Pub Date : 2024-06-30DOI: 10.1007/s11708-024-0952-6
Juntian Niu, Shengzhuo Chen, Xianrong Zheng, Haiyu Liu, Yan Jin, Jingyu Ran
In recent years, the dry reforming of methane (DRM) reaction has gained widespread attention due to its effective utilization of two major greenhouse gases. Supported Ni-based catalysts for DRM exhibit a strong dependence on particle size, however, the reaction mechanisms involved remain unclear. In this work, the effect of metal particle size on CO2 activation and CO formation was explored in the DRM reaction using the density functional theory. Nix/MgO (x = 13, 25, 37) was constructed to investigate the CO2 activation and the formation of CO during the DRM reaction. It is found that CO2 is more inclined to undergo chemisorption on Nix/MgO before activation. With the variation in particle size, the main activation pathway of CO2 on the catalyst changes. On the smallest Ni13/MgO, CO2 tends to directly dissociate, while on the larger Ni25/MgO and Ni37/MgO, the hydrogenation dissociation of CO2 is more kinetically favorable. Compared to Ni13/MgO and Ni37/MgO, the oxidation of surface C atoms and the oxidation of CH occur more readily on Ni25/MgO. This indicates that C atoms are less likely to form on Ni25 particle and are more easily to be oxidized. To some extent, the results suggest that Ni25/MgO exhibits superior resistance to carbon formation.
近年来,甲烷干重整(DRM)反应因其对两种主要温室气体的有效利用而受到广泛关注。用于 DRM 的支撑镍基催化剂表现出与颗粒尺寸的强烈相关性,但其中涉及的反应机理仍不清楚。本研究利用密度泛函理论探讨了 DRM 反应中金属颗粒大小对 CO2 活化和 CO 生成的影响。构建了 Nix/MgO(x = 13、25、37)来研究 DRM 反应过程中 CO2 的活化和 CO 的形成。研究发现,二氧化碳在活化之前更倾向于在 Nix/MgO 上发生化学吸附。随着颗粒大小的变化,CO2 在催化剂上的主要活化途径也发生了变化。在最小的 Ni13/MgO 上,二氧化碳倾向于直接解离,而在较大的 Ni25/MgO 和 Ni37/MgO 上,二氧化碳的加氢解离在动力学上更为有利。与 Ni13/MgO 和 Ni37/MgO 相比,表面 C 原子的氧化和 CH 的氧化在 Ni25/MgO 上更容易发生。这表明 C 原子不太可能在 Ni25 颗粒上形成,而且更容易被氧化。在某种程度上,这些结果表明 Ni25/MgO 具有更强的抗碳形成能力。
{"title":"Impact of Ni particle size on CO2 activation and CO formation during reforming process: A density functional theory study","authors":"Juntian Niu, Shengzhuo Chen, Xianrong Zheng, Haiyu Liu, Yan Jin, Jingyu Ran","doi":"10.1007/s11708-024-0952-6","DOIUrl":"10.1007/s11708-024-0952-6","url":null,"abstract":"<div><p>In recent years, the dry reforming of methane (DRM) reaction has gained widespread attention due to its effective utilization of two major greenhouse gases. Supported Ni-based catalysts for DRM exhibit a strong dependence on particle size, however, the reaction mechanisms involved remain unclear. In this work, the effect of metal particle size on CO<sub>2</sub> activation and CO formation was explored in the DRM reaction using the density functional theory. Ni<i>x</i>/MgO (<i>x</i> = 13, 25, 37) was constructed to investigate the CO<sub>2</sub> activation and the formation of CO during the DRM reaction. It is found that CO<sub>2</sub> is more inclined to undergo chemisorption on Ni<i>x</i>/MgO before activation. With the variation in particle size, the main activation pathway of CO<sub>2</sub> on the catalyst changes. On the smallest Ni13/MgO, CO<sub>2</sub> tends to directly dissociate, while on the larger Ni25/MgO and Ni37/MgO, the hydrogenation dissociation of CO<sub>2</sub> is more kinetically favorable. Compared to Ni13/MgO and Ni37/MgO, the oxidation of surface C atoms and the oxidation of CH occur more readily on Ni25/MgO. This indicates that C atoms are less likely to form on Ni25 particle and are more easily to be oxidized. To some extent, the results suggest that Ni25/MgO exhibits superior resistance to carbon formation.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 4","pages":"525 - 534"},"PeriodicalIF":3.1,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1007/s11708-024-0949-1
Feng Gong, Yuhang Jing, Rui Xiao
Ammonia, with its high hydrogen storage density of 17.7 wt.% (mass fraction), cleanliness, efficiency, and renewability, presents itself as a promising zero-carbon fuel. However, the traditional Haber–Bosch (H–B) process for ammonia synthesis necessitates high temperature and pressure, resulting in over 420 million tons of carbon dioxide emissions annually, and relies on fossil fuel consumption. In contrast, dielectric barrier discharge (DBD) plasma-assisted ammonia synthesis operates at low temperatures and atmospheric pressures, utilizing nitrogen and hydrogen radicals excited by energetic electrons, offering a potential alternative to the H-B process. This method can be effectively coupled with renewable energy sources (such as solar and wind) for environmentally friendly, distributed, and efficient ammonia production. This review delves into a comprehensive analysis of the low-temperature DBD plasma-assisted ammonia synthesis technology at atmospheric pressure, covering the reaction pathway, mechanism, and catalyst system involved in plasma nitrogen fixation. Drawing from current research, it evaluates the economic feasibility of the DBD plasmaassisted ammonia synthesis technology, analyzes existing dilemmas and challenges, and provides insights and recommendations for the future of nonthermal plasma ammonia processes.
{"title":"Plasma-assisted ammonia synthesis under mild conditions for hydrogen and electricity storage: Mechanisms, pathways, and application prospects","authors":"Feng Gong, Yuhang Jing, Rui Xiao","doi":"10.1007/s11708-024-0949-1","DOIUrl":"10.1007/s11708-024-0949-1","url":null,"abstract":"<div><p>Ammonia, with its high hydrogen storage density of 17.7 wt.% (mass fraction), cleanliness, efficiency, and renewability, presents itself as a promising zero-carbon fuel. However, the traditional Haber–Bosch (H–B) process for ammonia synthesis necessitates high temperature and pressure, resulting in over 420 million tons of carbon dioxide emissions annually, and relies on fossil fuel consumption. In contrast, dielectric barrier discharge (DBD) plasma-assisted ammonia synthesis operates at low temperatures and atmospheric pressures, utilizing nitrogen and hydrogen radicals excited by energetic electrons, offering a potential alternative to the H-B process. This method can be effectively coupled with renewable energy sources (such as solar and wind) for environmentally friendly, distributed, and efficient ammonia production. This review delves into a comprehensive analysis of the low-temperature DBD plasma-assisted ammonia synthesis technology at atmospheric pressure, covering the reaction pathway, mechanism, and catalyst system involved in plasma nitrogen fixation. Drawing from current research, it evaluates the economic feasibility of the DBD plasmaassisted ammonia synthesis technology, analyzes existing dilemmas and challenges, and provides insights and recommendations for the future of nonthermal plasma ammonia processes.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 4","pages":"418 - 435"},"PeriodicalIF":3.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing efficient anode catalysts for direct ammonia solid oxide fuel cells (NH3-SOFCs) under intermediate-temperatures is of great importance, in support of hydrogen economy via ammonia utilization. In the present work, the pyrochlore-type La2Zr2−xNixO7+δ (LZNx, x = 0, 0.02, 0.05, 0.08, 0.10) oxides were synthesized as potential anode catalysts of NH3-SOFCs due to the abundant Frankel defect that contributes to the good conductivity and oxygen ion mobility capacity. The effects of different content of Ni2+ doping on the crystal structure, surface morphology, thermal matching with YSZ (Yttria-stabilized zirconia), conductivity, and electrochemical performance of pyrochlore oxides were examined using different characterization techniques. The findings indicate that the LZNx oxide behaves as an n-type semiconductor and exhibits an excellent high-temperature chemical compatibility and thermal matching with the YSZ electrolyte. Furthermore, LZN0.05 exhibits the smallest conductive band potential and bandgap, making it have a higher power density as anode material for NH3-SOFCs compared to other anodes. As a result, the maximum power density of the LZN0.05-40YSZ composite anode reaches 100.86 mW/cm2 at 800 °C, which is 1.8 times greater than that of NiO-based NH3-SOFCs (56.75 mW/cm2) under identical flow rate and temperature conditions. The extended durability indicates that the NH3-SOFCs utilizing the LZN0.05-40YSZ composite anode exhibits a negligible voltage degradation following uninterrupted operation at 800 °C for 100 h.
{"title":"Pyrochlore La2Zr2–xNixO7 anodes for direct ammonia solid oxide fuel cells","authors":"Shiqing Yang, Yijie Gao, Xinmin Wang, Fulan Zhong, Huihuang Fang, Yu Luo, Lilong Jiang","doi":"10.1007/s11708-024-0948-2","DOIUrl":"10.1007/s11708-024-0948-2","url":null,"abstract":"<div><p>Developing efficient anode catalysts for direct ammonia solid oxide fuel cells (NH<sub>3</sub>-SOFCs) under intermediate-temperatures is of great importance, in support of hydrogen economy via ammonia utilization. In the present work, the pyrochlore-type La<sub>2</sub>Zr<sub>2−<i>x</i></sub>Ni<sub><i>x</i></sub>O<sub>7+<i>δ</i></sub> (LZN<sub><i>x</i></sub>, <i>x</i> = 0, 0.02, 0.05, 0.08, 0.10) oxides were synthesized as potential anode catalysts of NH<sub>3</sub>-SOFCs due to the abundant Frankel defect that contributes to the good conductivity and oxygen ion mobility capacity. The effects of different content of Ni<sup>2+</sup> doping on the crystal structure, surface morphology, thermal matching with YSZ (Yttria-stabilized zirconia), conductivity, and electrochemical performance of pyrochlore oxides were examined using different characterization techniques. The findings indicate that the LZN<sub><i>x</i></sub> oxide behaves as an n-type semiconductor and exhibits an excellent high-temperature chemical compatibility and thermal matching with the YSZ electrolyte. Furthermore, LZN<sub>0.05</sub> exhibits the smallest conductive band potential and bandgap, making it have a higher power density as anode material for NH<sub>3</sub>-SOFCs compared to other anodes. As a result, the maximum power density of the LZN<sub>0.05</sub>-40YSZ composite anode reaches 100.86 mW/cm<sup>2</sup> at 800 °C, which is 1.8 times greater than that of NiO-based NH<sub>3</sub>-SOFCs (56.75 mW/cm<sup>2</sup>) under identical flow rate and temperature conditions. The extended durability indicates that the NH<sub>3</sub>-SOFCs utilizing the LZN<sub>0.05</sub>-40YSZ composite anode exhibits a negligible voltage degradation following uninterrupted operation at 800 °C for 100 h.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 5","pages":"699 - 711"},"PeriodicalIF":3.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1007/s11708-024-0946-4
Geofrey Mugerwa, Tamer F. Megahed, Maha Elsabrouty, Sobhy M. Abdelkader
Knowing the correct phase connectivity information plays a significant role in maintaining high-quality power and reliable electricity supply to end-consumers. However, managing the consumer-phase connectivity of a low-voltage distribution network is often costly, prone to human errors, and time-intensive, as it involves either installing expensive high-precision devices or employing field-based methods. Besides, the ever-increasing electricity demand and the proliferation of behind-the-meter resources have also increased the complexity of leveraging the phase connectivity problem. To overcome the above challenges, this paper develops a data-driven model to identify the phase connectivity of end-consumers using advanced metering infrastructure voltage and current measurements. Initially, a preprocessing method that employs linear interpolation and singular value decomposition is adopted to improve the quality of the smart meter data. Then, using Kirchoff’s current law and correlation analysis, a discrete convolution optimization model is built to uniquely identify the phase to which each end-consumer is connected. The data sets utilized are obtained by performing power flow simulations on a modified IEEE-906 test system using OpenDSS software. The robustness of the model is tested against data set size, missing smart meter data, measurement errors, and the influence of prosumers. The results show that the method proposed correctly identifies the phase connections of end-consumers with an accuracy of about 98%.
{"title":"Data-driven consumer-phase identification in low-voltage distribution networks considering prosumers","authors":"Geofrey Mugerwa, Tamer F. Megahed, Maha Elsabrouty, Sobhy M. Abdelkader","doi":"10.1007/s11708-024-0946-4","DOIUrl":"10.1007/s11708-024-0946-4","url":null,"abstract":"<div><p>Knowing the correct phase connectivity information plays a significant role in maintaining high-quality power and reliable electricity supply to end-consumers. However, managing the consumer-phase connectivity of a low-voltage distribution network is often costly, prone to human errors, and time-intensive, as it involves either installing expensive high-precision devices or employing field-based methods. Besides, the ever-increasing electricity demand and the proliferation of behind-the-meter resources have also increased the complexity of leveraging the phase connectivity problem. To overcome the above challenges, this paper develops a data-driven model to identify the phase connectivity of end-consumers using advanced metering infrastructure voltage and current measurements. Initially, a preprocessing method that employs linear interpolation and singular value decomposition is adopted to improve the quality of the smart meter data. Then, using Kirchoff’s current law and correlation analysis, a discrete convolution optimization model is built to uniquely identify the phase to which each end-consumer is connected. The data sets utilized are obtained by performing power flow simulations on a modified IEEE-906 test system using OpenDSS software. The robustness of the model is tested against data set size, missing smart meter data, measurement errors, and the influence of prosumers. The results show that the method proposed correctly identifies the phase connections of end-consumers with an accuracy of about 98%.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"827 - 840"},"PeriodicalIF":3.1,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The depletion of energy resources poses a significant threat to the development of human society. Specifically, a considerable amount of low-grade heat (LGH), typically below 100 °C, is currently being wasted. However, efficient utilization of this LGH can relieve energy shortages and reduce carbon dioxide emissions. To address this challenge, reverse electrodialysis heat engine (REDHE) which can efficiently convert LGH into electricity has emerged as a promising technology in recent years. Extensive efforts have been dedicated to exploring more suitable thermal distillation technologies for enhancing the performance of REDHE. This paper introduces a novel REDHE that incorporates helium-gap diffusion distillation (HGDD) as the thermal separation (TS) unit. The HGDD device is highly compact and efficient, operating at a normal atmospheric pressure, which aligns with the operational conditions of the reverse electrodialysis (RED) unit. A validated mathematical model is employed to analyze the impacts of various operating and structural parameters on the REDHE performance. The results indicate that maintaining a moderate molality of the cold stream, elevating the inlet temperatures of hot and cold streams, lengthening hot- and cold-stream channels, and minimizing the thickness of helium gaps contribute to improving the REDHE performance. Especially, a maximum energy conversion efficiency of 2.96% is achieved by the REDHE when decreasing the thickness of helium gaps to 3 mm and increasing the length of stream channels to 5 m.
{"title":"Reverse electrodialysis heat engine with helium-gap diffusion distillation: Energy efficiency analysis","authors":"Junyong Hu, Yukun Sun, Yali Hu, Haiyu Liu, Jiajie Zhang, Suxia Ma, Jiaxin Huang, Xueyi Tan, Ling Zhao","doi":"10.1007/s11708-024-0947-3","DOIUrl":"10.1007/s11708-024-0947-3","url":null,"abstract":"<div><p>The depletion of energy resources poses a significant threat to the development of human society. Specifically, a considerable amount of low-grade heat (LGH), typically below 100 °C, is currently being wasted. However, efficient utilization of this LGH can relieve energy shortages and reduce carbon dioxide emissions. To address this challenge, reverse electrodialysis heat engine (REDHE) which can efficiently convert LGH into electricity has emerged as a promising technology in recent years. Extensive efforts have been dedicated to exploring more suitable thermal distillation technologies for enhancing the performance of REDHE. This paper introduces a novel REDHE that incorporates helium-gap diffusion distillation (HGDD) as the thermal separation (TS) unit. The HGDD device is highly compact and efficient, operating at a normal atmospheric pressure, which aligns with the operational conditions of the reverse electrodialysis (RED) unit. A validated mathematical model is employed to analyze the impacts of various operating and structural parameters on the REDHE performance. The results indicate that maintaining a moderate molality of the cold stream, elevating the inlet temperatures of hot and cold streams, lengthening hot- and cold-stream channels, and minimizing the thickness of helium gaps contribute to improving the REDHE performance. Especially, a maximum energy conversion efficiency of 2.96% is achieved by the REDHE when decreasing the thickness of helium gaps to 3 mm and increasing the length of stream channels to 5 m.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"88 - 99"},"PeriodicalIF":3.1,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140838083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solid oxide electrolysis cell (SOEC) is a promising water electrolysis technology that produces hydrogen or syngas through water electrolysis or water and carbon dioxide co-electrolysis. Green hydrogen or syngas can be produced by SOEC with renewable energy. Thus, SOEC has attracted continuous attention in recent years for the urgency of developing environmentally friendly energy sources and achieving carbon neutrality. Focusing on 1276 related articles retrieved from the Web of Science (WoS) database, the historical development of SOECs are depicted from 1983 to 2023 in this paper. The co-occurrence networks of the countries, source journals, and author keywords are generated. Moreover, three main clusters showing different content of the SOEC research are identified and analyzed. Furthermore, the scientometric analysis and the content of the high-cited articles of the research of different topics of SOECs: fuel electrode, air electrode, electrolyte, co-electrolysis, proton-conducting SOECs, and the modeling of SOECs are also presented. The results show that co-electrolysis and proton-conducting SOECs are two popular directions in the study of SOECs. This paper provides a straightforward reference for researchers interested in the field of SOEC research, helping them navigate the landscape of this area of study, locate potential partners, secure funding, discover influential scholars, identify leading countries, and access key research publications.
{"title":"Scientometric analysis of research trends on solid oxide electrolysis cells for green hydrogen and syngas production","authors":"Shimeng Kang, Zehua Pan, Jinjie Guo, Yexin Zhou, Jingyi Wang, Liangdong Fan, Chunhua Zheng, Suk Won Cha, Zheng Zhong","doi":"10.1007/s11708-024-0945-5","DOIUrl":"10.1007/s11708-024-0945-5","url":null,"abstract":"<div><p>Solid oxide electrolysis cell (SOEC) is a promising water electrolysis technology that produces hydrogen or syngas through water electrolysis or water and carbon dioxide co-electrolysis. Green hydrogen or syngas can be produced by SOEC with renewable energy. Thus, SOEC has attracted continuous attention in recent years for the urgency of developing environmentally friendly energy sources and achieving carbon neutrality. Focusing on 1276 related articles retrieved from the Web of Science (WoS) database, the historical development of SOECs are depicted from 1983 to 2023 in this paper. The co-occurrence networks of the countries, source journals, and author keywords are generated. Moreover, three main clusters showing different content of the SOEC research are identified and analyzed. Furthermore, the scientometric analysis and the content of the high-cited articles of the research of different topics of SOECs: fuel electrode, air electrode, electrolyte, co-electrolysis, proton-conducting SOECs, and the modeling of SOECs are also presented. The results show that co-electrolysis and proton-conducting SOECs are two popular directions in the study of SOECs. This paper provides a straightforward reference for researchers interested in the field of SOEC research, helping them navigate the landscape of this area of study, locate potential partners, secure funding, discover influential scholars, identify leading countries, and access key research publications.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 5","pages":"583 - 611"},"PeriodicalIF":3.1,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1007/s11708-024-0944-6
Yun Zheng, Bo Yu, Xiaogang Fu, Jiujun Zhang
{"title":"Special issue on electrochemical conversion and utilization of hydrogen energy","authors":"Yun Zheng, Bo Yu, Xiaogang Fu, Jiujun Zhang","doi":"10.1007/s11708-024-0944-6","DOIUrl":"10.1007/s11708-024-0944-6","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 3","pages":"263 - 264"},"PeriodicalIF":3.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140699953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1007/s11708-024-0942-8
Yun Zheng, Gaixia Zhang, Sixu Deng, Jiujun Zhang
{"title":"Special issue on electrochemical energy storage and conversion","authors":"Yun Zheng, Gaixia Zhang, Sixu Deng, Jiujun Zhang","doi":"10.1007/s11708-024-0942-8","DOIUrl":"10.1007/s11708-024-0942-8","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 2","pages":"125 - 127"},"PeriodicalIF":3.1,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140716960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-oil from biomass pyrolysis cannot directly substitute traditional fuel due to compositional deficiencies. Catalytic hydrodeoxygenation (HDO) is the critical and efficient step to upgrade crude bio-oil to high-quality bio-jet fuel by lowering the oxygen content and increasing the heating value. However, the hydrocracking reaction tends to reduce the liquid yield and increase the gas yield, causing carbon loss and producing hydrocarbons with a short carbon-chain. To obtain high-yield bio-jet fuel, the elucidation of the conversion process of biomass catalytic HDO is important in providing guidance for metal catalyst design and optimization of reaction conditions. Considering the complexity of crude bio-oil, this review aimed to investigate the catalytic HDO pathways with model compounds that present typical bio-oil components. First, it provided a comprehensive summary of the impact of physical and electronic structures of both noble and non-noble metals that include monometallic and bimetallic supported catalysts on regulating the conversion pathways and resulting product selectivity. The subsequent first principle calculations further corroborated reaction pathways of model compounds in atom-level on different catalyst surfaces with the experiments above and illustrated the favored C–O/C=O scission orders thermodynamically and kinetically. Then, it discussed hydrogenation effects of different H-donors (such as hydrogen and methane) and catalysts deactivation for economical and industrial consideration. Based on the descriptions above and recent researches, it also elaborated on catalytic HDO of biomass and bio-oil with multi-functional catalysts. Finally, it presented the challenges and future prospective of biomass catalytic HDO.
由于成分缺陷,生物质热解产生的生物油不能直接替代传统燃料。催化加氢脱氧(HDO)是将粗生物油升级为优质生物喷气燃料的关键和高效步骤,可降低氧含量并提高热值。然而,加氢裂化反应往往会降低液体产率,增加气体产率,造成碳损失并产生碳链较短的碳氢化合物。为了获得高产生物喷气燃料,阐明生物质催化加氢脱氧的转化过程对于指导金属催化剂的设计和反应条件的优化非常重要。考虑到粗生物油的复杂性,本综述旨在利用呈现典型生物油成分的模型化合物研究催化 HDO 途径。首先,它全面总结了贵金属和非贵金属(包括单金属和双金属支撑催化剂)的物理和电子结构对调节转化途径和由此产生的产品选择性的影响。随后进行的第一性原理计算进一步证实了模型化合物在不同催化剂表面的原子级反应路径与上述实验之间的联系,并从热力学和动力学角度说明了有利的 C-O/C=O 裂解顺序。然后,从经济和工业角度讨论了不同 H 供体(如氢气和甲烷)的加氢效应和催化剂失活问题。根据上述描述和近期研究,还阐述了使用多功能催化剂催化生物质和生物油的 HDO。最后,报告介绍了生物质催化脱氧的挑战和未来前景。
{"title":"Catalytic hydrodeoxygenation of pyrolysis bio-oil to jet fuel: A review","authors":"Zhongyang Luo, Wanchen Zhu, Feiting Miao, Jinsong Zhou","doi":"10.1007/s11708-024-0943-7","DOIUrl":"10.1007/s11708-024-0943-7","url":null,"abstract":"<div><p>Bio-oil from biomass pyrolysis cannot directly substitute traditional fuel due to compositional deficiencies. Catalytic hydrodeoxygenation (HDO) is the critical and efficient step to upgrade crude bio-oil to high-quality bio-jet fuel by lowering the oxygen content and increasing the heating value. However, the hydrocracking reaction tends to reduce the liquid yield and increase the gas yield, causing carbon loss and producing hydrocarbons with a short carbon-chain. To obtain high-yield bio-jet fuel, the elucidation of the conversion process of biomass catalytic HDO is important in providing guidance for metal catalyst design and optimization of reaction conditions. Considering the complexity of crude bio-oil, this review aimed to investigate the catalytic HDO pathways with model compounds that present typical bio-oil components. First, it provided a comprehensive summary of the impact of physical and electronic structures of both noble and non-noble metals that include monometallic and bimetallic supported catalysts on regulating the conversion pathways and resulting product selectivity. The subsequent first principle calculations further corroborated reaction pathways of model compounds in atom-level on different catalyst surfaces with the experiments above and illustrated the favored C–O/C=O scission orders thermodynamically and kinetically. Then, it discussed hydrogenation effects of different H-donors (such as hydrogen and methane) and catalysts deactivation for economical and industrial consideration. Based on the descriptions above and recent researches, it also elaborated on catalytic HDO of biomass and bio-oil with multi-functional catalysts. Finally, it presented the challenges and future prospective of biomass catalytic HDO.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 5","pages":"550 - 582"},"PeriodicalIF":3.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1007/s11708-024-0941-9
Jia Lu, Qiang Hu, Jian Wu
To increase the power generated by solid oxide fuel cells (SOFCs), multiple cells have to be connected into a stack. Nonuniformity of cell performance is a worldwide concern in the practical application of stack, which is known to be unavoidable and caused by manufacturing and operating conditions. However, the effect of such nonuniformity on SOFCs that are connected in parallel has not been discussed in detail so far. This paper provides detailed experimental data on the current distribution within a stack with nonuniform cells in parallel connection, based on the basics of electricity and electrochemistry. Particular phenomena found in such a parallel system are the “self-discharge effect” in standby mode and the “capacity-proportional-load sharing effect” under normal operating conditions. It is believed that the experimental method and results proposed in this paper can be applied to other types of fuel cell or even other energy systems.
{"title":"Experimental study on current distribution in parallel-connected solid oxide fuel cell strings","authors":"Jia Lu, Qiang Hu, Jian Wu","doi":"10.1007/s11708-024-0941-9","DOIUrl":"10.1007/s11708-024-0941-9","url":null,"abstract":"<div><p>To increase the power generated by solid oxide fuel cells (SOFCs), multiple cells have to be connected into a stack. Nonuniformity of cell performance is a worldwide concern in the practical application of stack, which is known to be unavoidable and caused by manufacturing and operating conditions. However, the effect of such nonuniformity on SOFCs that are connected in parallel has not been discussed in detail so far. This paper provides detailed experimental data on the current distribution within a stack with nonuniform cells in parallel connection, based on the basics of electricity and electrochemistry. Particular phenomena found in such a parallel system are the “self-discharge effect” in standby mode and the “capacity-proportional-load sharing effect” under normal operating conditions. It is believed that the experimental method and results proposed in this paper can be applied to other types of fuel cell or even other energy systems.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"816 - 826"},"PeriodicalIF":3.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}