首页 > 最新文献

Journal of Agricultural Biological and Environmental Statistics最新文献

英文 中文
A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships. 多种植物相互作用对草地生物多样性和生态系统功能关系影响的混合模型
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-01-01 DOI: 10.1007/s13253-022-00505-2
Jack McDonnell, Thomas McKenna, Kathryn A Yurkonis, Deirdre Hennessy, Rafael de Andrade Moral, Caroline Brophy

In grassland ecosystems, it is well known that increasing plant species diversity can improve ecosystem functions (i.e., ecosystem responses), for example, by increasing productivity and reducing weed invasion. Diversity-Interactions models use species proportions and their interactions as predictors in a regression framework to assess biodiversity and ecosystem function relationships. However, it can be difficult to model numerous interactions if there are many species, and interactions may be temporally variable or dependent on spatial planting patterns. We developed a new Diversity-Interactions mixed model for jointly assessing many species interactions and within-plot species planting pattern over multiple years. We model pairwise interactions using a small number of fixed parameters that incorporate spatial effects and supplement this by including all pairwise interaction variables as random effects, each constrained to have the same variance within each year. The random effects are indexed by pairs of species within plots rather than a plot-level factor as is typical in mixed models, and capture remaining variation due to pairwise species interactions parsimoniously. We apply our novel methodology to three years of weed invasion data from a 16-species grassland experiment that manipulated plant species diversity and spatial planting pattern and test its statistical properties in a simulation study.Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00505-2.

在草地生态系统中,众所周知,增加植物物种多样性可以改善生态系统功能(即生态系统响应),例如通过提高生产力和减少杂草入侵。多样性-相互作用模型在回归框架中使用物种比例及其相互作用作为预测因子来评估生物多样性和生态系统功能之间的关系。然而,如果存在许多物种,则很难建立大量相互作用的模型,并且相互作用可能在时间上是可变的或依赖于空间种植模式。我们建立了一个新的多样性-相互作用混合模型,用于联合评估多种物种相互作用和样地内物种种植模式。我们使用包含空间效应的少量固定参数对两两相互作用进行建模,并通过将所有两两相互作用变量作为随机效应进行补充,每个变量在每年都有相同的方差。随机效应以样地内的物种对为索引,而不是像混合模型那样以样地水平因子为索引,并且可以简洁地捕获由于成对物种相互作用而产生的剩余变化。本文采用该方法对16种草地的3年杂草入侵数据进行了模拟研究,并对其统计特性进行了检验。本文附带的补充资料出现在网上。本文的补充资料请参见10.1007/s13253-022-00505-2。
{"title":"A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships.","authors":"Jack McDonnell,&nbsp;Thomas McKenna,&nbsp;Kathryn A Yurkonis,&nbsp;Deirdre Hennessy,&nbsp;Rafael de Andrade Moral,&nbsp;Caroline Brophy","doi":"10.1007/s13253-022-00505-2","DOIUrl":"https://doi.org/10.1007/s13253-022-00505-2","url":null,"abstract":"<p><p>In grassland ecosystems, it is well known that increasing plant species diversity can improve ecosystem functions (i.e., ecosystem responses), for example, by increasing productivity and reducing weed invasion. Diversity-Interactions models use species proportions and their interactions as predictors in a regression framework to assess biodiversity and ecosystem function relationships. However, it can be difficult to model numerous interactions if there are many species, and interactions may be temporally variable or dependent on spatial planting patterns. We developed a new Diversity-Interactions mixed model for jointly assessing many species interactions and within-plot species planting pattern over multiple years. We model pairwise interactions using a small number of fixed parameters that incorporate spatial effects and supplement this by including all pairwise interaction variables as random effects, each constrained to have the same variance within each year. The random effects are indexed by pairs of species within plots rather than a plot-level factor as is typical in mixed models, and capture remaining variation due to pairwise species interactions parsimoniously. We apply our novel methodology to three years of weed invasion data from a 16-species grassland experiment that manipulated plant species diversity and spatial planting pattern and test its statistical properties in a simulation study.Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00505-2.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10708620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Distributional Validation of Precipitation Data Products with Spatially Varying Mixture Models. 空间变化混合模型降水数据产品的分布验证。
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-01-01 DOI: 10.1007/s13253-022-00515-0
Lynsie R Warr, Matthew J Heaton, William F Christensen, Philip A White, Summer B Rupper

The high mountain regions of Asia contain more glacial ice than anywhere on the planet outside of the polar regions. Because of the large population living in the Indus watershed region who are reliant on melt from these glaciers for fresh water, understanding the factors that affect glacial melt along with the impacts of climate change on the region is important for managing these natural resources. While there are multiple climate data products (e.g., reanalysis and global climate models) available to study the impact of climate change on this region, each product will have a different amount of skill in projecting a given climate variable, such as precipitation. In this research, we develop a spatially varying mixture model to compare the distribution of precipitation in the High Mountain Asia region as produced by climate models with the corresponding distribution from in situ observations from the Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) data product. Parameter estimation is carried out via a computationally efficient Markov chain Monte Carlo algorithm. Each of the estimated climate distributions from each climate data product is then validated against APHRODITE using a spatially varying Kullback-Leibler divergence measure. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00515-0.

亚洲高山地区的冰川比地球上除极地地区以外的任何地方都要多。由于生活在印度河流域地区的大量人口依赖这些冰川融化获得淡水,因此了解影响冰川融化的因素以及气候变化对该地区的影响对于管理这些自然资源非常重要。虽然有多种气候数据产品(例如,再分析和全球气候模式)可用于研究气候变化对该地区的影响,但每种产品在预测给定气候变量(如降水)方面的技能程度不同。在这项研究中,我们建立了一个空间变化的混合模式,将气候模式产生的亚洲高山地区降水分布与亚洲降水-高分辨率观测数据整合评估(APHRODITE)数据产品现场观测的相应分布进行比较。参数估计是通过计算效率高的马尔可夫链蒙特卡罗算法进行的。然后,利用空间变化的Kullback-Leibler散度度量,根据APHRODITE对每个气候数据产品的每个估计气候分布进行验证。本文附带的补充资料出现在网上。本文的补充资料请参见10.1007/s13253-022-00515-0。
{"title":"Distributional Validation of Precipitation Data Products with Spatially Varying Mixture Models.","authors":"Lynsie R Warr,&nbsp;Matthew J Heaton,&nbsp;William F Christensen,&nbsp;Philip A White,&nbsp;Summer B Rupper","doi":"10.1007/s13253-022-00515-0","DOIUrl":"https://doi.org/10.1007/s13253-022-00515-0","url":null,"abstract":"<p><p>The high mountain regions of Asia contain more glacial ice than anywhere on the planet outside of the polar regions. Because of the large population living in the Indus watershed region who are reliant on melt from these glaciers for fresh water, understanding the factors that affect glacial melt along with the impacts of climate change on the region is important for managing these natural resources. While there are multiple climate data products (e.g., reanalysis and global climate models) available to study the impact of climate change on this region, each product will have a different amount of skill in projecting a given climate variable, such as precipitation. In this research, we develop a spatially varying mixture model to compare the distribution of precipitation in the High Mountain Asia region as produced by climate models with the corresponding distribution from in situ observations from the Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) data product. Parameter estimation is carried out via a computationally efficient Markov chain Monte Carlo algorithm. Each of the estimated climate distributions from each climate data product is then validated against APHRODITE using a spatially varying Kullback-Leibler divergence measure. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00515-0.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10705114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models. 复制计数和批量标记隐藏人口模型的计算效率和精度。
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2023-01-01 DOI: 10.1007/s13253-022-00509-y
Matthew R P Parker, Laura L E Cowen, Jiguo Cao, Lloyd T Elliott

We address two computational issues common to open-population N-mixture models, hidden integer-valued autoregressive models, and some hidden Markov models. The first issue is computation time, which can be dramatically improved through the use of a fast Fourier transform. The second issue is tractability of the model likelihood function for large numbers of hidden states, which can be solved by improving numerical stability of calculations. As an illustrative example, we detail the application of these methods to the open-population N-mixture models. We compare computational efficiency and precision between these methods and standard methods employed by state-of-the-art ecological software. We show faster computing times (a 6 to 30 times speed improvement for population size upper bounds of 500 and 1000, respectively) over state-of-the-art ecological software for N-mixture models. We also apply our methods to compute the size of a large elk population using an N-mixture model and show that while our methods converge, previous software cannot produce estimates due to numerical issues. These solutions can be applied to many ecological models to improve precision when logs of sums exist in the likelihood function and to improve computational efficiency when convolutions are present in the likelihood function. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00509-y.

我们解决了开放种群n混合模型、隐整值自回归模型和一些隐马尔可夫模型中常见的两个计算问题。第一个问题是计算时间,通过使用快速傅里叶变换可以显著改善计算时间。第二个问题是模型似然函数对于大量隐藏状态的可跟踪性,这可以通过提高计算的数值稳定性来解决。作为一个说明性的例子,我们详细介绍了这些方法在开放种群n-混合物模型中的应用。我们比较了这些方法和最先进的生态软件采用的标准方法之间的计算效率和精度。我们展示了比n -混合物模型的最先进的生态软件更快的计算时间(在种群规模上界分别为500和1000时,速度提高了~ 6到~ 30倍)。我们还应用我们的方法使用n混合模型来计算大型麋鹿种群的规模,并表明虽然我们的方法收敛,但由于数值问题,以前的软件无法产生估计。这些解决方案可以应用于许多生态模型,以提高在似然函数中存在和的对数时的精度,并提高在似然函数中存在卷积时的计算效率。本文附带的补充资料出现在网上。本文的补充资料请参见10.1007/s13253-022-00509-y。
{"title":"Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models.","authors":"Matthew R P Parker,&nbsp;Laura L E Cowen,&nbsp;Jiguo Cao,&nbsp;Lloyd T Elliott","doi":"10.1007/s13253-022-00509-y","DOIUrl":"https://doi.org/10.1007/s13253-022-00509-y","url":null,"abstract":"<p><p>We address two computational issues common to open-population <i>N</i>-mixture models, hidden integer-valued autoregressive models, and some hidden Markov models. The first issue is computation time, which can be dramatically improved through the use of a fast Fourier transform. The second issue is tractability of the model likelihood function for large numbers of hidden states, which can be solved by improving numerical stability of calculations. As an illustrative example, we detail the application of these methods to the open-population <i>N</i>-mixture models. We compare computational efficiency and precision between these methods and standard methods employed by state-of-the-art ecological software. We show faster computing times (a <math><mrow><mo>∼</mo> <mn>6</mn></mrow> </math> to <math><mrow><mo>∼</mo> <mn>30</mn></mrow> </math> times speed improvement for population size upper bounds of 500 and 1000, respectively) over state-of-the-art ecological software for <i>N</i>-mixture models. We also apply our methods to compute the size of a large elk population using an <i>N</i>-mixture model and show that while our methods converge, previous software cannot produce estimates due to numerical issues. These solutions can be applied to many ecological models to improve precision when logs of sums exist in the likelihood function and to improve computational efficiency when convolutions are present in the likelihood function. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00509-y.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9249755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality 修正:用连续易出错暴露估计因果暴露反应函数:细颗粒物和全因死亡率的研究
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2022-12-26 DOI: 10.1007/s13253-022-00526-x
K. Josey, P. deSouza, Xiao Wu, D. Braun, R. Nethery
{"title":"Correction to: Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality","authors":"K. Josey, P. deSouza, Xiao Wu, D. Braun, R. Nethery","doi":"10.1007/s13253-022-00526-x","DOIUrl":"https://doi.org/10.1007/s13253-022-00526-x","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80975314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Population Models with Temporal Preferential Sampling to Infer Phenology 用时间优先抽样来推断物候的动态种群模型
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2022-12-10 DOI: 10.1007/s13253-023-00552-3
Michael R. Schwob, M. Hooten, Travis McDevitt-Galles
{"title":"Dynamic Population Models with Temporal Preferential Sampling to Infer Phenology","authors":"Michael R. Schwob, M. Hooten, Travis McDevitt-Galles","doi":"10.1007/s13253-023-00552-3","DOIUrl":"https://doi.org/10.1007/s13253-023-00552-3","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80650629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series 修正:空间相关功能时间序列的异步变更点估计
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2022-12-02 DOI: 10.1007/s13253-022-00524-z
Mengchen Wang, Trevor Harris, Bo Li
{"title":"Correction to: Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series","authors":"Mengchen Wang, Trevor Harris, Bo Li","doi":"10.1007/s13253-022-00524-z","DOIUrl":"https://doi.org/10.1007/s13253-022-00524-z","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73004525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal Exposure Prediction with Penalized Regression 基于惩罚回归的时空暴露预测
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2022-11-17 DOI: 10.1007/s13253-022-00523-0
Nathan A. Ryder, Joshua P. Keller
{"title":"Spatiotemporal Exposure Prediction with Penalized Regression","authors":"Nathan A. Ryder, Joshua P. Keller","doi":"10.1007/s13253-022-00523-0","DOIUrl":"https://doi.org/10.1007/s13253-022-00523-0","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82199917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Community Dynamics Through Environmental Effects, Species Interactions and Movement 通过环境影响、物种相互作用和运动建模群落动态
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2022-11-07 DOI: 10.1007/s13253-022-00520-3
Becky Tang, J. Clark, P. Marra, A. Gelfand
{"title":"Modeling Community Dynamics Through Environmental Effects, Species Interactions and Movement","authors":"Becky Tang, J. Clark, P. Marra, A. Gelfand","doi":"10.1007/s13253-022-00520-3","DOIUrl":"https://doi.org/10.1007/s13253-022-00520-3","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83350629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Review of Handbook of Graphs and Networks in People Analytics: With Examples in R and Python by Keith McNulty 回顾《人际分析中的图和网络手册:用R和Python举例》,作者:Keith McNulty
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2022-11-03 DOI: 10.1007/s13253-022-00521-2
Sa Ren
{"title":"Review of Handbook of Graphs and Networks in People Analytics: With Examples in R and Python by Keith McNulty","authors":"Sa Ren","doi":"10.1007/s13253-022-00521-2","DOIUrl":"https://doi.org/10.1007/s13253-022-00521-2","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89930443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal Event Studies for Environmental Data Under Cross-Sectional Dependence: An Application to Air Quality Assessment in Lombardy 横断面依赖下环境数据时空事件研究:在伦巴第地区空气质量评价中的应用
IF 1.4 4区 数学 Q1 Mathematics Pub Date : 2022-10-24 DOI: 10.1007/s13253-023-00564-z
Paolo Maranzano, M. Pelagatti
{"title":"Spatiotemporal Event Studies for Environmental Data Under Cross-Sectional Dependence: An Application to Air Quality Assessment in Lombardy","authors":"Paolo Maranzano, M. Pelagatti","doi":"10.1007/s13253-023-00564-z","DOIUrl":"https://doi.org/10.1007/s13253-023-00564-z","url":null,"abstract":"","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86175588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Agricultural Biological and Environmental Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1