing the number of iterations needed for convergence. The pretraining phase of PreFine-Homo delivers homogenization results up to 1000 times faster than conventional methods, while the fine-tuning phase further enhances accuracy. Moreover, the fine-tuning phase grants PreFine-Homo improved generalization capabilities, enabling continuous learning and improvement as data availability increases. We validate PreFine-Homo by predicting the effective elastic tensor for 3D periodic materials, specifically Triply Periodic Minimal Surfaces (TPMS). The results demonstrate that PreFine-Homo achieves high precision, exceptional efficiency, robust learning capabilities, and strong extrapolation ability, establishing it as a powerful tool for multiscale homogenization tasks. The source code is publicly available at: <span><span>https://github.com/yizheng-wang/HomoGenius</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"314 ","pages":"Article 111388"},"PeriodicalIF":9.4,"publicationDate":"2026-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty quantification for stress-frequency response of U-shaped fluid-filled clamp-piping systems u型充液夹管系统应力-频率响应的不确定性量化
IF 7.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-12 DOI: 10.1016/j.ijmecsci.2026.111382
Hongda Xu, Xufang Zhang, Zhonghan Sun, Jinpeng Huang, Shang Ren
{"title":"Uncertainty quantification for stress-frequency response of U-shaped fluid-filled clamp-piping systems","authors":"Hongda Xu, Xufang Zhang, Zhonghan Sun, Jinpeng Huang, Shang Ren","doi":"10.1016/j.ijmecsci.2026.111382","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111382","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"4 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146161072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Based Multiscale Topology Optimization Framework for Nonlinear Materials 基于机器学习的非线性材料多尺度拓扑优化框架
IF 7.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-12 DOI: 10.1016/j.ijmecsci.2026.111380
Dahai Wei, Fanlin Zeng, Jianzheng Cui, Youshan Wang
{"title":"Machine Learning-Based Multiscale Topology Optimization Framework for Nonlinear Materials","authors":"Dahai Wei, Fanlin Zeng, Jianzheng Cui, Youshan Wang","doi":"10.1016/j.ijmecsci.2026.111380","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111380","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"7 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimentally validated model of ferrofluid flow in micropumps 微泵中铁磁流体流动的实验验证模型
IF 7.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-12 DOI: 10.1016/j.ijmecsci.2026.111386
Wangxu Li, Junyi Yin, Zhenggui Li, Wei Han
{"title":"Experimentally validated model of ferrofluid flow in micropumps","authors":"Wangxu Li, Junyi Yin, Zhenggui Li, Wei Han","doi":"10.1016/j.ijmecsci.2026.111386","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111386","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"277 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-analytical finite element framework for wave dispersion in solid–fluid–poroelastic multilayers 固体-流体-孔隙弹性多层介质中波频散的半解析有限元框架
IF 7.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-11 DOI: 10.1016/j.ijmecsci.2026.111357
Hao Zhou, Xudong Yu, Ming Huang, Peng Zuo, Bo Lan, Mingxi Deng
{"title":"Semi-analytical finite element framework for wave dispersion in solid–fluid–poroelastic multilayers","authors":"Hao Zhou, Xudong Yu, Ming Huang, Peng Zuo, Bo Lan, Mingxi Deng","doi":"10.1016/j.ijmecsci.2026.111357","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111357","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"316 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Force-Flow Coupling Mechanism and Online Defect Detection during AFSD 力流耦合机理与AFSD缺陷在线检测
IF 7.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-11 DOI: 10.1016/j.ijmecsci.2026.111384
Kaiyue Zhang, Yiming Huang, Wei Guan, Haining Yao, Lingkun Meng, Huijun Li, Tianhao Yang, Lei Cui
{"title":"Force-Flow Coupling Mechanism and Online Defect Detection during AFSD","authors":"Kaiyue Zhang, Yiming Huang, Wei Guan, Haining Yao, Lingkun Meng, Huijun Li, Tianhao Yang, Lei Cui","doi":"10.1016/j.ijmecsci.2026.111384","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111384","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"13 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometrically graded kiri-origami beams with enhanced energy absorption performance 几何梯度基里折纸梁增强能量吸收性能
IF 7.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-11 DOI: 10.1016/j.ijmecsci.2026.111378
Ruoqi He, Yao Chen, Wangjie Ye, Zhenyu Chen, Tianyu Xie, Jian Feng, Pooya Sareh
{"title":"Geometrically graded kiri-origami beams with enhanced energy absorption performance","authors":"Ruoqi He, Yao Chen, Wangjie Ye, Zhenyu Chen, Tianyu Xie, Jian Feng, Pooya Sareh","doi":"10.1016/j.ijmecsci.2026.111378","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111378","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"98 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive model for cutting forces in ultrasonic-assisted friction drilling of Ti-6Al-4V Ti-6Al-4V超声辅助摩擦钻削切削力预测模型
IF 9.4 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-11 DOI: 10.1016/j.ijmecsci.2026.111385
Kechuang Zhang, Xian Wu, Shaolong Lin, Yong Zhang, Jianyun Shen, Fuyin Huang
The precision machining of titanium alloy thin-walled components presents significant challenges in aerospace manufacturing due to intricate cutting force variations during friction drilling machining. To address these challenges, this study proposes and comprehensively investigates an ultrasonic-assisted friction drilling (UAFD) process. An equivalent model of a friction drill bit during ultrasound-assisted friction drilling machining is established, simplifying its complex geometry for analytical tractability while preserving the essential physics of force generation. Based on the intermittent machining mechanism of UAFD machining and the friction drilling mechanism of Ti-6Al-4V, a seven-phase drilling cutting force model is innovatively developed to predict the evolution of cutting forces and torque throughout the entire process. Subsequently, the accuracy of the cutting force prediction of this model is verified by ultrasonic-assisted friction drilling machining experiments. Finally, experiments were conducted on conventional drilling and ultrasonic-assisted friction drilling. The results demonstrate that 28.00 kHz ultrasonic vibration reduces the axial force by 4.31% and the torque by 10.01% through the intermittent cutting mechanism and thermal softening effects, while the peak temperature increases by 1.27%. The accuracy of the model predictions was also validated by experimental results. This research provides theoretical foundations and practical guidelines for implementing energy-field assisted machining in aerospace titanium component manufacturing.
由于摩擦钻削过程中切削力的变化复杂,钛合金薄壁零件的精密加工在航空航天制造中面临着巨大的挑战。为了解决这些挑战,本研究提出并全面研究了超声辅助摩擦钻井(UAFD)工艺。建立了超声辅助摩擦钻加工过程中摩擦钻头的等效模型,简化了其复杂的几何形状,便于分析,同时保留了力产生的基本物理特性。基于UAFD加工的间歇加工机理和Ti-6Al-4V的摩擦钻削机理,创新性地建立了七相钻削切削力模型,预测了整个加工过程中切削力和扭矩的演变。随后,通过超声辅助摩擦钻削加工实验验证了该模型切削力预测的准确性。最后进行了常规钻井和超声辅助摩擦钻井试验。结果表明:28.00 kHz超声振动通过间歇切削机制和热软化效应使轴向力降低4.31%,扭矩降低10.01%,峰值温度升高1.27%;实验结果也验证了模型预测的准确性。该研究为实现航空钛部件的能量场辅助加工提供了理论基础和实践指导。
{"title":"Predictive model for cutting forces in ultrasonic-assisted friction drilling of Ti-6Al-4V","authors":"Kechuang Zhang,&nbsp;Xian Wu,&nbsp;Shaolong Lin,&nbsp;Yong Zhang,&nbsp;Jianyun Shen,&nbsp;Fuyin Huang","doi":"10.1016/j.ijmecsci.2026.111385","DOIUrl":"10.1016/j.ijmecsci.2026.111385","url":null,"abstract":"<div><div>The precision machining of titanium alloy thin-walled components presents significant challenges in aerospace manufacturing due to intricate cutting force variations during friction drilling machining. To address these challenges, this study proposes and comprehensively investigates an ultrasonic-assisted friction drilling (UAFD) process. An equivalent model of a friction drill bit during ultrasound-assisted friction drilling machining is established, simplifying its complex geometry for analytical tractability while preserving the essential physics of force generation. Based on the intermittent machining mechanism of UAFD machining and the friction drilling mechanism of Ti-6Al-4V, a seven-phase drilling cutting force model is innovatively developed to predict the evolution of cutting forces and torque throughout the entire process. Subsequently, the accuracy of the cutting force prediction of this model is verified by ultrasonic-assisted friction drilling machining experiments. Finally, experiments were conducted on conventional drilling and ultrasonic-assisted friction drilling. The results demonstrate that 28.00 kHz ultrasonic vibration reduces the axial force by 4.31% and the torque by 10.01% through the intermittent cutting mechanism and thermal softening effects, while the peak temperature increases by 1.27%. The accuracy of the model predictions was also validated by experimental results. This research provides theoretical foundations and practical guidelines for implementing energy-field assisted machining in aerospace titanium component manufacturing.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"314 ","pages":"Article 111385"},"PeriodicalIF":9.4,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel metamaterial platform with piezoelectric sensors for self-sensing mechanical support 基于压电传感器的新型超材料自感知机械支撑平台
IF 7.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-11 DOI: 10.1016/j.ijmecsci.2026.111387
Vojtech Slaby, Jan Bajer, Petr Marcian, Miroslav Hrstka, Zdenek Hadas
{"title":"Novel metamaterial platform with piezoelectric sensors for self-sensing mechanical support","authors":"Vojtech Slaby, Jan Bajer, Petr Marcian, Miroslav Hrstka, Zdenek Hadas","doi":"10.1016/j.ijmecsci.2026.111387","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111387","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"16 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of composite beams with corrugated steel webs 波纹钢腹板组合梁的动力学
IF 7.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-11 DOI: 10.1016/j.ijmecsci.2026.111373
Xiaolei Liu, Zhicheng Zhang, Weiqiu Chen, Guannan Wang, Rongqiao Xu
{"title":"Dynamics of composite beams with corrugated steel webs","authors":"Xiaolei Liu, Zhicheng Zhang, Weiqiu Chen, Guannan Wang, Rongqiao Xu","doi":"10.1016/j.ijmecsci.2026.111373","DOIUrl":"https://doi.org/10.1016/j.ijmecsci.2026.111373","url":null,"abstract":"","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"97 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Mechanical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1