首页 > 最新文献

International Journal of Computational Fluid Dynamics最新文献

英文 中文
Verification of a Pressure-Based Compressible Flow Solver 基于压力的可压缩流动求解器的验证
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2023-01-02 DOI: 10.1080/10618562.2023.2242271
J. Muralha, L. Eça, C. Klaij
This paper presents Solution Verification exercises with the pressure-based compressible flow solver ReFRESCO for five test cases available in the NASA Turbulence Modeling Resource: the two-dimensional flows over a flat plate, a bump-in-channel, a DSMA661 airfoil and a multi-element airfoil and the three-dimensional flow of a bump-in-channel. Simulations are performed with the Favre-averaged continuity and Navier-Stokes equations using the Spalart & Allmaras turbulence model. ReFRESCO results are compared with reference data from density-based compressible flow solvers (CFL3D and FUN3D). two aspects of the implementation of the turbulence model are addressed: the calculation of the distance to the wall and the discretization scheme used in the convective terms of the turbulence model transport equation. Results of this study show perfect consistency with the reference data for the test cases that are not affected by the determination of the distance to the wall.
本文介绍了基于压力的可压缩流动求解器ReFRESCO的解决方案验证练习,用于NASA湍流建模资源中提供的五个测试用例:平面板,通道内碰撞,DSMA661翼型和多单元翼型的二维流动以及通道内碰撞的三维流动。利用Spalart & Allmaras湍流模型,采用favre平均连续性和Navier-Stokes方程进行了模拟。ReFRESCO的结果与基于密度的可压缩流动求解器(CFL3D和FUN3D)的参考数据进行了比较。讨论了紊流模型实现的两个方面:到壁面距离的计算和紊流模型输运方程对流项中使用的离散化方案。研究结果与参考数据完全一致,测试用例不受离墙距离确定的影响。
{"title":"Verification of a Pressure-Based Compressible Flow Solver","authors":"J. Muralha, L. Eça, C. Klaij","doi":"10.1080/10618562.2023.2242271","DOIUrl":"https://doi.org/10.1080/10618562.2023.2242271","url":null,"abstract":"This paper presents Solution Verification exercises with the pressure-based compressible flow solver ReFRESCO for five test cases available in the NASA Turbulence Modeling Resource: the two-dimensional flows over a flat plate, a bump-in-channel, a DSMA661 airfoil and a multi-element airfoil and the three-dimensional flow of a bump-in-channel. Simulations are performed with the Favre-averaged continuity and Navier-Stokes equations using the Spalart & Allmaras turbulence model. ReFRESCO results are compared with reference data from density-based compressible flow solvers (CFL3D and FUN3D). two aspects of the implementation of the turbulence model are addressed: the calculation of the distance to the wall and the discretization scheme used in the convective terms of the turbulence model transport equation. Results of this study show perfect consistency with the reference data for the test cases that are not affected by the determination of the distance to the wall.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81391573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the Downstream Vehicle Length on Train Aerodynamics Subjected to Crosswind 侧风作用下下游车辆长度对列车空气动力学的影响
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2022-12-31 DOI: 10.36959/717/661
Zhuang Tianci, Li Wenhui, Liu Tanghong
{"title":"Influence of the Downstream Vehicle Length on Train Aerodynamics Subjected to Crosswind","authors":"Zhuang Tianci, Li Wenhui, Liu Tanghong","doi":"10.36959/717/661","DOIUrl":"https://doi.org/10.36959/717/661","url":null,"abstract":"","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80753220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Radiation, Chemical Reaction and Viscous Dissipation Effects on MHD Mixed Convection Flow of Micro Polar Fluid with Stretching Surface in the Presence of Heat Generation/Absorption 热辐射、化学反应和粘滞耗散对生热/吸热条件下具有拉伸表面的微极流体MHD混合对流的影响
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2022-12-31 DOI: 10.36959/717/662
Zigta Binyam
{"title":"Thermal Radiation, Chemical Reaction and Viscous Dissipation Effects on MHD Mixed Convection Flow of Micro Polar Fluid with Stretching Surface in the Presence of Heat Generation/Absorption","authors":"Zigta Binyam","doi":"10.36959/717/662","DOIUrl":"https://doi.org/10.36959/717/662","url":null,"abstract":"","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84918205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape Optimization and Flow Analysis of Supersonic Nozzles Using Deep Learning 基于深度学习的超声速喷管形状优化与流动分析
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2022-11-26 DOI: 10.1080/10618562.2023.2225416
Aref Zanjani, A. Tahsini, Kimia Sadafi, Fatemeh Ghavidel Mangodeh
Shape optimisation of supersonic nozzles is of crucial importance in designing propulsion systems and space thrusters. In order to optimise the profile of a supersonic nozzle, the properties of the flow inside the nozzle should be obtained. This paper proposes and verifies a new methodology for analysing flows and designing supersonic nozzles. Flow analysis has been conducted using the method of characteristics, Ansys Fluent and convolutional neural networks. It is shown that deep convolutional neural networks can reach high levels of accuracy in predicting supersonic flow behaviour inside the nozzle. Also, shape optimisation of the supersonic nozzle has been conducted using the genetic algorithm in Ansys Fluent and artificial neural networks. The proposed ANN can optimise the shape of a supersonic nozzle for the given throat diameter, outlet diameter and nozzle length with high accuracy.
超音速喷管的形状优化在推进系统和空间推力器设计中具有重要意义。为了优化超声速喷管的型面,必须了解喷管内部的流动特性。本文提出并验证了一种超声速喷管流动分析和设计的新方法。采用特征分析方法、Ansys Fluent和卷积神经网络进行了流动分析。研究表明,深度卷积神经网络在预测喷管内部超声速流动行为方面具有较高的精度。利用Ansys Fluent中的遗传算法和人工神经网络对超声速喷管进行了形状优化。所提出的人工神经网络可以在给定喉道直径、出口直径和喷嘴长度的情况下对超音速喷嘴形状进行高精度优化。
{"title":"Shape Optimization and Flow Analysis of Supersonic Nozzles Using Deep Learning","authors":"Aref Zanjani, A. Tahsini, Kimia Sadafi, Fatemeh Ghavidel Mangodeh","doi":"10.1080/10618562.2023.2225416","DOIUrl":"https://doi.org/10.1080/10618562.2023.2225416","url":null,"abstract":"Shape optimisation of supersonic nozzles is of crucial importance in designing propulsion systems and space thrusters. In order to optimise the profile of a supersonic nozzle, the properties of the flow inside the nozzle should be obtained. This paper proposes and verifies a new methodology for analysing flows and designing supersonic nozzles. Flow analysis has been conducted using the method of characteristics, Ansys Fluent and convolutional neural networks. It is shown that deep convolutional neural networks can reach high levels of accuracy in predicting supersonic flow behaviour inside the nozzle. Also, shape optimisation of the supersonic nozzle has been conducted using the genetic algorithm in Ansys Fluent and artificial neural networks. The proposed ANN can optimise the shape of a supersonic nozzle for the given throat diameter, outlet diameter and nozzle length with high accuracy.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87690820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Finite Element Numerical Simulation of Local Scour of a Three-Dimensional Cylinder under Steady Flow 定常流动条件下三维圆柱局部冲刷的有限元数值模拟
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2022-11-26 DOI: 10.1080/10618562.2023.2221645
Dawei Peng, Lanhao Zhao, Chuanyuan Zhou, Jia Mao
Pile safety has received increasing attention in marine engineering, especially in the field of local scour. In this paper, a finite element numerical model is established for local scour around a cylinder in steady currents. The flow is described by unsteady Reynolds–averaged Navier–Stokes equations with a traditional turbulent closure model. The proposed scour model takes bed load into account. The Exner equation is solved to determine the bed variation and the moving mesh approach is used to capture the evolution of the bed. When the resulting slope exceeds the angle of repose, a novel sand-slide model based on Rodrigues' rotation formula is used to prevent simulation distortion. All the equations are discretized by the two-step Taylor–Galerkin algorithm, and the resulting approach is fast to implement with second-order accuracy in space. The numerical results are found to be in good agreement with the experimental data.
桩的安全问题在海洋工程领域,尤其是局部冲刷领域受到越来越多的关注。本文建立了稳定流条件下圆柱局部冲刷的有限元数值模型。用非定常reynolds - average Navier-Stokes方程和传统的湍流闭包模型来描述流动。提出的冲刷模型考虑了河床荷载。通过求解Exner方程确定床层的变化,采用移动网格法捕捉床层的演变。当产生的坡度超过休止角时,采用基于Rodrigues旋转公式的新型滑坡模型来防止模拟失真。采用两步Taylor-Galerkin算法对所有方程进行离散化,得到的方法在空间上具有二阶精度,实现速度快。数值计算结果与实验数据吻合较好。
{"title":"Finite Element Numerical Simulation of Local Scour of a Three-Dimensional Cylinder under Steady Flow","authors":"Dawei Peng, Lanhao Zhao, Chuanyuan Zhou, Jia Mao","doi":"10.1080/10618562.2023.2221645","DOIUrl":"https://doi.org/10.1080/10618562.2023.2221645","url":null,"abstract":"Pile safety has received increasing attention in marine engineering, especially in the field of local scour. In this paper, a finite element numerical model is established for local scour around a cylinder in steady currents. The flow is described by unsteady Reynolds–averaged Navier–Stokes equations with a traditional turbulent closure model. The proposed scour model takes bed load into account. The Exner equation is solved to determine the bed variation and the moving mesh approach is used to capture the evolution of the bed. When the resulting slope exceeds the angle of repose, a novel sand-slide model based on Rodrigues' rotation formula is used to prevent simulation distortion. All the equations are discretized by the two-step Taylor–Galerkin algorithm, and the resulting approach is fast to implement with second-order accuracy in space. The numerical results are found to be in good agreement with the experimental data.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75219110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Third-Order Finite Difference WENO Scheme to Improve Convergence Rate at Critical Points 一种提高临界点收敛速度的三阶有限差分WENO新格式
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2022-11-26 DOI: 10.1080/10618562.2023.2237898
Xiaogang Li, Tian Xia, Yuxi Deng, Siqi Yang, Yonbin Ge
In this work, a new, improved third-order finite difference weighted essentially non-oscillatory scheme is presented for one- and two-dimensional hyperbolic conservation laws and associated problems. The parameter p which is regulate dissipation is introduced in the nonlinear weights in the framework of the conventional WENO-Z scheme, and the higher-order global smoothness indicator is obtained by the idea of Wang [Wang, Y. H., Y. L. Du, K. L. Zhao and L. Yuan. 2020. ‘A Low-dissipation Third-order Weighted Essentially Nonoscillatory Scheme with a New Reference Smoothness Indicator’. International Journal for Numerical Methods in Fluids. 92 (9): 1212–1234.], the sufficient condition of nonlinear weights is proved by using Taylor expansions. Finally, the value range of parameter p is obtained. The proposed scheme is verified to achieve the optimal order near critical points by linear convection equations with different initial values, and the high-resolution characteristic of the present scheme is proved on a variety of one- and two- dimensional standard numerical examples. Numerical results demonstrate that the proposed scheme gives better performance in comparison with the other third-order WENO schemes.
在这项工作中,提出了一种新的改进的三阶有限差分加权本质非振荡格式,用于一维和二维双曲守恒律和相关问题。在传统WENO-Z格式框架的非线性权值中引入了调节耗散参数p,并采用Wang的思想得到了高阶全局平滑指标[j] . Wang, yyh ., Du yl ., Zhao kl ., Yuan L. 2020。一种具有新的参考平滑指标的低耗散三阶加权基本非振荡格式。流体力学与工程学报,2009(9):1212-1234。],用泰勒展开式证明了非线性权值存在的充分条件。最后得到参数p的取值范围。通过不同初值的线性对流方程,验证了该格式在临界点附近的最优阶,并在各种一维和二维标准数值算例上证明了该格式的高分辨率特性。数值结果表明,与其他三阶WENO算法相比,该算法具有更好的性能。
{"title":"A New Third-Order Finite Difference WENO Scheme to Improve Convergence Rate at Critical Points","authors":"Xiaogang Li, Tian Xia, Yuxi Deng, Siqi Yang, Yonbin Ge","doi":"10.1080/10618562.2023.2237898","DOIUrl":"https://doi.org/10.1080/10618562.2023.2237898","url":null,"abstract":"In this work, a new, improved third-order finite difference weighted essentially non-oscillatory scheme is presented for one- and two-dimensional hyperbolic conservation laws and associated problems. The parameter p which is regulate dissipation is introduced in the nonlinear weights in the framework of the conventional WENO-Z scheme, and the higher-order global smoothness indicator is obtained by the idea of Wang [Wang, Y. H., Y. L. Du, K. L. Zhao and L. Yuan. 2020. ‘A Low-dissipation Third-order Weighted Essentially Nonoscillatory Scheme with a New Reference Smoothness Indicator’. International Journal for Numerical Methods in Fluids. 92 (9): 1212–1234.], the sufficient condition of nonlinear weights is proved by using Taylor expansions. Finally, the value range of parameter p is obtained. The proposed scheme is verified to achieve the optimal order near critical points by linear convection equations with different initial values, and the high-resolution characteristic of the present scheme is proved on a variety of one- and two- dimensional standard numerical examples. Numerical results demonstrate that the proposed scheme gives better performance in comparison with the other third-order WENO schemes.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80247655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parallel Computation Using Non-Overlapping Domain Decomposition Coupled with Compact Local Integrated RBF for Navier–Stokes Equations Navier-Stokes方程的非重叠区域分解与紧致局部积分RBF并行计算
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2022-11-26 DOI: 10.1080/10618562.2023.2229250
N. Pham-Sy, C. Tran
A non-overlapping domain decomposition-based parallel algorithm coupled with a compact local integrated radial basis function (CLIRBF) method is developed for solving Navier-Stokes equations. For this approach, a problem is divided into subdomains. In each sub-domain, a CLIRBF scheme is applied to solve the Navier-Stokes equations of flows. A relaxation factor is used at the interface between sub-domains to ensure the quick convergence of the present method. The Bitmap termination detection technique is introduced to complete the global termination. The present approach is verified using two fluid flow problems: the lid-driven cavity and the natural convection in concentric annuli flow. The numerical results have demonstrated the efficiency of the present parallel method compared with the corresponding sequential one and other published methods. Especially, super-linear speed-up was achieved for several CPUs. In terms of accuracy, the obtained results are in very good agreement with benchmark results.
提出了一种基于无重叠域分解的并行算法与紧凑局部积分径向基函数(CLIRBF)相结合的求解Navier-Stokes方程的方法。对于这种方法,将一个问题划分为子域。在每个子域中,采用CLIRBF格式求解流的Navier-Stokes方程。在子域之间的界面处加入松弛因子,保证了该方法的快速收敛。引入位图终端检测技术,完成全局终端检测。用两个流体流动问题进行了验证:盖驱动腔和同心环空流动中的自然对流。数值结果表明,与相应的顺序方法和其他已发表的方法相比,该方法是有效的。特别是在多个cpu上实现了超线性加速。在精度方面,所得结果与基准结果非常吻合。
{"title":"Parallel Computation Using Non-Overlapping Domain Decomposition Coupled with Compact Local Integrated RBF for Navier–Stokes Equations","authors":"N. Pham-Sy, C. Tran","doi":"10.1080/10618562.2023.2229250","DOIUrl":"https://doi.org/10.1080/10618562.2023.2229250","url":null,"abstract":"A non-overlapping domain decomposition-based parallel algorithm coupled with a compact local integrated radial basis function (CLIRBF) method is developed for solving Navier-Stokes equations. For this approach, a problem is divided into subdomains. In each sub-domain, a CLIRBF scheme is applied to solve the Navier-Stokes equations of flows. A relaxation factor is used at the interface between sub-domains to ensure the quick convergence of the present method. The Bitmap termination detection technique is introduced to complete the global termination. The present approach is verified using two fluid flow problems: the lid-driven cavity and the natural convection in concentric annuli flow. The numerical results have demonstrated the efficiency of the present parallel method compared with the corresponding sequential one and other published methods. Especially, super-linear speed-up was achieved for several CPUs. In terms of accuracy, the obtained results are in very good agreement with benchmark results.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91306707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Gas-Kinetic Scheme for Continuum and Near-Continuum Flow on Unstructured Mesh 连续和近连续流动气体动力学格式在非结构网格上的应用
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2022-10-21 DOI: 10.1080/10618562.2023.2189704
G. Zhao, Chengwen Zhong, Sha Liu, Yong Wang, Congshan Zhuo
A gas-kinetic scheme (GKS) with kinetic boundary condition based on unstructured mesh is present here. In the GKS method, the solid wall boundary conditions can be constructed by virtue of the gas distribution function, which is similar to the diffuse-scattering rule used in the other kinetic schemes. The kinetic boundary condition has a concise form and easy to implement. The use of unstructured mesh expands the adaptability of GKS to simulate the flows with complex geometry. The kinetic boundary condition can recover to the non-slip boundary condition in the continuum regime. In the slip regime, the slip velocity can be accurately predicted by kinetic boundary condition, which turns into the slip boundary condition. The use of kinetic boundary condition improves the calculation results of GKS in near-continuum flow. A series of test cases, from incompressible to compressible flow with a wide range of Knudsen number, are investigated to demonstrate the performance of kinetic boundary condition in near-continuum flow, which can provide a reference for the construction and optimisation for GKS-based multi-scale hybrid algorithms.
本文提出了一种基于非结构网格的带有动力学边界条件的气体动力学格式。在GKS方法中,可以利用气体分布函数来构造固壁边界条件,这与其他动力学格式中使用的扩散-散射规则类似。该动力学边界条件形式简洁,易于实现。非结构化网格的使用扩大了GKS对复杂几何流场模拟的适应性。在连续介质状态下,动力学边界条件可以恢复到无滑移边界条件。在滑移区,滑移速度可由动力学边界条件精确预测,由动力学边界条件转化为滑移边界条件。动力学边界条件的使用改善了近连续流中GKS的计算结果。研究了从不可压缩流到大范围Knudsen数可压缩流的一系列测试用例,验证了近连续流中动力学边界条件的性能,为基于gks的多尺度混合算法的构建和优化提供了参考。
{"title":"Application of Gas-Kinetic Scheme for Continuum and Near-Continuum Flow on Unstructured Mesh","authors":"G. Zhao, Chengwen Zhong, Sha Liu, Yong Wang, Congshan Zhuo","doi":"10.1080/10618562.2023.2189704","DOIUrl":"https://doi.org/10.1080/10618562.2023.2189704","url":null,"abstract":"A gas-kinetic scheme (GKS) with kinetic boundary condition based on unstructured mesh is present here. In the GKS method, the solid wall boundary conditions can be constructed by virtue of the gas distribution function, which is similar to the diffuse-scattering rule used in the other kinetic schemes. The kinetic boundary condition has a concise form and easy to implement. The use of unstructured mesh expands the adaptability of GKS to simulate the flows with complex geometry. The kinetic boundary condition can recover to the non-slip boundary condition in the continuum regime. In the slip regime, the slip velocity can be accurately predicted by kinetic boundary condition, which turns into the slip boundary condition. The use of kinetic boundary condition improves the calculation results of GKS in near-continuum flow. A series of test cases, from incompressible to compressible flow with a wide range of Knudsen number, are investigated to demonstrate the performance of kinetic boundary condition in near-continuum flow, which can provide a reference for the construction and optimisation for GKS-based multi-scale hybrid algorithms.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76193943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Study of Compressible Wall-Bounded Turbulence – the Effect of Thermal Wall Conditions on the Turbulent Prandtl Number in the Low-Supersonic Regime 可压缩壁面湍流的数值研究——低超音速条件下热壁条件对湍流普朗特数的影响
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2022-10-21 DOI: 10.1080/10618562.2023.2189247
D. J. Lusher, G. Coleman
ABSTRACT Direct numerical simulation is used to determine the turbulent Prandtl number above cold (isothermal) and hot (adiabatic) walls in a family of low-supersonic channel flows. A range of mean temperature/density variations, corresponding to effective/edge Mach numbers between 1.1 to 2.2, and wall-variable-based Reynolds number from 73 to 3800, is considered. The adiabatic condition is a new feature of special interest. The value of away from the wall approaches 0.85 above both the isothermal and adiabatic walls. The variations of the near-wall profiles in both the present and previous, passive-scalar simulations collapse as a function of the semilocal wall scaling proposed in 1995 by [Huang, P. G., G. N. Coleman, and P. Bradshaw. 1995. “Compressible Turbulent Channel Flows: DNS Results and Modelling.” Journal of Fluid Mechanics 305: 185–218. doi:10.1017/S0022112095004599.], with only a weak dependence on . This leads to a rather simple proposal for a model of heat transfer, attached to an eddy-viscosity model.
摘要采用直接数值模拟方法确定了一类低声速通道中冷(等温)壁面和热(绝热)壁面上的湍流普朗特数。考虑了一个平均温度/密度变化范围,对应于有效/边缘马赫数在1.1到2.2之间,基于壁面变量的雷诺数在73到3800之间。绝热条件是一个特别有趣的新特征。在等温壁面和绝热壁面以上,离壁面的差值均接近0.85。[Huang, P. G. Coleman, and P. Bradshaw. 1995]在1995年提出的被动标量模拟中,近壁面剖面的变化作为半局部壁面结垢的函数而崩溃。可压缩湍流通道流动:DNS结果和建模。流体力学学报(自然科学版);doi: 10.1017 / S0022112095004599。对…只有微弱的依赖。这导致了一个相当简单的传热模型的提议,附属于涡流粘度模型。
{"title":"Numerical Study of Compressible Wall-Bounded Turbulence – the Effect of Thermal Wall Conditions on the Turbulent Prandtl Number in the Low-Supersonic Regime","authors":"D. J. Lusher, G. Coleman","doi":"10.1080/10618562.2023.2189247","DOIUrl":"https://doi.org/10.1080/10618562.2023.2189247","url":null,"abstract":"ABSTRACT Direct numerical simulation is used to determine the turbulent Prandtl number above cold (isothermal) and hot (adiabatic) walls in a family of low-supersonic channel flows. A range of mean temperature/density variations, corresponding to effective/edge Mach numbers between 1.1 to 2.2, and wall-variable-based Reynolds number from 73 to 3800, is considered. The adiabatic condition is a new feature of special interest. The value of away from the wall approaches 0.85 above both the isothermal and adiabatic walls. The variations of the near-wall profiles in both the present and previous, passive-scalar simulations collapse as a function of the semilocal wall scaling proposed in 1995 by [Huang, P. G., G. N. Coleman, and P. Bradshaw. 1995. “Compressible Turbulent Channel Flows: DNS Results and Modelling.” Journal of Fluid Mechanics 305: 185–218. doi:10.1017/S0022112095004599.], with only a weak dependence on . This leads to a rather simple proposal for a model of heat transfer, attached to an eddy-viscosity model.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88663788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Momentum-Conserving Weakly Compressible Navier–Stokes Solver for Simulation of Violent Two-Phase Flows with High Density Ratio 一种动量守恒的弱可压缩Navier-Stokes求解器用于模拟高密度比强两相流
IF 1.3 4区 工程技术 Q2 Engineering Pub Date : 2022-10-21 DOI: 10.1080/10618562.2023.2202391
Kai Yang, T. Aoki
A consistent and conservative formulation for mass and momentum transport is proposed in the context of simulating incompressible two-phase flows by using weakly compressible method. Combined with the evolving pressure projection method to prevent oscillation of the solution induced by the acoustic wave, this solver aims at a robust and accurate computation of violent two-phase flows with a high density ratio, while taking advantage of fully explicit time integration of the weakly compressible Navier–Stokes equations. Coupled with the volume of fluid method for capturing interfaces, the mass and momentum fluxes are evaluated in a consistent manner using the finite volume method. In addition, a special implementation of the pressure projection is devised to avoid velocity-pressure decoupling on a collocated grid. The solver's accuracy and stability are demonstrated through various two-phase flow simulations, including dam break and liquid jet atomization scenarios, emphasizing its momentum-conserving properties.
在用弱可压缩方法模拟不可压缩两相流的情况下,提出了质量和动量输运的一致保守公式。该求解器利用弱可压缩Navier-Stokes方程的完全显式时间积分,结合压力投影演化法防止了声波引起的解振荡,旨在对高密度比的剧烈两相流进行鲁棒和精确的计算。结合流体体积法捕获界面,采用有限体积法以一致的方式计算质量和动量通量。此外,还设计了一种特殊的压力投影实现,以避免并行网格上的速度-压力解耦。通过各种两相流模拟,包括溃坝和液体射流雾化场景,验证了该求解器的准确性和稳定性,并强调了其动量守恒特性。
{"title":"A Momentum-Conserving Weakly Compressible Navier–Stokes Solver for Simulation of Violent Two-Phase Flows with High Density Ratio","authors":"Kai Yang, T. Aoki","doi":"10.1080/10618562.2023.2202391","DOIUrl":"https://doi.org/10.1080/10618562.2023.2202391","url":null,"abstract":"A consistent and conservative formulation for mass and momentum transport is proposed in the context of simulating incompressible two-phase flows by using weakly compressible method. Combined with the evolving pressure projection method to prevent oscillation of the solution induced by the acoustic wave, this solver aims at a robust and accurate computation of violent two-phase flows with a high density ratio, while taking advantage of fully explicit time integration of the weakly compressible Navier–Stokes equations. Coupled with the volume of fluid method for capturing interfaces, the mass and momentum fluxes are evaluated in a consistent manner using the finite volume method. In addition, a special implementation of the pressure projection is devised to avoid velocity-pressure decoupling on a collocated grid. The solver's accuracy and stability are demonstrated through various two-phase flow simulations, including dam break and liquid jet atomization scenarios, emphasizing its momentum-conserving properties.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88643613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Computational Fluid Dynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1