Pub Date : 2024-09-13DOI: 10.1016/j.ijmecsci.2024.109696
Renhao Qu , Jingwen Guo , Yuhong Li , Qichen Tan , Zhenjun Peng , Lican Wang , Yi Fang , Peng Zhou
Acoustic metasurfaces (AMs) can manipulate acoustic waves in ways that are not reachable in natural materials, offering significant implications for engineering applications such as noise control. While previous studies have primarily been conducted in stationary mediums, this study delves into the sound reflections of wave-manipulation AMs subjected to a grazing flow. An analytical model is developed to predict the sound reflections of both periodic and non-periodic AMs under flow conditions based on the plane-wave expansion. The flow effects on the periodic and focusing AMs are analytically and numerically investigated. Experiments are also conducted in a newly designed aeroacoustic oblique plane wave (AOPW) facility at the Hong Kong University of Science and Technology (HKUST). Results show that the reflected sound pressure fields of wave-manipulation AMs under flow conditions can be predicted well by the analytical model. Good absorption of the periodic AMs can be achieved by adjusting the periodic length-to-wavelength ratio to below due to the surface wave conversion mechanism. The focal points of the AMs designed in the stationary air shift to the downstream direction due to the flow effects, which can be corrected by the proposed analytical model. The focusing AM design is also extended into a three-dimensional (3D) space and is validated analytically. This study extends the understanding of wave-manipulation AMs into flow conditions, which may help the AM design operating in non-stationary mediums, such as air and water flows.
声学元表面(AMs)能以天然材料无法达到的方式操纵声波,对噪声控制等工程应用具有重要意义。以往的研究主要是在静止介质中进行的,而本研究则深入探讨了受放牧流影响的声波操纵 AM 的声反射。根据平面波展开建立了一个分析模型,用于预测流动条件下周期性和非周期性 AM 的声反射。分析和数值研究了流动对周期和聚焦 AM 的影响。此外,还在香港科技大学新设计的航空声学斜面波(AOPW)设施中进行了实验。结果表明,分析模型可以很好地预测流动条件下波操纵 AMs 的反射声压场。由于表面波的转换机制,将周期性的长度波长比调整至 (1-M02)/2 以下,可实现周期性 AM 的良好吸声效果。由于流动效应,在静止空气中设计的 AM 的焦点会向下游方向移动,这可以通过所提出的分析模型进行修正。聚焦 AM 的设计还扩展到了三维(3D)空间,并得到了分析验证。这项研究将人们对波操纵调幅器的理解扩展到了流动条件,这可能有助于在非稳态介质(如气流和水流)中运行的调幅器设计。
{"title":"Reflected acoustic wave manipulation by metasurfaces in a grazing flow","authors":"Renhao Qu , Jingwen Guo , Yuhong Li , Qichen Tan , Zhenjun Peng , Lican Wang , Yi Fang , Peng Zhou","doi":"10.1016/j.ijmecsci.2024.109696","DOIUrl":"10.1016/j.ijmecsci.2024.109696","url":null,"abstract":"<div><p>Acoustic metasurfaces (AMs) can manipulate acoustic waves in ways that are not reachable in natural materials, offering significant implications for engineering applications such as noise control. While previous studies have primarily been conducted in stationary mediums, this study delves into the sound reflections of wave-manipulation AMs subjected to a grazing flow. An analytical model is developed to predict the sound reflections of both periodic and non-periodic AMs under flow conditions based on the plane-wave expansion. The flow effects on the periodic and focusing AMs are analytically and numerically investigated. Experiments are also conducted in a newly designed aeroacoustic oblique plane wave (AOPW) facility at the Hong Kong University of Science and Technology (HKUST). Results show that the reflected sound pressure fields of wave-manipulation AMs under flow conditions can be predicted well by the analytical model. Good absorption of the periodic AMs can be achieved by adjusting the periodic length-to-wavelength ratio to below <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></math></span> due to the surface wave conversion mechanism. The focal points of the AMs designed in the stationary air shift to the downstream direction due to the flow effects, which can be corrected by the proposed analytical model. The focusing AM design is also extended into a three-dimensional (3D) space and is validated analytically. This study extends the understanding of wave-manipulation AMs into flow conditions, which may help the AM design operating in non-stationary mediums, such as air and water flows.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109696"},"PeriodicalIF":7.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new approach to scaled experimentation has appeared in the open literature bringing into existence a countably infinite number of similitude rules connecting multiple scaled experiments. The simplest rule (the zeroth-order rule) captures all what is possible with dimensional analysis but higher-order rules appear to necessitate investigations at multiple scales. The scaling theory finite similitude can however, be repurposed for the analysis of scaled models making it possible to relate models of two different sizes whilst automatically accounting for all scale effects present. The new approach to scaling analysis gives rise to additional systems of equations that are required to be solved and it is this aspect that is the main focus of this paper. It is shown through application of the new scaling-analysis approach to mechanical systems built from discrete elements (e.g., springs, lumped masses, dampers) how scale effects are directly represented. Scaling analysis under the finite-similitude framework is shown to be effective for connecting up scaled models but additionally dovetails with experimental approaches involving scaled experiments. Through application to mechanical systems the new formulation is shown to have practical value but also reveals how system-level scale effects can be handled efficiently. The approach provides a framework for the design and analysis of mechanical components that are required to operate over a range of sizes.
{"title":"The analysis of scaled mechanical dynamic systems","authors":"Keith Davey , Jiahe Xu , Hamed Sadeghi , Rooholamin Darvizeh","doi":"10.1016/j.ijmecsci.2024.109722","DOIUrl":"10.1016/j.ijmecsci.2024.109722","url":null,"abstract":"<div><p>A new approach to scaled experimentation has appeared in the open literature bringing into existence a countably infinite number of similitude rules connecting multiple scaled experiments. The simplest rule (the zeroth-order rule) captures all what is possible with dimensional analysis but higher-order rules appear to necessitate investigations at multiple scales. The scaling theory <em>finite similitude</em> can however, be repurposed for the analysis of scaled models making it possible to relate models of two different sizes whilst automatically accounting for all scale effects present. The new approach to scaling analysis gives rise to additional systems of equations that are required to be solved and it is this aspect that is the main focus of this paper. It is shown through application of the new scaling-analysis approach to mechanical systems built from discrete elements (e.g., springs, lumped masses, dampers) how scale effects are directly represented. Scaling analysis under the finite-similitude framework is shown to be effective for connecting up scaled models but additionally dovetails with experimental approaches involving scaled experiments. Through application to mechanical systems the new formulation is shown to have practical value but also reveals how system-level scale effects can be handled efficiently. The approach provides a framework for the design and analysis of mechanical components that are required to operate over a range of sizes.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109722"},"PeriodicalIF":7.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002074032400763X/pdfft?md5=45bcc1fd9e499e79bd361c68a63a710d&pid=1-s2.0-S002074032400763X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.ijmecsci.2024.109699
Tianyu Chen, Xudong Yang, Yifan Wang
The development of structures capable of both dynamic shape morphing and stiffness modulation has significant potential in various applications. However, such structures often suffer from bulkiness and control complexity. This paper addresses these challenges by exploring a scaled structure that integrates morphing capabilities and variable stiffness within a compact configuration. For the first time, we establish a comprehensive set of design criteria and obtain the previously unexplored design space, focusing on geometric parameters including layer thickness, target shape radius, the number of scales, and the number of periods per scale. Through extensive finite element simulations, we evaluate the impact of material property and geometric parameters on the performance of the scaled structure, emphasizing the role of coefficient of friction. Our findings identify a critical threshold for the coefficient of friction above which morphing ability is hindered. Additionally, we uncover a trade-off between morphing capability and stiffness variation ability, which we overcome by modifying the surface structure of the scales. The optimal design is found to be a superellipse shape with an exponent of ∼1.9. The practical potential of this structure is demonstrated through three applications: a soft gripper, a phone stand, and a foldable box, showcasing its versatility in real-world scenarios. This research provides a foundational approach for designing morphing scaled structures, offering valuable insights into optimizing morphing capability and stiffness variation ability for broader engineering applications.
{"title":"Design and modeling of a programmable morphing structure with variable stiffness capability","authors":"Tianyu Chen, Xudong Yang, Yifan Wang","doi":"10.1016/j.ijmecsci.2024.109699","DOIUrl":"10.1016/j.ijmecsci.2024.109699","url":null,"abstract":"<div><p>The development of structures capable of both dynamic shape morphing and stiffness modulation has significant potential in various applications. However, such structures often suffer from bulkiness and control complexity. This paper addresses these challenges by exploring a scaled structure that integrates morphing capabilities and variable stiffness within a compact configuration. For the first time, we establish a comprehensive set of design criteria and obtain the previously unexplored design space, focusing on geometric parameters including layer thickness, target shape radius, the number of scales, and the number of periods per scale. Through extensive finite element simulations, we evaluate the impact of material property and geometric parameters on the performance of the scaled structure, emphasizing the role of coefficient of friction. Our findings identify a critical threshold for the coefficient of friction above which morphing ability is hindered. Additionally, we uncover a trade-off between morphing capability and stiffness variation ability, which we overcome by modifying the surface structure of the scales. The optimal design is found to be a superellipse shape with an exponent of ∼1.9. The practical potential of this structure is demonstrated through three applications: a soft gripper, a phone stand, and a foldable box, showcasing its versatility in real-world scenarios. This research provides a foundational approach for designing morphing scaled structures, offering valuable insights into optimizing morphing capability and stiffness variation ability for broader engineering applications.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109699"},"PeriodicalIF":7.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.ijmecsci.2024.109720
Congshan Liu , Feng Wang , Wenxiang Tao , Chaofeng Lü
Surface morphological patterns are widely observed in natural systems, which are closely correlated to vital biological functions and inspire surface morphology designs in soft matter systems. Geometrical incompatibility widely exists in biological tissues across different length scales and plays an important role in growth-induced pattern selection and morphological evolution of soft tissues. However, the underlying physical mechanism of growth-induced pattern formation and post-buckling evolution in geometrically incompatible spherical soft tissues remain elusive. Here, the effect of geometrical incompatibility on the growth-induced pattern selection and post-buckling evolution are investigated through swelling experiment, theoretical analysis and numerical simulation. The results show that not only the instability pattern but also the instability threshold can be regulated by manipulating geometric incompatibility. Notably, when the geometrical incompatibility parameter exceeds a critical value, spontaneous instability is observed before growth. With continuous growth, the core–shell soft sphere buckles into a periodic buckyball pattern and evolves toward a bean-shaped pattern, and then undergoes a wrinkle-to-fold transition into a labyrinth topography. Our results demonstrate, both experimentally and theoretically, that geometrical incompatibility can guide the growth-induced pattern formation and morphological evolution effectively. This study not only enhances our understanding of the growth-induced pattern selection and morphological evolution in spherical soft tissues, but also provides an inspiring insight for the fabrication of morphological patterns on curved surfaces.
{"title":"Geometrical incompatibility regulated pattern selection and morphological evolution in growing spherical soft tissues","authors":"Congshan Liu , Feng Wang , Wenxiang Tao , Chaofeng Lü","doi":"10.1016/j.ijmecsci.2024.109720","DOIUrl":"10.1016/j.ijmecsci.2024.109720","url":null,"abstract":"<div><p>Surface morphological patterns are widely observed in natural systems, which are closely correlated to vital biological functions and inspire surface morphology designs in soft matter systems. Geometrical incompatibility widely exists in biological tissues across different length scales and plays an important role in growth-induced pattern selection and morphological evolution of soft tissues. However, the underlying physical mechanism of growth-induced pattern formation and post-buckling evolution in geometrically incompatible spherical soft tissues remain elusive. Here, the effect of geometrical incompatibility on the growth-induced pattern selection and post-buckling evolution are investigated through swelling experiment, theoretical analysis and numerical simulation. The results show that not only the instability pattern but also the instability threshold can be regulated by manipulating geometric incompatibility. Notably, when the geometrical incompatibility parameter exceeds a critical value, spontaneous instability is observed before growth. With continuous growth, the core–shell soft sphere buckles into a periodic buckyball pattern and evolves toward a bean-shaped pattern, and then undergoes a wrinkle-to-fold transition into a labyrinth topography. Our results demonstrate, both experimentally and theoretically, that geometrical incompatibility can guide the growth-induced pattern formation and morphological evolution effectively. This study not only enhances our understanding of the growth-induced pattern selection and morphological evolution in spherical soft tissues, but also provides an inspiring insight for the fabrication of morphological patterns on curved surfaces.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109720"},"PeriodicalIF":7.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1016/j.ijmecsci.2024.109721
Xiaoao Chen , Xiaochun Yin , Wenhao Xie , Hao Yuan , Liang Jiang , Changliang Wang , Hao Zhou , Junti Wang , Huaiping Ding , Hui Wang
The multiple sub-impact phenomenon, consisting of more than one short contact event, has frequently been observed in experiments and simulations. The multiple sub-impact phenomenon and its influences on impact responses lack systematic study. Hence, this paper presents a parametric analysis method, an extended hybrid, numerical-analytical model (EHNA model). The nature of multiple sub-impact responses of elastic-plastic beams struck by elastic-plastic spherical impactors is investigated parametrically. The occurrence and disappearance of multiple sub-impacts are observed. Their threshold curves are obtained and expressed analytically for low-velocity impacts. A characterization diagram is proposed to characterize the region of multiple sub-impacts in the relative stiffness ratio-effective mass ratio plane. The characterization diagram can be used to quickly predict the state of multiple sub-impacts or the state of a single impact without solving the impact responses in detail. It is validated experimentally and numerically for impacts with wide ranges of initial velocity, beam size, constraint, material property and contact type. The influences of multiple sub-impacts on impact force response, impact impulse, and energy loss are parametrically investigated. The high influence zones and several influence features are observed. The wide multiple sub-impact region proves that the multiple sub-impact phenomenon is ubiquitous. The strong influences on flexible beam impacts indicate that multiple sub-impacts cannot be neglected for structural damage and structural dynamics.
{"title":"Multiple sub-impacts phenomenon and influences on responses of elastic-plastic beam","authors":"Xiaoao Chen , Xiaochun Yin , Wenhao Xie , Hao Yuan , Liang Jiang , Changliang Wang , Hao Zhou , Junti Wang , Huaiping Ding , Hui Wang","doi":"10.1016/j.ijmecsci.2024.109721","DOIUrl":"10.1016/j.ijmecsci.2024.109721","url":null,"abstract":"<div><p>The multiple sub-impact phenomenon, consisting of more than one short contact event, has frequently been observed in experiments and simulations. The multiple sub-impact phenomenon and its influences on impact responses lack systematic study. Hence, this paper presents a parametric analysis method, an extended hybrid, numerical-analytical model (EHNA model). The nature of multiple sub-impact responses of elastic-plastic beams struck by elastic-plastic spherical impactors is investigated parametrically. The occurrence and disappearance of multiple sub-impacts are observed. Their threshold curves are obtained and expressed analytically for low-velocity impacts. A characterization diagram is proposed to characterize the region of multiple sub-impacts in the relative stiffness ratio-effective mass ratio plane. The characterization diagram can be used to quickly predict the state of multiple sub-impacts or the state of a single impact without solving the impact responses in detail. It is validated experimentally and numerically for impacts with wide ranges of initial velocity, beam size, constraint, material property and contact type. The influences of multiple sub-impacts on impact force response, impact impulse, and energy loss are parametrically investigated. The high influence zones and several influence features are observed. The wide multiple sub-impact region proves that the multiple sub-impact phenomenon is ubiquitous. The strong influences on flexible beam impacts indicate that multiple sub-impacts cannot be neglected for structural damage and structural dynamics.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109721"},"PeriodicalIF":7.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Among the various methods for strain sensing, the metamaterial absorbers (MMAs) stand out due to their dual capabilities. Specifically, MMAs facilitate the wireless detection of deformations in the target and operate independently of any external power source. However, conventional research has a limitation in that stretchable strain sensors are unable to deform themselves autonomously, which puts constraints on being efficiently utilised in special environments where human intervention is difficult. Herein, we propose a wireless, power-independent, biaxial strain sensor equipped with self-shape and frequency recovery capability that addresses the limitations of existing wireless strain sensors through the unprecedented integration of a 4D-printed shape memory actuator and a biaxially stretchable MMA. The novel integration with the shape memory actuator enables the stretchable MMA to autonomously recover to its original shape and absorption frequency after being heated to 70 °C for a few minutes. This smart functionality enables the resulting wireless strain sensor based on the proposed idea to revert to the original state when sensing a new target without requiring human intervention. The highly sensitive biaxial sensing capability is as follows. When stretched horizontally from 0 % to 30 %, the absorption frequency of the proposed biaxially stretchable MMA demonstrates a linear change from 9.75 GHz to 7.94 GHz, exhibiting a high sensitivity of 4.3 × 10^7 Hz/%. Similarly, when stretched vertically from 0 % to 30 %, the absorption frequency linearly changes from 7.35 GHz to 6.01 GHz, indicating a sensitivity of 5.9 × 10^7 Hz/%. Accordingly, the wireless biaxial sensing capability of the proposed stretchable MMA, as well as its shape-recovery functionality facilitated by the 4D-printed actuator are highly effective for remote strain measurement in environments where direct human involvement is impractical.
{"title":"Biaxially stretchable metamaterial absorber with a four-dimensional printed shape-memory actuator","authors":"Sumin Bark , Heijun Jeong , Eiyong Park , Sungjoon Lim","doi":"10.1016/j.ijmecsci.2024.109729","DOIUrl":"10.1016/j.ijmecsci.2024.109729","url":null,"abstract":"<div><p>Among the various methods for strain sensing, the metamaterial absorbers (MMAs) stand out due to their dual capabilities. Specifically, MMAs facilitate the wireless detection of deformations in the target and operate independently of any external power source. However, conventional research has a limitation in that stretchable strain sensors are unable to deform themselves autonomously, which puts constraints on being efficiently utilised in special environments where human intervention is difficult. Herein, we propose a wireless, power-independent, biaxial strain sensor equipped with self-shape and frequency recovery capability that addresses the limitations of existing wireless strain sensors through the unprecedented integration of a 4D-printed shape memory actuator and a biaxially stretchable MMA. The novel integration with the shape memory actuator enables the stretchable MMA to autonomously recover to its original shape and absorption frequency after being heated to 70 °C for a few minutes. This smart functionality enables the resulting wireless strain sensor based on the proposed idea to revert to the original state when sensing a new target without requiring human intervention. The highly sensitive biaxial sensing capability is as follows. When stretched horizontally from 0 % to 30 %, the absorption frequency of the proposed biaxially stretchable MMA demonstrates a linear change from 9.75 GHz to 7.94 GHz, exhibiting a high sensitivity of 4.3 × 10^7 Hz/%. Similarly, when stretched vertically from 0 % to 30 %, the absorption frequency linearly changes from 7.35 GHz to 6.01 GHz, indicating a sensitivity of 5.9 × 10^7 Hz/%. Accordingly, the wireless biaxial sensing capability of the proposed stretchable MMA, as well as its shape-recovery functionality facilitated by the 4D-printed actuator are highly effective for remote strain measurement in environments where direct human involvement is impractical.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"283 ","pages":"Article 109729"},"PeriodicalIF":7.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.ijmecsci.2024.109715
Zhibin Guo , Jihong Yan , Liyong Cao , Huazhi Chen , Jie Zhao
Moving components exposed to electron radiation over longer durations are more prone to failure due to its complex changes from material properties to component characteristics. It involves multi-scale analysis, leading to current methods being deficient in accuracy and efficiency. In this paper, a cross-level vibration prediction method, which selects the ultrasonic motor (USM) stator as a typical component for Jupiter exploration, is proposed by incorporating the cross-scale changes of material properties based on the edge-based smoothed finite element method (ES-FEM). A cross-scale degradation model for exploring the material properties is constructed by establishing the correlation between the degradation of molecular chains and the mechanical properties of the epoxy resin. The ES-FEM is developed for investigating the vibration of the USM stator, by introducing the edge-based gradient smoothing technique (GST) to perform the strain smoothing operation in its stiffness matrix, offering superior accuracy and efficiency. The experiment of 1.2 MeV electron radiation under different electron fluences was carried out. It demonstrated that the present method can achieve higher accuracy and efficiency than the traditional one, while being closed to the experimental results with the frequency and amplitude errors of 0.03 % and 1.3 %, respectively.
{"title":"A cross-level vibration prediction of USM stator under electron radiation","authors":"Zhibin Guo , Jihong Yan , Liyong Cao , Huazhi Chen , Jie Zhao","doi":"10.1016/j.ijmecsci.2024.109715","DOIUrl":"10.1016/j.ijmecsci.2024.109715","url":null,"abstract":"<div><p>Moving components exposed to electron radiation over longer durations are more prone to failure due to its complex changes from material properties to component characteristics. It involves multi-scale analysis, leading to current methods being deficient in accuracy and efficiency. In this paper, a cross-level vibration prediction method, which selects the ultrasonic motor (USM) stator as a typical component for Jupiter exploration, is proposed by incorporating the cross-scale changes of material properties based on the edge-based smoothed finite element method (ES-FEM). A cross-scale degradation model for exploring the material properties is constructed by establishing the correlation between the degradation of molecular chains and the mechanical properties of the epoxy resin. The ES-FEM is developed for investigating the vibration of the USM stator, by introducing the edge-based gradient smoothing technique (GST) to perform the strain smoothing operation in its stiffness matrix, offering superior accuracy and efficiency. The experiment of 1.2 MeV electron radiation under different electron fluences was carried out. It demonstrated that the present method can achieve higher accuracy and efficiency than the traditional one, while being closed to the experimental results with the frequency and amplitude errors of 0.03 % and 1.3 %, respectively.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109715"},"PeriodicalIF":7.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.ijmecsci.2024.109726
Tie Mei, Fei Wang, C.Q. Chen
Rigid foldable origami enables smooth and precise folding without stretching or bending its constituent panels and is promising for applications such as reprogrammable matter, self-folding machines, reconfigurable antennas, and deployable spacecraft. The diverse range of potential applications necessitates the need for the design and detailed analysis of different rigid-foldable origami structures, especially those with intricate motion modes. In this paper, we introduce a rigid-foldable spiral origami design that features a compression-torsion coupled motion mode. This design exhibits rich static and dynamic properties. Under static conditions, the compression-torsion coupled motion mode creates multiple self-locking positions and allows for the development of mechanical static diodes. Under dynamic conditions, the compression-torsion coupling effect in the spiral origami facilitates precise control of wave modes within the origami chain when impacted by a ball with a moderate initial velocity. In the case of large initial velocities of the ball, the spiral origami can function as a wave generator, producing rarefaction solitary waves or compressive solitary waves. The proposed spiral origami design provides an opportunity to explore new applications of rigid-foldable origami with compression-torsion coupling effects.
{"title":"Rigid-foldable spiral origami with compression-torsion coupled motion mode","authors":"Tie Mei, Fei Wang, C.Q. Chen","doi":"10.1016/j.ijmecsci.2024.109726","DOIUrl":"10.1016/j.ijmecsci.2024.109726","url":null,"abstract":"<div><p>Rigid foldable origami enables smooth and precise folding without stretching or bending its constituent panels and is promising for applications such as reprogrammable matter, self-folding machines, reconfigurable antennas, and deployable spacecraft. The diverse range of potential applications necessitates the need for the design and detailed analysis of different rigid-foldable origami structures, especially those with intricate motion modes. In this paper, we introduce a rigid-foldable spiral origami design that features a compression-torsion coupled motion mode. This design exhibits rich static and dynamic properties. Under static conditions, the compression-torsion coupled motion mode creates multiple self-locking positions and allows for the development of mechanical static diodes. Under dynamic conditions, the compression-torsion coupling effect in the spiral origami facilitates precise control of wave modes within the origami chain when impacted by a ball with a moderate initial velocity. In the case of large initial velocities of the ball, the spiral origami can function as a wave generator, producing rarefaction solitary waves or compressive solitary waves. The proposed spiral origami design provides an opportunity to explore new applications of rigid-foldable origami with compression-torsion coupling effects.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"283 ","pages":"Article 109726"},"PeriodicalIF":7.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.ijmecsci.2024.109723
Shengnan Lyu, Jun Luo, Yibo Dou, Xujiang Chao, Lehua Qi
In tin-droplet laser-produced plasma sources, uniform droplet streams with large droplet spacing are desired to minimize the interference of explosion on neighboring droplets. Such droplet streams can be generated in low wavenumber regimes. However, satellite droplets easily appear among main droplets in those regimes, resulting in plenty of undesirable debris. Herein, a novel odd harmonic superposition perturbation method is proposed to eliminate satellite droplets and enhance droplet spacing of uniform droplet streams. The superposition number (N) and the phase difference (θ) of odd harmonic perturbations are adjusted to facilitate the coalescence of satellite droplets with main droplets. First, the superposed odd-order harmonic components could induce additional disturbance growth in jet surfaces, and finally lead to the asymmetric necking on filaments formed between two adjacent main droplets, featured as various carrot-shaped configurations. This asymmetric necking will cause unbalanced surface tension forces at the two sides of filaments, resulting in a velocity difference between satellite and main droplets. Based on this principle, by setting N and k to 3 and 0.2, respectively, satellite droplets positioned above main droplets accelerate, while those below decelerate, achieving complete coalescence between main and satellite droplets. Furthermore, the phase difference is found to determine the jet breakup location and satellite droplet merging characteristics. As θ varies from 0° to 90°, the droplet size significantly decreases while the droplet spacing remains constant since the perturbation energy increases. The merge direction of satellite droplets reverses from upward to downward due to enhanced unbalanced surface tension forces and velocity differences. As θ continuously increases to 270°, the droplet size further decreases along with a slight decrease in droplet spacing. Finally, by setting N = 3 and θ = 0°, mono-disperse tin droplet streams with a mean diameter of 31.5 μm and a maximum droplet spacing-to-diameter ratio of 17.7 are successfully formed. This work presents a novel approach for eliminating satellite droplets to achieve uniform tin droplet streams with large droplet spacing without increasing the droplet diameter.
在锡液滴激光产生的等离子体源中,需要具有大液滴间距的均匀液滴流,以尽量减少爆炸对邻近液滴的干扰。这样的液滴流可以在低波长条件下产生。然而,在这种情况下,主液滴中很容易出现卫星液滴,从而产生大量不良碎片。本文提出了一种新型奇次谐波叠加扰动方法来消除卫星液滴,并增强均匀液滴流的液滴间距。通过调整奇次谐波扰动的叠加数(N)和相位差(θ)来促进卫星液滴与主液滴的凝聚。首先,叠加的奇次谐波分量会在射流表面诱发额外的扰动增长,并最终导致相邻两个主液滴之间形成的丝状物出现不对称缩颈,表现为各种胡萝卜状构型。这种不对称缩颈会导致丝状物两侧的表面张力不平衡,从而造成卫星液滴和主液滴之间的速度差。根据这一原理,将 N 和 k 分别设置为 3 和 0.2,位于主液滴上方的卫星液滴会加速,而下方的液滴会减速,从而实现主液滴和卫星液滴的完全聚合。此外,还发现相位差决定了射流破裂位置和卫星液滴合并特征。当 θ 从 0° 变化到 90° 时,液滴尺寸显著减小,而液滴间距保持不变,因为扰动能量增加了。由于不平衡表面张力和速度差的增强,卫星液滴的合并方向从向上逆转为向下。随着 θ 不断增大到 270°,液滴尺寸进一步减小,液滴间距也略有减少。最后,通过设置 N = 3 和 θ = 0°,成功形成了平均直径为 31.5 μm、最大液滴间距直径比为 17.7 的单分散锡液滴流。这项研究提出了一种消除卫星液滴的新方法,从而在不增加液滴直径的情况下实现具有大液滴间距的均匀锡液滴流。
{"title":"Elimination of satellite droplets in droplet streams by superposing harmonic perturbations","authors":"Shengnan Lyu, Jun Luo, Yibo Dou, Xujiang Chao, Lehua Qi","doi":"10.1016/j.ijmecsci.2024.109723","DOIUrl":"10.1016/j.ijmecsci.2024.109723","url":null,"abstract":"<div><div>In tin-droplet laser-produced plasma sources, uniform droplet streams with large droplet spacing are desired to minimize the interference of explosion on neighboring droplets. Such droplet streams can be generated in low wavenumber regimes. However, satellite droplets easily appear among main droplets in those regimes, resulting in plenty of undesirable debris. Herein, a novel odd harmonic superposition perturbation method is proposed to eliminate satellite droplets and enhance droplet spacing of uniform droplet streams. The superposition number (<em>N</em>) and the phase difference (<em>θ</em>) of odd harmonic perturbations are adjusted to facilitate the coalescence of satellite droplets with main droplets. First, the superposed odd-order harmonic components could induce additional disturbance growth in jet surfaces, and finally lead to the asymmetric necking on filaments formed between two adjacent main droplets, featured as various carrot-shaped configurations. This asymmetric necking will cause unbalanced surface tension forces at the two sides of filaments, resulting in a velocity difference between satellite and main droplets. Based on this principle, by setting <em>N</em> and <em>k</em> to 3 and 0.2, respectively, satellite droplets positioned above main droplets accelerate, while those below decelerate, achieving complete coalescence between main and satellite droplets. Furthermore, the phase difference is found to determine the jet breakup location and satellite droplet merging characteristics. As <em>θ</em> varies from 0° to 90°, the droplet size significantly decreases while the droplet spacing remains constant since the perturbation energy increases. The merge direction of satellite droplets reverses from upward to downward due to enhanced unbalanced surface tension forces and velocity differences. As <em>θ</em> continuously increases to 270°, the droplet size further decreases along with a slight decrease in droplet spacing. Finally, by setting <em>N</em> = 3 and <em>θ</em> = 0°, mono-disperse tin droplet streams with a mean diameter of 31.5 μm and a maximum droplet spacing-to-diameter ratio of 17.7 are successfully formed. This work presents a novel approach for eliminating satellite droplets to achieve uniform tin droplet streams with large droplet spacing without increasing the droplet diameter.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109723"},"PeriodicalIF":7.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.ijmecsci.2024.109716
Mengxi Zhang , Wenwei Li , Mingchao Li , Qiaoling Min , Yang Shen , Chensen Ding
Shrinkage-induced cracking significantly impacts the durability of mass concrete structures. Quantitatively evaluating drying shrinkage of concrete proves challenging due to the time-consuming experiments and overlooked microstructure changes during the hydration process. To address this concern, this study initially characterized the long-term hydration products and microstructure of low-heat Portland cement (LHPC) through microstructural experiments. Subsequently, a novel high-resolution mesoscale framework is developed to investigate the drying shrinkage with hydration kinetics. High-resolution models consist of realistic-shaped aggregates are validated by the aggregate morphology and gradation parameters of core sample from mass concrete. Concurrently, the quantitative effects of internal and external factors on LHPC drying shrinkage are explored. Results indicated that LHPC possesses a denser microstructure, lower porosity, higher carbonation resistance, and 20% lower drying shrinkage compared to moderate-heat Portland cement, suggesting promising applications. Furthermore, experimental and computational findings suggested that increasing aggregate volume, controlling aggregate morphology, and adjusting curing time and humidity could be employed to reduce and manage drying shrinkage, ensuring concrete structure durability.
{"title":"Mesoscopic simulation of concrete drying shrinkage with hydration kinetics","authors":"Mengxi Zhang , Wenwei Li , Mingchao Li , Qiaoling Min , Yang Shen , Chensen Ding","doi":"10.1016/j.ijmecsci.2024.109716","DOIUrl":"10.1016/j.ijmecsci.2024.109716","url":null,"abstract":"<div><p>Shrinkage-induced cracking significantly impacts the durability of mass concrete structures. Quantitatively evaluating drying shrinkage of concrete proves challenging due to the time-consuming experiments and overlooked microstructure changes during the hydration process. To address this concern, this study initially characterized the long-term hydration products and microstructure of low-heat Portland cement (LHPC) through microstructural experiments. Subsequently, a novel high-resolution mesoscale framework is developed to investigate the drying shrinkage with hydration kinetics. High-resolution models consist of realistic-shaped aggregates are validated by the aggregate morphology and gradation parameters of core sample from mass concrete. Concurrently, the quantitative effects of internal and external factors on LHPC drying shrinkage are explored. Results indicated that LHPC possesses a denser microstructure, lower porosity, higher carbonation resistance, and 20% lower drying shrinkage compared to moderate-heat Portland cement, suggesting promising applications. Furthermore, experimental and computational findings suggested that increasing aggregate volume, controlling aggregate morphology, and adjusting curing time and humidity could be employed to reduce and manage drying shrinkage, ensuring concrete structure durability.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"283 ","pages":"Article 109716"},"PeriodicalIF":7.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}