首页 > 最新文献

Journal of Agricultural Biological and Environmental Statistics最新文献

英文 中文
Regularised Semi-parametric Composite Likelihood Intensity Modelling of a Swedish Spatial Ambulance Call Point Pattern 瑞典空间救护车呼叫点模式的正则化半参数复合似然强度建模
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-04-15 DOI: 10.1007/s13253-023-00534-5
Fekadu L. Bayisa, M. Ådahl, Patrik Rydén, O. Cronie
{"title":"Regularised Semi-parametric Composite Likelihood Intensity Modelling of a Swedish Spatial Ambulance Call Point Pattern","authors":"Fekadu L. Bayisa, M. Ådahl, Patrik Rydén, O. Cronie","doi":"10.1007/s13253-023-00534-5","DOIUrl":"https://doi.org/10.1007/s13253-023-00534-5","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"34 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75424815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimation and Clustering of Directional Wave Spectra 方向波谱的估计与聚类
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-04-13 DOI: 10.1007/s13253-023-00543-4
Zihao Wu, Carolina Euán, R. Crujeiras, Yinge Sun
{"title":"Estimation and Clustering of Directional Wave Spectra","authors":"Zihao Wu, Carolina Euán, R. Crujeiras, Yinge Sun","doi":"10.1007/s13253-023-00543-4","DOIUrl":"https://doi.org/10.1007/s13253-023-00543-4","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"11 1","pages":"502 - 525"},"PeriodicalIF":1.4,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87128558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rankıng Districts of Çanakkale in Terms of Rangeland Quality by Fuzzy MCDM Methods 利用模糊MCDM方法对Çanakkale地区的草地质量进行评价
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-04-05 DOI: 10.1007/s13253-023-00532-7
Zeynep Gökkuş, Sevil Sentürk, F. Alatürk
{"title":"Rankıng Districts of Çanakkale in Terms of Rangeland Quality by Fuzzy MCDM Methods","authors":"Zeynep Gökkuş, Sevil Sentürk, F. Alatürk","doi":"10.1007/s13253-023-00532-7","DOIUrl":"https://doi.org/10.1007/s13253-023-00532-7","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"28 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74861639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems 疾病监测系统中优先抽样校正的共享潜伏过程模型
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-04-03 DOI: 10.1007/s13253-023-00535-4
Brian Conroy, L. Waller, Ian D. Buller, Gregory M. Hacker, James R. Tucker, M. Novak
{"title":"A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems","authors":"Brian Conroy, L. Waller, Ian D. Buller, Gregory M. Hacker, James R. Tucker, M. Novak","doi":"10.1007/s13253-023-00535-4","DOIUrl":"https://doi.org/10.1007/s13253-023-00535-4","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"14 1","pages":"483 - 501"},"PeriodicalIF":1.4,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76691547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality. 估算连续误差暴露的因果暴露反应函数:细颗粒物与全因死亡率研究》。
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-03-01 Epub Date: 2022-09-11 DOI: 10.1007/s13253-022-00508-z
Kevin P Josey, Priyanka deSouza, Xiao Wu, Danielle Braun, Rachel Nethery

Numerous studies have examined the associations between long-term exposure to fine particulate matter (PM2.5) and adverse health outcomes. Recently, many of these studies have begun to employ high-resolution predicted PM2.5 concentrations, which are subject to measurement error. Previous approaches for exposure measurement error correction have either been applied in non-causal settings or have only considered a categorical exposure. Moreover, most procedures have failed to account for uncertainty induced by error correction when fitting an exposure-response function (ERF). To remedy these deficiencies, we develop a multiple imputation framework that combines regression calibration and Bayesian techniques to estimate a causal ERF. We demonstrate how the output of the measurement error correction steps can be seamlessly integrated into a Bayesian additive regression trees (BART) estimator of the causal ERF. We also demonstrate how locally-weighted smoothing of the posterior samples from BART can be used to create a more accurate ERF estimate. Our proposed approach also properly propagates the exposure measurement error uncertainty to yield accurate standard error estimates. We assess the robustness of our proposed approach in an extensive simulation study. We then apply our methodology to estimate the effects of PM2.5 on all-cause mortality among Medicare enrollees in New England from 2000-2012.

许多研究探讨了长期暴露于细颗粒物(PM2.5)与不良健康后果之间的关系。最近,其中许多研究开始采用高分辨率的 PM2.5 预测浓度,而这是受测量误差影响的。以前的暴露测量误差校正方法要么应用于非因果环境,要么只考虑分类暴露。此外,在拟合暴露-反应函数(ERF)时,大多数程序都未能考虑误差校正引起的不确定性。为了弥补这些不足,我们开发了一个多重估算框架,结合回归校准和贝叶斯技术来估算因果ERF。我们演示了如何将测量误差校正步骤的输出无缝集成到因果 ERF 的贝叶斯加性回归树(BART)估计器中。我们还演示了如何利用局部加权平滑 BART 的后验样本来创建更精确的 ERF 估计值。我们提出的方法还能正确传播暴露测量误差的不确定性,从而得出准确的标准误差估计值。我们在广泛的模拟研究中评估了我们提出的方法的稳健性。然后,我们应用我们的方法估计了 2000-2012 年 PM2.5 对新英格兰地区医疗保险参保者全因死亡率的影响。
{"title":"Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality.","authors":"Kevin P Josey, Priyanka deSouza, Xiao Wu, Danielle Braun, Rachel Nethery","doi":"10.1007/s13253-022-00508-z","DOIUrl":"10.1007/s13253-022-00508-z","url":null,"abstract":"<p><p>Numerous studies have examined the associations between long-term exposure to fine particulate matter (PM<sub>2.5</sub>) and adverse health outcomes. Recently, many of these studies have begun to employ high-resolution predicted PM<sub>2.5</sub> concentrations, which are subject to measurement error. Previous approaches for exposure measurement error correction have either been applied in non-causal settings or have only considered a categorical exposure. Moreover, most procedures have failed to account for uncertainty induced by error correction when fitting an exposure-response function (ERF). To remedy these deficiencies, we develop a multiple imputation framework that combines regression calibration and Bayesian techniques to estimate a causal ERF. We demonstrate how the output of the measurement error correction steps can be seamlessly integrated into a Bayesian additive regression trees (BART) estimator of the causal ERF. We also demonstrate how locally-weighted smoothing of the posterior samples from BART can be used to create a more accurate ERF estimate. Our proposed approach also properly propagates the exposure measurement error uncertainty to yield accurate standard error estimates. We assess the robustness of our proposed approach in an extensive simulation study. We then apply our methodology to estimate the effects of PM<sub>2.5</sub> on all-cause mortality among Medicare enrollees in New England from 2000-2012.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"28 1","pages":"20-41"},"PeriodicalIF":1.4,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9693600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusion Learning of Functional Linear Regression with Application to Genotype-by-Environment Interaction Studies 功能线性回归的融合学习及其在基因型与环境相互作用研究中的应用
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-02-06 DOI: 10.1007/s13253-023-00529-2
Shan Yu, Aaron Kusmec, Li Wang, D. Nettleton
{"title":"Fusion Learning of Functional Linear Regression with Application to Genotype-by-Environment Interaction Studies","authors":"Shan Yu, Aaron Kusmec, Li Wang, D. Nettleton","doi":"10.1007/s13253-023-00529-2","DOIUrl":"https://doi.org/10.1007/s13253-023-00529-2","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"1 1","pages":"401 - 422"},"PeriodicalIF":1.4,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90376897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations 遥感质量标记观测贝叶斯潜变量协同克里格模型
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-02-04 DOI: 10.1007/s13253-023-00530-9
B. Konomi, E. Kang, Ayat Almomani, J. Hobbs
{"title":"Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations","authors":"B. Konomi, E. Kang, Ayat Almomani, J. Hobbs","doi":"10.1007/s13253-023-00530-9","DOIUrl":"https://doi.org/10.1007/s13253-023-00530-9","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"64 1","pages":"423 - 441"},"PeriodicalIF":1.4,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74595472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Approach for Specifying Trimming and Winsorization Cutoffs 一种指定修剪和加权截止点的方法
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-01-24 DOI: 10.1007/s13253-023-00527-4
Kedai Cheng, D. S. Young
{"title":"An Approach for Specifying Trimming and Winsorization Cutoffs","authors":"Kedai Cheng, D. S. Young","doi":"10.1007/s13253-023-00527-4","DOIUrl":"https://doi.org/10.1007/s13253-023-00527-4","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"45 1","pages":"299 - 323"},"PeriodicalIF":1.4,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77473434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series. 空间相关函数时间序列的异步变更点估计。
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-01-01 DOI: 10.1007/s13253-022-00519-w
Mengchen Wang, Trevor Harris, Bo Li

We propose a new solution under the Bayesian framework to simultaneously estimate mean-based asynchronous changepoints in spatially correlated functional time series. Unlike previous methods that assume a shared changepoint at all spatial locations or ignore spatial correlation, our method treats changepoints as a spatial process. This allows our model to respect spatial heterogeneity and exploit spatial correlations to improve estimation. Our method is derived from the ubiquitous cumulative sum (CUSUM) statistic that dominates changepoint detection in functional time series. However, instead of directly searching for the maximum of the CUSUM-based processes, we build spatially correlated two-piece linear models with appropriate variance structure to locate all changepoints at once. The proposed linear model approach increases the robustness of our method to variability in the CUSUM process, which, combined with our spatial correlation model, improves changepoint estimation near the edges. We demonstrate through extensive simulation studies that our method outperforms existing functional changepoint estimators in terms of both estimation accuracy and uncertainty quantification, under either weak or strong spatial correlation, and weak or strong change signals. Finally, we demonstrate our method using a temperature data set and a coronavirus disease 2019 (COVID-19) study. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00519-w.

我们在贝叶斯框架下提出了一种新的方法来同时估计空间相关函数时间序列中基于均值的异步变化点。与之前的方法不同,我们的方法假设在所有空间位置都有一个共享的变更点,或者忽略空间相关性,我们的方法将变更点视为一个空间过程。这使得我们的模型能够尊重空间异质性并利用空间相关性来改进估计。我们的方法来源于泛在累积和(CUSUM)统计量,它在功能时间序列的变化点检测中占主导地位。然而,我们不是直接搜索基于cusum的过程的最大值,而是建立具有适当方差结构的空间相关的两件线性模型来一次定位所有的变化点。所提出的线性模型方法提高了我们的方法对CUSUM过程变异性的鲁棒性,并且与我们的空间相关模型相结合,改进了边缘附近的变化点估计。我们通过广泛的模拟研究证明,我们的方法在估计精度和不确定性量化方面都优于现有的功能变化点估计器,无论是在弱或强空间相关性下,还是在弱或强变化信号下。最后,我们使用温度数据集和2019冠状病毒病(COVID-19)研究来演示我们的方法。本文附带的补充资料出现在网上。本文的补充资料请参见10.1007/s13253-022-00519-w。
{"title":"Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series.","authors":"Mengchen Wang,&nbsp;Trevor Harris,&nbsp;Bo Li","doi":"10.1007/s13253-022-00519-w","DOIUrl":"https://doi.org/10.1007/s13253-022-00519-w","url":null,"abstract":"<p><p>We propose a new solution under the Bayesian framework to simultaneously estimate mean-based asynchronous changepoints in spatially correlated functional time series. Unlike previous methods that assume a shared changepoint at all spatial locations or ignore spatial correlation, our method treats changepoints as a spatial process. This allows our model to respect spatial heterogeneity and exploit spatial correlations to improve estimation. Our method is derived from the ubiquitous cumulative sum (CUSUM) statistic that dominates changepoint detection in functional time series. However, instead of directly searching for the maximum of the CUSUM-based processes, we build spatially correlated two-piece linear models with appropriate variance structure to locate all changepoints at once. The proposed linear model approach increases the robustness of our method to variability in the CUSUM process, which, combined with our spatial correlation model, improves changepoint estimation near the edges. We demonstrate through extensive simulation studies that our method outperforms existing functional changepoint estimators in terms of both estimation accuracy and uncertainty quantification, under either weak or strong spatial correlation, and weak or strong change signals. Finally, we demonstrate our method using a temperature data set and a coronavirus disease 2019 (COVID-19) study. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00519-w.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"28 1","pages":"157-176"},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10687024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships. 多种植物相互作用对草地生物多样性和生态系统功能关系影响的混合模型
IF 1.4 4区 数学 Q3 BIOLOGY Pub Date : 2023-01-01 DOI: 10.1007/s13253-022-00505-2
Jack McDonnell, Thomas McKenna, Kathryn A Yurkonis, Deirdre Hennessy, Rafael de Andrade Moral, Caroline Brophy

In grassland ecosystems, it is well known that increasing plant species diversity can improve ecosystem functions (i.e., ecosystem responses), for example, by increasing productivity and reducing weed invasion. Diversity-Interactions models use species proportions and their interactions as predictors in a regression framework to assess biodiversity and ecosystem function relationships. However, it can be difficult to model numerous interactions if there are many species, and interactions may be temporally variable or dependent on spatial planting patterns. We developed a new Diversity-Interactions mixed model for jointly assessing many species interactions and within-plot species planting pattern over multiple years. We model pairwise interactions using a small number of fixed parameters that incorporate spatial effects and supplement this by including all pairwise interaction variables as random effects, each constrained to have the same variance within each year. The random effects are indexed by pairs of species within plots rather than a plot-level factor as is typical in mixed models, and capture remaining variation due to pairwise species interactions parsimoniously. We apply our novel methodology to three years of weed invasion data from a 16-species grassland experiment that manipulated plant species diversity and spatial planting pattern and test its statistical properties in a simulation study.Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00505-2.

在草地生态系统中,众所周知,增加植物物种多样性可以改善生态系统功能(即生态系统响应),例如通过提高生产力和减少杂草入侵。多样性-相互作用模型在回归框架中使用物种比例及其相互作用作为预测因子来评估生物多样性和生态系统功能之间的关系。然而,如果存在许多物种,则很难建立大量相互作用的模型,并且相互作用可能在时间上是可变的或依赖于空间种植模式。我们建立了一个新的多样性-相互作用混合模型,用于联合评估多种物种相互作用和样地内物种种植模式。我们使用包含空间效应的少量固定参数对两两相互作用进行建模,并通过将所有两两相互作用变量作为随机效应进行补充,每个变量在每年都有相同的方差。随机效应以样地内的物种对为索引,而不是像混合模型那样以样地水平因子为索引,并且可以简洁地捕获由于成对物种相互作用而产生的剩余变化。本文采用该方法对16种草地的3年杂草入侵数据进行了模拟研究,并对其统计特性进行了检验。本文附带的补充资料出现在网上。本文的补充资料请参见10.1007/s13253-022-00505-2。
{"title":"A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships.","authors":"Jack McDonnell,&nbsp;Thomas McKenna,&nbsp;Kathryn A Yurkonis,&nbsp;Deirdre Hennessy,&nbsp;Rafael de Andrade Moral,&nbsp;Caroline Brophy","doi":"10.1007/s13253-022-00505-2","DOIUrl":"https://doi.org/10.1007/s13253-022-00505-2","url":null,"abstract":"<p><p>In grassland ecosystems, it is well known that increasing plant species diversity can improve ecosystem functions (i.e., ecosystem responses), for example, by increasing productivity and reducing weed invasion. Diversity-Interactions models use species proportions and their interactions as predictors in a regression framework to assess biodiversity and ecosystem function relationships. However, it can be difficult to model numerous interactions if there are many species, and interactions may be temporally variable or dependent on spatial planting patterns. We developed a new Diversity-Interactions mixed model for jointly assessing many species interactions and within-plot species planting pattern over multiple years. We model pairwise interactions using a small number of fixed parameters that incorporate spatial effects and supplement this by including all pairwise interaction variables as random effects, each constrained to have the same variance within each year. The random effects are indexed by pairs of species within plots rather than a plot-level factor as is typical in mixed models, and capture remaining variation due to pairwise species interactions parsimoniously. We apply our novel methodology to three years of weed invasion data from a 16-species grassland experiment that manipulated plant species diversity and spatial planting pattern and test its statistical properties in a simulation study.Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00505-2.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"28 1","pages":"1-19"},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10708620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Journal of Agricultural Biological and Environmental Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1