首页 > 最新文献

Frontiers in Energy最新文献

英文 中文
Performance-enhanced direct ammonia protonic ceramic fuel cells using CeO2-supported Ni and Ru catalyst layer 使用 CeO2-supported Ni 和 Ru 催化剂层的性能增强型直接氨质子陶瓷燃料电池
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-08-20 DOI: 10.1007/s11708-024-0959-z
Xiaoxiao Li, Jiangping Chen, Yunyun Huang, Huihuang Fang, Chongqi Chen, Fulan Zhong, Li Lin, Yu Luo, Yuqing Wang, Lilong Jiang

Ammonia is an exceptional fuel for solid oxide fuel cells (SOFCs), because of the high content of hydrogen and the advantages of carbon neutrality. However, the challenge lies in its unsatisfactory performance at intermediate temperatures (500–600 °C), impeding its advancement. An electrolyte-supported proton-ceramic fuel cell (PCFC) was fabricated employing BaZr0.1Ce0.7Y0.2O3−δ (BZCY) as the electrolyte and Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) as the cathode. In this study, the performance of PCFC using NH3 as fuel within an operating temperature range of 500–700 °C was improved by adding an M(Ni,Ru)/CeO2 catalyst layer to reconstruct the anode surface. The electrochemical performance of direct ammonia PCFC (DA-PCFC) were improved to different extents. Compared to H2 as fuel, the degradation ratio of peak power densities (PPDs) of Ni/CeO2-loaded PCFC fueled with NH3 decreased at 700–500 °C, with a decrease to 13.3% at 700 °C and 30.7% at 500 °C. The findings indicate that Ru-based catalysts have a greater promise for direct ammonia SOFCs (DA-SOFCs) at operating temperatures below 600 °C. However, the enhancement effect becomes less significant above 600 °C when compared to Ni-based catalysts.

氨是固体氧化物燃料电池(SOFC)的一种特殊燃料,因为它含有大量氢气,并且具有碳中和的优点。然而,氨在中温(500-600 °C)下的性能并不令人满意,这阻碍了氨燃料电池的发展。研究人员采用 BaZr0.1Ce0.7Y0.2O3-δ (BZCY) 作为电解质,Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) 作为阴极,制造了一种电解质支持的质子陶瓷燃料电池 (PCFC)。在这项研究中,通过添加 M(Ni,Ru)/CeO2 催化剂层重建阳极表面,提高了使用 NH3 作为燃料的 PCFC 在 500-700 °C 工作温度范围内的性能。直接氨化 PCFC(DA-PCFC)的电化学性能得到了不同程度的改善。与以 H2 为燃料相比,以 NH3 为燃料的 Ni/CeO2 负载 PCFC 的峰值功率密度(PPD)降解率在 700-500 ℃ 时下降,700 ℃ 时降至 13.3%,500 ℃ 时降至 30.7%。研究结果表明,在工作温度低于 600 ℃ 时,Ru 基催化剂在直接氨 SOFC(DA-SOFC)中的应用前景更为广阔。然而,与镍基催化剂相比,600 ℃ 以上的增强效果就不那么显著了。
{"title":"Performance-enhanced direct ammonia protonic ceramic fuel cells using CeO2-supported Ni and Ru catalyst layer","authors":"Xiaoxiao Li,&nbsp;Jiangping Chen,&nbsp;Yunyun Huang,&nbsp;Huihuang Fang,&nbsp;Chongqi Chen,&nbsp;Fulan Zhong,&nbsp;Li Lin,&nbsp;Yu Luo,&nbsp;Yuqing Wang,&nbsp;Lilong Jiang","doi":"10.1007/s11708-024-0959-z","DOIUrl":"10.1007/s11708-024-0959-z","url":null,"abstract":"<div><p>Ammonia is an exceptional fuel for solid oxide fuel cells (SOFCs), because of the high content of hydrogen and the advantages of carbon neutrality. However, the challenge lies in its unsatisfactory performance at intermediate temperatures (500–600 °C), impeding its advancement. An electrolyte-supported proton-ceramic fuel cell (PCFC) was fabricated employing BaZr<sub>0.1</sub>Ce<sub>0.7</sub>Y<sub>0.2</sub>O<sub>3−δ</sub> (BZCY) as the electrolyte and Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3−δ</sub> (BSCF) as the cathode. In this study, the performance of PCFC using NH<sub>3</sub> as fuel within an operating temperature range of 500–700 °C was improved by adding an M(Ni,Ru)/CeO<sub>2</sub> catalyst layer to reconstruct the anode surface. The electrochemical performance of direct ammonia PCFC (DA-PCFC) were improved to different extents. Compared to H<sub>2</sub> as fuel, the degradation ratio of peak power densities (PPDs) of Ni/CeO<sub>2</sub>-loaded PCFC fueled with NH<sub>3</sub> decreased at 700–500 °C, with a decrease to 13.3% at 700 °C and 30.7% at 500 °C. The findings indicate that Ru-based catalysts have a greater promise for direct ammonia SOFCs (DA-SOFCs) at operating temperatures below 600 °C. However, the enhancement effect becomes less significant above 600 °C when compared to Ni-based catalysts.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"875 - 884"},"PeriodicalIF":3.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-carbon collaborative dual-layer optimization for energy station considering joint electricity and heat demand response 考虑电力和热力联合需求响应的能源站低碳协同双层优化方案
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-08-15 DOI: 10.1007/s11708-024-0958-0
Shaoshan Xu, Xingchen Wu, Jun Shen, Haochen Hua

In the park-level integrated energy system (PIES) trading market involving various heterogeneous energy sources, the traditional vertically integrated market trading structure struggles to reveal the interactions and collaborative relationships between energy stations and users, posing challenges to the economic and low-carbon operation of the system. To address this issue, a dual-layer optimization strategy for energy station-user, taking into account the demand response for electricity and thermal, is proposed in this paper. The upper layer, represented by energy stations, makes decisions on variables such as the electricity and heat prices sold to users, as well as the output plans of energy supply equipment and the operational status of battery energy storage. The lower layer, comprising users, determines their own electricity and heat demand through demand response. Subsequently, a combination of differential evolution and quadratic programming (DE-QP) is employed to solve the interactive strategies between energy stations and users. The simulation results indicate that, compared to the traditional vertically integrated structure, the strategy proposed in this paper increases the revenue of energy stations and the consumer surplus of users by 5.09% and 2.46%, respectively.

在涉及多种异质能源的园区级综合能源系统(PIES)交易市场中,传统的纵向一体化市场交易结构难以揭示能源站与用户之间的互动和协作关系,给系统的经济性和低碳运行带来了挑战。针对这一问题,本文提出了一种考虑到电力和热力需求响应的能源站-用户双层优化策略。上层由能源站代表,就向用户出售的电价和热价等变量以及能源供应设备的输出计划和电池储能的运行状态做出决策。下层由用户组成,他们通过需求响应来决定自己的电力和热力需求。随后,采用微分演化和二次编程(DE-QP)相结合的方法来解决能源站和用户之间的互动策略。仿真结果表明,与传统的垂直一体化结构相比,本文提出的策略使能源站的收入和用户的消费者剩余分别增加了 5.09% 和 2.46%。
{"title":"Low-carbon collaborative dual-layer optimization for energy station considering joint electricity and heat demand response","authors":"Shaoshan Xu,&nbsp;Xingchen Wu,&nbsp;Jun Shen,&nbsp;Haochen Hua","doi":"10.1007/s11708-024-0958-0","DOIUrl":"10.1007/s11708-024-0958-0","url":null,"abstract":"<div><p>In the park-level integrated energy system (PIES) trading market involving various heterogeneous energy sources, the traditional vertically integrated market trading structure struggles to reveal the interactions and collaborative relationships between energy stations and users, posing challenges to the economic and low-carbon operation of the system. To address this issue, a dual-layer optimization strategy for energy station-user, taking into account the demand response for electricity and thermal, is proposed in this paper. The upper layer, represented by energy stations, makes decisions on variables such as the electricity and heat prices sold to users, as well as the output plans of energy supply equipment and the operational status of battery energy storage. The lower layer, comprising users, determines their own electricity and heat demand through demand response. Subsequently, a combination of differential evolution and quadratic programming (DE-QP) is employed to solve the interactive strategies between energy stations and users. The simulation results indicate that, compared to the traditional vertically integrated structure, the strategy proposed in this paper increases the revenue of energy stations and the consumer surplus of users by 5.09% and 2.46%, respectively.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"100 - 113"},"PeriodicalIF":3.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of durability of membrane electrode assembly by frame sealing structure in temperature shock 利用框架密封结构提高膜电极组件在温度冲击下的耐用性
IF 6.2 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-08-10 DOI: 10.1007/s11708-024-0955-3
Yanbo Wang, Tiankuo Chu

The frame of membrane electrode assembly (MEA) influences the durability of proton exchange membrane fuel cell (PEMFC). In this paper, the thermal shock bench was applied as an accelerated aging test to explore the effect of frame sealing structure on MEA durability at different temperatures. Analysis of scanning electron microscope (SEM) images reveals that thermal shock results in the formation of cracks on the exposed proton exchange membrane (PEM) at the gap between the frame and the active area. Moreover, it breaks the bonding interface between the frame and the membrane and leads to the debonding of the adhesive, which exacerbates the risk of crossover of the reactant gas. A comparison of the single-layer and improved double-layer frame structures reveal that the mechanical damage is caused by frequent membrane wrinkles in the gap under temperature shock. However, addition of a cushion layer improves the continuity between the frame and the active area, and reduces deformation of the membrane, thereby preventing membrane damage.

膜电极组件(MEA)的结构影响质子交换膜燃料电池(PEMFC)的耐久性。本文采用热冲击台架进行加速老化试验,探讨框架密封结构在不同温度下对MEA耐久性的影响。扫描电镜(SEM)图像分析表明,热冲击导致暴露的质子交换膜(PEM)在框架与活性区之间的间隙处形成裂纹。此外,它破坏了框架与膜之间的粘合界面,导致粘合剂脱粘,从而加剧了反应物气体交叉的风险。通过对单层和改进双层框架结构的比较,发现在温度冲击作用下,薄膜在间隙处频繁起皱是导致结构机械损伤的主要原因。然而,缓冲层的加入改善了框架与活动区域之间的连续性,并减少了膜的变形,从而防止了膜的损坏。
{"title":"Improvement of durability of membrane electrode assembly by frame sealing structure in temperature shock","authors":"Yanbo Wang,&nbsp;Tiankuo Chu","doi":"10.1007/s11708-024-0955-3","DOIUrl":"10.1007/s11708-024-0955-3","url":null,"abstract":"<div><p>The frame of membrane electrode assembly (MEA) influences the durability of proton exchange membrane fuel cell (PEMFC). In this paper, the thermal shock bench was applied as an accelerated aging test to explore the effect of frame sealing structure on MEA durability at different temperatures. Analysis of scanning electron microscope (SEM) images reveals that thermal shock results in the formation of cracks on the exposed proton exchange membrane (PEM) at the gap between the frame and the active area. Moreover, it breaks the bonding interface between the frame and the membrane and leads to the debonding of the adhesive, which exacerbates the risk of crossover of the reactant gas. A comparison of the single-layer and improved double-layer frame structures reveal that the mechanical damage is caused by frequent membrane wrinkles in the gap under temperature shock. However, addition of a cushion layer improves the continuity between the frame and the active area, and reduces deformation of the membrane, thereby preventing membrane damage.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"326 - 333"},"PeriodicalIF":6.2,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-melting point metals facilitate synthesis of Pt-based intermetallic nanocrystals 低熔点金属促进铂基金属间纳米晶体的合成
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-08-10 DOI: 10.1007/s11708-024-0957-1
Yan Wan, Mo Zhang, Yangming Lin
{"title":"Low-melting point metals facilitate synthesis of Pt-based intermetallic nanocrystals","authors":"Yan Wan,&nbsp;Mo Zhang,&nbsp;Yangming Lin","doi":"10.1007/s11708-024-0957-1","DOIUrl":"10.1007/s11708-024-0957-1","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"727 - 729"},"PeriodicalIF":3.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141919481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen reduction reaction performance of Fe-N-C catalyst with dual nitrogen source 双氮源 Fe-N-C 催化剂的氧还原反应性能
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-08-10 DOI: 10.1007/s11708-024-0956-2
Yuan Zhao, Quan Wang, Rongrong Hu, Wenqiang Liu, Xiaojuan Zhang, Wei Wang, Nicolas Alonso-Vante, Dongdong Zhu

Fe-N-C catalysts are potential substitutes to displace electrocatalysts containing noble chemical elements in the oxygen reduction reaction (ORR). However, their application is hampered by unsatisfactory activity and stability issues. The structures and morphologies of Fe-N-C catalysts have been found to be crucial for the number of active sites and local bonding structures. In this work, dicyandiamide (DCDA) and polyaniline (PANI) are shown to act as dual nitrogen sources to tune the morphology and structure of the catalyst and facilitate the ORR process. The dual nitrogen sources not only increase the amount of nitrogen doping atoms in the electrocatalytic Fe-C-N material, but also maintain a high nitrogen-pyrrole/nitrogen-graphitic: (N-P)/(N-G) value, improving the distribution density of catalytic active sites in the material. With a high surface area and amount of N-doping, the Fe-N-C catalyst developed can achieve an improved half-wave potential of 0.886 V (vs. RHE) in alkaline medium, and a better stability and methanol resistance than commercial Pt/C catalyst.

在氧还原反应(ORR)中,Fe-N-C 催化剂有可能取代含有惰性化学元素的电催化剂。然而,它们的应用却因活性不理想和稳定性问题而受到阻碍。研究发现,Fe-N-C 催化剂的结构和形态对活性位点的数量和局部键合结构至关重要。在这项研究中,双氰胺(DCDA)和聚苯胺(PANI)被证明可作为双重氮源来调整催化剂的形态和结构,并促进 ORR 过程。双氮源不仅增加了电催化 Fe-C-N 材料中的氮掺杂原子数,还保持了较高的氮-吡咯/氮-石墨化:(N-P)/(N-G)值,提高了材料中催化活性位点的分布密度。在高比表面积和高掺氮量的条件下,所开发的 Fe-N-C 催化剂在碱性介质中的半波电位可提高到 0.886 V(相对于 RHE),其稳定性和耐甲醇性也优于商用 Pt/C 催化剂。
{"title":"Oxygen reduction reaction performance of Fe-N-C catalyst with dual nitrogen source","authors":"Yuan Zhao,&nbsp;Quan Wang,&nbsp;Rongrong Hu,&nbsp;Wenqiang Liu,&nbsp;Xiaojuan Zhang,&nbsp;Wei Wang,&nbsp;Nicolas Alonso-Vante,&nbsp;Dongdong Zhu","doi":"10.1007/s11708-024-0956-2","DOIUrl":"10.1007/s11708-024-0956-2","url":null,"abstract":"<div><p>Fe-N-C catalysts are potential substitutes to displace electrocatalysts containing noble chemical elements in the oxygen reduction reaction (ORR). However, their application is hampered by unsatisfactory activity and stability issues. The structures and morphologies of Fe-N-C catalysts have been found to be crucial for the number of active sites and local bonding structures. In this work, dicyandiamide (DCDA) and polyaniline (PANI) are shown to act as dual nitrogen sources to tune the morphology and structure of the catalyst and facilitate the ORR process. The dual nitrogen sources not only increase the amount of nitrogen doping atoms in the electrocatalytic Fe-C-N material, but also maintain a high nitrogen-pyrrole/nitrogen-graphitic: (N-P)/(N-G) value, improving the distribution density of catalytic active sites in the material. With a high surface area and amount of N-doping, the Fe-N-C catalyst developed can achieve an improved half-wave potential of 0.886 V (vs. RHE) in alkaline medium, and a better stability and methanol resistance than commercial Pt/C catalyst.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"841 - 849"},"PeriodicalIF":3.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Economically attractive production of commercial-grade gasoline from waste plastics 利用废塑料生产商业级汽油,经济效益显著
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-07-20 DOI: 10.1007/s11708-024-0954-4
Muhammad Salman Nasir, Hu Pan, Baowen Zhou
{"title":"Economically attractive production of commercial-grade gasoline from waste plastics","authors":"Muhammad Salman Nasir,&nbsp;Hu Pan,&nbsp;Baowen Zhou","doi":"10.1007/s11708-024-0954-4","DOIUrl":"10.1007/s11708-024-0954-4","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 5","pages":"712 - 715"},"PeriodicalIF":3.1,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141819550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing unleashed latent heat of liquid metal for soft intelligence 可视化液态金属释放的潜热,实现软智能
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-07-15 DOI: 10.1007/s11708-024-0951-7
Jianbo Tang, Bo Yuan, Hongzhang Wang, Jing Liu
{"title":"Visualizing unleashed latent heat of liquid metal for soft intelligence","authors":"Jianbo Tang,&nbsp;Bo Yuan,&nbsp;Hongzhang Wang,&nbsp;Jing Liu","doi":"10.1007/s11708-024-0951-7","DOIUrl":"10.1007/s11708-024-0951-7","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 5","pages":"545 - 549"},"PeriodicalIF":3.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved cyclic stability of LiNi0.8Mn0.1Co0.1O2 cathode enabled by a novel CEI forming additive 新型 CEI 形成添加剂提高了 LiNi0.8Mn0.1Co0.1O2 阴极的循环稳定性
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-07-10 DOI: 10.1007/s11708-024-0953-5
Zulipiya Shadike, Yiming Chen, Lin Liu, Xinyin Cai, Shuiyun Shen, Junliang Zhang

The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode materials. Electrolyte optimization is an effective approach to suppress such an adverse side reaction, thereby enhancing the electrochemical properties. Herein, a novel boron-based film forming additive, tris(2,2,2-trifluoroethyl) borate (TTFEB), has been introduced to regulate the interphasial chemistry of LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode to improve its long-term cyclability and rate properties. The results of multi-model diagnostic study reveal that formation lithium fluoride (LiF)-rich and boron (B) containing cathode electrolyte interphase (CEI) not only stabilizes cathode surface, but also prevents electrolyte decomposition. Moreover, homogenously distributed B containing species serves as a skeleton to form more uniform and denser CEI, reducing the interphasial resistance. Remarkably, the Li/NMC811 cell with the TTFEB additive delivers an exceptional cycling stability with a high-capacity retention of 72.8% after 350 electrochemical cycles at a 1 C current rate, which is significantly higher than that of the cell cycled in the conventional electrolyte (59.7%). These findings provide a feasible pathway for improving the electrochemical performance of Ni-rich NMCs cathode by regulating the interphasial chemistry.

电极/电解液界面上的不良副反应以及电化学循环过程中的不可逆相演化严重影响了富镍 NMCs 电极材料的循环性能。电解质优化是抑制这种不良副反应从而提高电化学性能的有效方法。本文引入了一种新型硼基成膜添加剂--三(2,2,2-三氟乙基)硼酸酯(TTFEB)来调节 LiNi0.8Mn0.1Co0.1O2 (NMC811) 阴极的层间化学,以改善其长期循环性和速率特性。多模型诊断研究结果表明,形成富含氟化锂(LiF)和硼(B)的阴极电解质相间(CEI)不仅能稳定阴极表面,还能防止电解质分解。此外,均匀分布的含硼物质可作为骨架,形成更均匀、更致密的 CEI,从而降低相间电阻。值得注意的是,添加了 TTFEB 添加剂的锂/NMC811 电池具有优异的循环稳定性,在 1 C 电流速率下进行 350 次电化学循环后,电池容量保持率高达 72.8%,显著高于在传统电解液中循环的电池容量保持率(59.7%)。这些发现为通过调节相间化学性质提高富镍 NMC 阴极的电化学性能提供了一条可行的途径。
{"title":"Improved cyclic stability of LiNi0.8Mn0.1Co0.1O2 cathode enabled by a novel CEI forming additive","authors":"Zulipiya Shadike,&nbsp;Yiming Chen,&nbsp;Lin Liu,&nbsp;Xinyin Cai,&nbsp;Shuiyun Shen,&nbsp;Junliang Zhang","doi":"10.1007/s11708-024-0953-5","DOIUrl":"10.1007/s11708-024-0953-5","url":null,"abstract":"<div><p>The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode materials. Electrolyte optimization is an effective approach to suppress such an adverse side reaction, thereby enhancing the electrochemical properties. Herein, a novel boron-based film forming additive, tris(2,2,2-trifluoroethyl) borate (TTFEB), has been introduced to regulate the interphasial chemistry of LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) cathode to improve its long-term cyclability and rate properties. The results of multi-model diagnostic study reveal that formation lithium fluoride (LiF)-rich and boron (B) containing cathode electrolyte interphase (CEI) not only stabilizes cathode surface, but also prevents electrolyte decomposition. Moreover, homogenously distributed B containing species serves as a skeleton to form more uniform and denser CEI, reducing the interphasial resistance. Remarkably, the Li/NMC811 cell with the TTFEB additive delivers an exceptional cycling stability with a high-capacity retention of 72.8% after 350 electrochemical cycles at a 1 C current rate, which is significantly higher than that of the cell cycled in the conventional electrolyte (59.7%). These findings provide a feasible pathway for improving the electrochemical performance of Ni-rich NMCs cathode by regulating the interphasial chemistry.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 4","pages":"535 - 544"},"PeriodicalIF":3.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO2 reduction 电催化二氧化碳还原中的等离子体活性和选择性增强综述
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-07-10 DOI: 10.1007/s11708-024-0950-8
Jing Xue, Zhenlin Chen, Yuchao Zhang, Jincai Zhao

Utilizing plasmonic effects to assist electrochemical reactions exhibits a huge potential in tuning the reaction activities and product selectivity, which is most appealing especially in chemical reactions with multiple products, such as CO2 reduction reaction (CO2RR). However, a comprehensive review of the development and the underlying mechanisms in plasmon-assisted electrocatalytic CO2RR remains few and far between. Herein, the fundamentals of localized surface plasmonic resonance (LSPR) excitation and the properties of typical plasmonic metals (including Au, Ag, and Cu) are retrospected. Subsequently, the potential mechanisms of plasmonic effects (such as hot carrier effects and photothermal effects) on the reaction performance in the field of plasmon-assisted electrocatalytic CO2RR are summarized, which provides directions for the future development of this field. It is concluded that plasmonic catalysts exhibit potential capabilities in enhancing CO2RR while more in situ techniques are essential to further clarify the inner mechanisms.

利用质子效应辅助电化学反应在调整反应活性和产物选择性方面具有巨大潜力,尤其是在二氧化碳还原反应(CO2RR)等具有多种产物的化学反应中最有吸引力。然而,有关等离子体辅助电催化 CO2RR 的发展和基本机制的全面综述仍然少之又少。本文回顾了局部表面等离子体共振(LSPR)激发的基本原理和典型等离子体金属(包括金、银和铜)的特性。随后,总结了等离子效应(如热载流子效应和光热效应)对等离子体辅助电催化 CO2RR 领域反应性能的潜在影响机制,为该领域的未来发展提供了方向。结论是,质子催化剂在提高 CO2RR 方面表现出了潜在的能力,而更多的原位技术对于进一步阐明其内在机制至关重要。
{"title":"A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO2 reduction","authors":"Jing Xue,&nbsp;Zhenlin Chen,&nbsp;Yuchao Zhang,&nbsp;Jincai Zhao","doi":"10.1007/s11708-024-0950-8","DOIUrl":"10.1007/s11708-024-0950-8","url":null,"abstract":"<div><p>Utilizing plasmonic effects to assist electrochemical reactions exhibits a huge potential in tuning the reaction activities and product selectivity, which is most appealing especially in chemical reactions with multiple products, such as CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). However, a comprehensive review of the development and the underlying mechanisms in plasmon-assisted electrocatalytic CO2RR remains few and far between. Herein, the fundamentals of localized surface plasmonic resonance (LSPR) excitation and the properties of typical plasmonic metals (including Au, Ag, and Cu) are retrospected. Subsequently, the potential mechanisms of plasmonic effects (such as hot carrier effects and photothermal effects) on the reaction performance in the field of plasmon-assisted electrocatalytic CO<sub>2</sub>RR are summarized, which provides directions for the future development of this field. It is concluded that plasmonic catalysts exhibit potential capabilities in enhancing CO<sub>2</sub>RR while more <i>in situ</i> techniques are essential to further clarify the inner mechanisms.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 4","pages":"399 - 417"},"PeriodicalIF":3.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141835590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Ni particle size on CO2 activation and CO formation during reforming process: A density functional theory study 镍粒度对重整过程中二氧化碳活化和一氧化碳形成的影响:密度泛函理论研究
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-06-30 DOI: 10.1007/s11708-024-0952-6
Juntian Niu, Shengzhuo Chen, Xianrong Zheng, Haiyu Liu, Yan Jin, Jingyu Ran

In recent years, the dry reforming of methane (DRM) reaction has gained widespread attention due to its effective utilization of two major greenhouse gases. Supported Ni-based catalysts for DRM exhibit a strong dependence on particle size, however, the reaction mechanisms involved remain unclear. In this work, the effect of metal particle size on CO2 activation and CO formation was explored in the DRM reaction using the density functional theory. Nix/MgO (x = 13, 25, 37) was constructed to investigate the CO2 activation and the formation of CO during the DRM reaction. It is found that CO2 is more inclined to undergo chemisorption on Nix/MgO before activation. With the variation in particle size, the main activation pathway of CO2 on the catalyst changes. On the smallest Ni13/MgO, CO2 tends to directly dissociate, while on the larger Ni25/MgO and Ni37/MgO, the hydrogenation dissociation of CO2 is more kinetically favorable. Compared to Ni13/MgO and Ni37/MgO, the oxidation of surface C atoms and the oxidation of CH occur more readily on Ni25/MgO. This indicates that C atoms are less likely to form on Ni25 particle and are more easily to be oxidized. To some extent, the results suggest that Ni25/MgO exhibits superior resistance to carbon formation.

近年来,甲烷干重整(DRM)反应因其对两种主要温室气体的有效利用而受到广泛关注。用于 DRM 的支撑镍基催化剂表现出与颗粒尺寸的强烈相关性,但其中涉及的反应机理仍不清楚。本研究利用密度泛函理论探讨了 DRM 反应中金属颗粒大小对 CO2 活化和 CO 生成的影响。构建了 Nix/MgO(x = 13、25、37)来研究 DRM 反应过程中 CO2 的活化和 CO 的形成。研究发现,二氧化碳在活化之前更倾向于在 Nix/MgO 上发生化学吸附。随着颗粒大小的变化,CO2 在催化剂上的主要活化途径也发生了变化。在最小的 Ni13/MgO 上,二氧化碳倾向于直接解离,而在较大的 Ni25/MgO 和 Ni37/MgO 上,二氧化碳的加氢解离在动力学上更为有利。与 Ni13/MgO 和 Ni37/MgO 相比,表面 C 原子的氧化和 CH 的氧化在 Ni25/MgO 上更容易发生。这表明 C 原子不太可能在 Ni25 颗粒上形成,而且更容易被氧化。在某种程度上,这些结果表明 Ni25/MgO 具有更强的抗碳形成能力。
{"title":"Impact of Ni particle size on CO2 activation and CO formation during reforming process: A density functional theory study","authors":"Juntian Niu,&nbsp;Shengzhuo Chen,&nbsp;Xianrong Zheng,&nbsp;Haiyu Liu,&nbsp;Yan Jin,&nbsp;Jingyu Ran","doi":"10.1007/s11708-024-0952-6","DOIUrl":"10.1007/s11708-024-0952-6","url":null,"abstract":"<div><p>In recent years, the dry reforming of methane (DRM) reaction has gained widespread attention due to its effective utilization of two major greenhouse gases. Supported Ni-based catalysts for DRM exhibit a strong dependence on particle size, however, the reaction mechanisms involved remain unclear. In this work, the effect of metal particle size on CO<sub>2</sub> activation and CO formation was explored in the DRM reaction using the density functional theory. Ni<i>x</i>/MgO (<i>x</i> = 13, 25, 37) was constructed to investigate the CO<sub>2</sub> activation and the formation of CO during the DRM reaction. It is found that CO<sub>2</sub> is more inclined to undergo chemisorption on Ni<i>x</i>/MgO before activation. With the variation in particle size, the main activation pathway of CO<sub>2</sub> on the catalyst changes. On the smallest Ni13/MgO, CO<sub>2</sub> tends to directly dissociate, while on the larger Ni25/MgO and Ni37/MgO, the hydrogenation dissociation of CO<sub>2</sub> is more kinetically favorable. Compared to Ni13/MgO and Ni37/MgO, the oxidation of surface C atoms and the oxidation of CH occur more readily on Ni25/MgO. This indicates that C atoms are less likely to form on Ni25 particle and are more easily to be oxidized. To some extent, the results suggest that Ni25/MgO exhibits superior resistance to carbon formation.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 4","pages":"525 - 534"},"PeriodicalIF":3.1,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1