Pub Date : 2023-06-20DOI: 10.1007/s11708-023-0880-x
Xilian Yang, Kanru Cheng, Qunfei Zhao, Yuzhang Wang
Intelligent power systems can improve operational efficiency by installing a large number of sensors. Data-based methods of supervised learning have gained popularity because of available Big Data and computing resources. However, the common paradigm of the loss function in supervised learning requires large amounts of labeled data and cannot process unlabeled data. The scarcity of fault data and a large amount of normal data in practical use pose great challenges to fault detection algorithms. Moreover, sensor data faults in power systems are dynamically changing and pose another challenge. Therefore, a fault detection method based on self-supervised feature learning was proposed to address the above two challenges. First, self-supervised learning was employed to extract features under various working conditions only using large amounts of normal data. The self-supervised representation learning uses a sequence-based Triplet Loss. The extracted features of large amounts of normal data are then fed into a unary classifier. The proposed method is validated on exhaust gas temperatures (EGTs) of a real-world 9F gas turbine with sudden, progressive, and hybrid faults. A comprehensive comparison study was also conducted with various feature extractors and unary classifiers. The results show that the proposed method can achieve a relatively high recall for all kinds of typical faults. The model can detect progressive faults very quickly and achieve improved results for comparison without feature extractors in terms of F1 score.
{"title":"Unknown fault detection for EGT multi-temperature signals based on self-supervised feature learning and unary classification","authors":"Xilian Yang, Kanru Cheng, Qunfei Zhao, Yuzhang Wang","doi":"10.1007/s11708-023-0880-x","DOIUrl":"10.1007/s11708-023-0880-x","url":null,"abstract":"<div><p>Intelligent power systems can improve operational efficiency by installing a large number of sensors. Data-based methods of supervised learning have gained popularity because of available Big Data and computing resources. However, the common paradigm of the loss function in supervised learning requires large amounts of labeled data and cannot process unlabeled data. The scarcity of fault data and a large amount of normal data in practical use pose great challenges to fault detection algorithms. Moreover, sensor data faults in power systems are dynamically changing and pose another challenge. Therefore, a fault detection method based on self-supervised feature learning was proposed to address the above two challenges. First, self-supervised learning was employed to extract features under various working conditions only using large amounts of normal data. The self-supervised representation learning uses a sequence-based Triplet Loss. The extracted features of large amounts of normal data are then fed into a unary classifier. The proposed method is validated on exhaust gas temperatures (EGTs) of a real-world 9F gas turbine with sudden, progressive, and hybrid faults. A comprehensive comparison study was also conducted with various feature extractors and unary classifiers. The results show that the proposed method can achieve a relatively high recall for all kinds of typical faults. The model can detect progressive faults very quickly and achieve improved results for comparison without feature extractors in terms of F1 score.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 4","pages":"527 - 544"},"PeriodicalIF":2.9,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4794095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-10DOI: 10.1007/s11708-023-0883-7
Xiangwan Du
First, a brief introduction is made to the four basic judgments and understandings of the goals of “carbon peaking and carbon neutrality.” Then, an in-depth elaboration is provided on the eight major strategies for achieving the goals of “carbon peaking and carbon neutrality,” including conservation and efficiency priority, energy security, non-fossil energy substitution, re-electrification, resource recycling, carbon sequestration, digitalization and cooperation between countries. Next, eight major implementation paths for achieving the goals of “carbon peaking and carbon neutrality” are discussed in detail, including industrial restructuring; building a clean, low-carbon, safe and efficient energy system, and renewing the understanding of China’s energy resource endowment; accelerating the construction of a new-type power system with a gradually growing proportion of new energy, and realizing the “possible triangle” of high-quality energy system development; utilizing electrification and deep decarbonization technologies to promote the orderly peaking and gradual neutralization of carbon emissions in the industrial sector; promoting the low-carbon transition of transportation vehicles to achieve carbon peaking and carbon neutrality in the transportation sector; focusing on breaking through key green building technologies to achieve zero carbon emissions from building electricity and heat; providing a strong technical support for carbon removal to achieve carbon neutrality; accelerating the construction of the integrated planning and assessment mechanism for pollution and carbon reduction, establishing a sound strategy, planning, policy and action system, and optimizing the carbon trading system. Afterwards, it is particularly pointed out that the realization of the goals of “carbon peaking and carbon neutrality” cannot be separated from the support of sci-tech innovation. Finally, it is stressed that carbon neutrality is not the end, but an important milestone. If viewed from the perspective of future energy, the significance and historical status of the goals of “carbon peaking and carbon neutrality” will be more understandable.
{"title":"Thoughts on strategies and paths to achieve carbon peaking and carbon neutrality in China","authors":"Xiangwan Du","doi":"10.1007/s11708-023-0883-7","DOIUrl":"10.1007/s11708-023-0883-7","url":null,"abstract":"<div><p>First, a brief introduction is made to the four basic judgments and understandings of the goals of “carbon peaking and carbon neutrality.” Then, an in-depth elaboration is provided on the eight major strategies for achieving the goals of “carbon peaking and carbon neutrality,” including conservation and efficiency priority, energy security, non-fossil energy substitution, re-electrification, resource recycling, carbon sequestration, digitalization and cooperation between countries. Next, eight major implementation paths for achieving the goals of “carbon peaking and carbon neutrality” are discussed in detail, including industrial restructuring; building a clean, low-carbon, safe and efficient energy system, and renewing the understanding of China’s energy resource endowment; accelerating the construction of a new-type power system with a gradually growing proportion of new energy, and realizing the “possible triangle” of high-quality energy system development; utilizing electrification and deep decarbonization technologies to promote the orderly peaking and gradual neutralization of carbon emissions in the industrial sector; promoting the low-carbon transition of transportation vehicles to achieve carbon peaking and carbon neutrality in the transportation sector; focusing on breaking through key green building technologies to achieve zero carbon emissions from building electricity and heat; providing a strong technical support for carbon removal to achieve carbon neutrality; accelerating the construction of the integrated planning and assessment mechanism for pollution and carbon reduction, establishing a sound strategy, planning, policy and action system, and optimizing the carbon trading system. Afterwards, it is particularly pointed out that the realization of the goals of “carbon peaking and carbon neutrality” cannot be separated from the support of sci-tech innovation. Finally, it is stressed that carbon neutrality is not the end, but an important milestone. If viewed from the perspective of future energy, the significance and historical status of the goals of “carbon peaking and carbon neutrality” will be more understandable.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 3","pages":"324 - 331"},"PeriodicalIF":2.9,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4423045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.1007/s11708-023-0873-9
Yue Zhou, Jianzhong Wu, Wei Gan
Peer-to-peer (P2P) energy trading is an emerging energy supply paradigm where customers with distributed energy resources (DERs) are allowed to directly trade and share electricity with each other. P2P energy trading can facilitate local power and energy balance, thus being a potential way to manage the rapidly increasing number of DERs in net zero transition. It is of great importance to explore P2P energy trading via public power networks, to which most DERs are connected. Despite the extensive research on P2P energy trading, there has been little large-scale commercial deployment in practice across the world. In this paper, the practical challenges of conducting P2P energy trading via public power networks are identified and presented, based on the analysis of a practical Local Virtual Private Networks (LVPNs) case in North Wales, UK. The ongoing efforts and emerging solutions to tackling the challenges are then summarized and critically reviewed. Finally, the way forward for facilitating P2P energy trading via public power networks is proposed.
{"title":"P2P energy trading via public power networks: Practical challenges, emerging solutions, and the way forward","authors":"Yue Zhou, Jianzhong Wu, Wei Gan","doi":"10.1007/s11708-023-0873-9","DOIUrl":"10.1007/s11708-023-0873-9","url":null,"abstract":"<div><p>Peer-to-peer (P2P) energy trading is an emerging energy supply paradigm where customers with distributed energy resources (DERs) are allowed to directly trade and share electricity with each other. P2P energy trading can facilitate local power and energy balance, thus being a potential way to manage the rapidly increasing number of DERs in net zero transition. It is of great importance to explore P2P energy trading via public power networks, to which most DERs are connected. Despite the extensive research on P2P energy trading, there has been little large-scale commercial deployment in practice across the world. In this paper, the practical challenges of conducting P2P energy trading via public power networks are identified and presented, based on the analysis of a practical Local Virtual Private Networks (LVPNs) case in North Wales, UK. The ongoing efforts and emerging solutions to tackling the challenges are then summarized and critically reviewed. Finally, the way forward for facilitating P2P energy trading via public power networks is proposed.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 2","pages":"189 - 197"},"PeriodicalIF":2.9,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11708-023-0873-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4432434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.1007/s11708-023-0877-5
Mingkuan Zhang, Xudong Zhang, Luna Guo, Xuan Li, Wei Rao
Liquid metal-based microchannel heat sinks (MCHSs) suffer from the low heat capacity of coolant, resulting in an excessive temperature rise of coolant and heat sink when dealing with high-power heat dissipation. In this paper, it was found that expanded space at the top of fins could distribute the heat inside microchannels, reducing the temperature rise of coolant and heat sink. The orthogonal experiments revealed that expanding the top space of channels yielded similar temperature reductions to changing the channel width. The flow and thermal modeling of expanded microchannel heat sink (E-MCHS) were analyzed by both using the 3-dimensional (3D) numerical simulation and the 1-dimensional (1D) thermal resistance model. The fin efficiency of E-MCHS was derived to improve the accuracy of the 1D thermal resistance model. The heat conduction of liquid metal in Z direction and the heat convection between the top surface of fins and the liquid metal could reduce the total thermal resistance (Rt). The above process was effective for microchannels with low channel aspect ratio, low mean velocity (Um) or long heat sink length. The maximum thermal resistance reduction in the example of this paper reached 36.0%. The expanded space endowed the heat sink with lower pressure, which might further reduce the pumping power (P). This rule was feasible both when fins were truncated (h2 < 0, h2 is the height of expanded channel for E-MCHS) and when over plate was raised (h2 > 0).
{"title":"Flow and thermal modeling of liquid metal in expanded microchannel heat sink","authors":"Mingkuan Zhang, Xudong Zhang, Luna Guo, Xuan Li, Wei Rao","doi":"10.1007/s11708-023-0877-5","DOIUrl":"10.1007/s11708-023-0877-5","url":null,"abstract":"<div><p>Liquid metal-based microchannel heat sinks (MCHSs) suffer from the low heat capacity of coolant, resulting in an excessive temperature rise of coolant and heat sink when dealing with high-power heat dissipation. In this paper, it was found that expanded space at the top of fins could distribute the heat inside microchannels, reducing the temperature rise of coolant and heat sink. The orthogonal experiments revealed that expanding the top space of channels yielded similar temperature reductions to changing the channel width. The flow and thermal modeling of expanded microchannel heat sink (E-MCHS) were analyzed by both using the 3-dimensional (3D) numerical simulation and the 1-dimensional (1D) thermal resistance model. The fin efficiency of E-MCHS was derived to improve the accuracy of the 1D thermal resistance model. The heat conduction of liquid metal in <i>Z</i> direction and the heat convection between the top surface of fins and the liquid metal could reduce the total thermal resistance (<i>R</i><sub>t</sub>). The above process was effective for microchannels with low channel aspect ratio, low mean velocity (<i>U</i><sub>m</sub>) or long heat sink length. The maximum thermal resistance reduction in the example of this paper reached 36.0%. The expanded space endowed the heat sink with lower pressure, which might further reduce the pumping power (<i>P</i>). This rule was feasible both when fins were truncated (<i>h</i><sub>2</sub> < 0, <i>h</i><sub>2</sub> is the height of expanded channel for E-MCHS) and when over plate was raised (<i>h</i><sub>2</sub> > 0).</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 6","pages":"796 - 810"},"PeriodicalIF":3.1,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72804161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-30DOI: 10.1007/s11708-023-0874-8
Chunqiu Xia, Wei Li, Xiaomin Chang, Ting Yang, Albert Y. Zomaya
The increasing use of distributed energy resources changes the way to manage the electricity system. Unlike the traditional centralized powered utility, many homes and businesses with local electricity generators have established their own microgrids, which increases the use of renewable energy while introducing a new challenge to the management of the microgrid system from the mismatch and unknown of renewable energy generations, load demands, and dynamic electricity prices. To address this challenge, a rank-based multiple-choice secretary algorithm (RMSA) was proposed for microgrid management, to reduce the microgrid operating cost. Rather than relying on the complete information of future dynamic variables or accurate predictive approaches, a lightweight solution was used to make real-time decisions under uncertainties. The RMSA enables a microgrid to reduce the operating cost by determining the best electricity purchase timing for each task under dynamic pricing. Extensive experiments were conducted on real-world data sets to prove the efficacy of our solution in complex and divergent real-world scenarios.
{"title":"A rank-based multiple-choice secretary algorithm for minimising microgrid operating cost under uncertainties","authors":"Chunqiu Xia, Wei Li, Xiaomin Chang, Ting Yang, Albert Y. Zomaya","doi":"10.1007/s11708-023-0874-8","DOIUrl":"10.1007/s11708-023-0874-8","url":null,"abstract":"<div><p>The increasing use of distributed energy resources changes the way to manage the electricity system. Unlike the traditional centralized powered utility, many homes and businesses with local electricity generators have established their own microgrids, which increases the use of renewable energy while introducing a new challenge to the management of the microgrid system from the mismatch and unknown of renewable energy generations, load demands, and dynamic electricity prices. To address this challenge, a rank-based multiple-choice secretary algorithm (RMSA) was proposed for microgrid management, to reduce the microgrid operating cost. Rather than relying on the complete information of future dynamic variables or accurate predictive approaches, a lightweight solution was used to make real-time decisions under uncertainties. The RMSA enables a microgrid to reduce the operating cost by determining the best electricity purchase timing for each task under dynamic pricing. Extensive experiments were conducted on real-world data sets to prove the efficacy of our solution in complex and divergent real-world scenarios.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 2","pages":"198 - 210"},"PeriodicalIF":2.9,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5143067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind power (WP) is considered as one of the main renewable energy sources (RESs) for future low-carbon and high-cost-efficient power system. However, its low inertia characteristic may threaten the system frequency stability of the power system with a high penetration of WP generation. Thus, the capability of WP participating in the system frequency regulation has become a research hotspot. In this paper, the impact of WP on power system frequency stability is initially presented. In addition, various existing control strategies of WP participating in frequency regulation are reviewed from the wind turbine (WT) level to the wind farm (WF) level, and their performances are compared in terms of operating principles and practical applications. The pros and cons of each control strategy are also discussed. Moreover, the WP combing with energy storage system (ESS) for system frequency regulation is explored. Furthermore, the prospects, future challenges, and solutions of WP participating in power system frequency regulation are summarized.
{"title":"A comprehensive review of wind power based power system frequency regulation","authors":"Zhang Wen, Liangzhong Yao, Fan Cheng, Jian Xu, Beilin Mao, Rusi Chen","doi":"10.1007/s11708-023-0876-6","DOIUrl":"10.1007/s11708-023-0876-6","url":null,"abstract":"<div><p>Wind power (WP) is considered as one of the main renewable energy sources (RESs) for future low-carbon and high-cost-efficient power system. However, its low inertia characteristic may threaten the system frequency stability of the power system with a high penetration of WP generation. Thus, the capability of WP participating in the system frequency regulation has become a research hotspot. In this paper, the impact of WP on power system frequency stability is initially presented. In addition, various existing control strategies of WP participating in frequency regulation are reviewed from the wind turbine (WT) level to the wind farm (WF) level, and their performances are compared in terms of operating principles and practical applications. The pros and cons of each control strategy are also discussed. Moreover, the WP combing with energy storage system (ESS) for system frequency regulation is explored. Furthermore, the prospects, future challenges, and solutions of WP participating in power system frequency regulation are summarized.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 5","pages":"611 - 634"},"PeriodicalIF":2.9,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75857303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.1007/s11708-023-0863-y
Muhammad Tauseef Nasir, Mirae Kim, Jaehwa Lee, Seungho Kim, Kyung Chun Kim
In modern times, worldwide requirements to curb greenhouse gas emissions, and increment in energy demand due to the progress of humanity, have become a serious concern. In such scenarios, the effective and efficient utilization of the liquified natural gas (LNG) regasification cold energy (RCE), in the economically and environmentally viable methods, could present a great opportunity in tackling the core issues related to global warming across the world. In this paper, the technologies that are widely used to harness the LNG RCE for electrical power have been reviewed. The systems incorporating, the Rankine cycles, Stirling engines, Kalina cycles, Brayton cycles, Allam cycles, and fuel cells have been considered. Additionally, the economic and environmental studies apart from the thermal studies have also been reviewed. Moreover, the discussion regarding the systems with respect to the regassification pressure of the LNG has also been provided. The aim of this paper is to provide guidelines for the prospective researchers and policy makers in their decision making.
{"title":"A review on technologies with electricity generation potentials using liquified natural gas regasification cold energy","authors":"Muhammad Tauseef Nasir, Mirae Kim, Jaehwa Lee, Seungho Kim, Kyung Chun Kim","doi":"10.1007/s11708-023-0863-y","DOIUrl":"10.1007/s11708-023-0863-y","url":null,"abstract":"<div><p>In modern times, worldwide requirements to curb greenhouse gas emissions, and increment in energy demand due to the progress of humanity, have become a serious concern. In such scenarios, the effective and efficient utilization of the liquified natural gas (LNG) regasification cold energy (RCE), in the economically and environmentally viable methods, could present a great opportunity in tackling the core issues related to global warming across the world. In this paper, the technologies that are widely used to harness the LNG RCE for electrical power have been reviewed. The systems incorporating, the Rankine cycles, Stirling engines, Kalina cycles, Brayton cycles, Allam cycles, and fuel cells have been considered. Additionally, the economic and environmental studies apart from the thermal studies have also been reviewed. Moreover, the discussion regarding the systems with respect to the regassification pressure of the LNG has also been provided. The aim of this paper is to provide guidelines for the prospective researchers and policy makers in their decision making.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 3","pages":"332 - 379"},"PeriodicalIF":2.9,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5158981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alkali carbonate-based sorbents (ACSs), including Na2CO3- and K2CO3-based sorbents, are promising for CO2 capture. However, the complex sorbent components and operation conditions lead to the versatile kinetics of CO2 sorption on these sorbents. This paper proposed that operando modeling and measurements are powerful tools to understand the mechanism of sorbents in real operating conditions, facilitating the sorbent development, reactor design, and operation parameter optimization. It reviewed the theoretical simulation achievements during the development of ACSs. It elucidated the findings obtained by utilizing density functional theory (DFT) calculations, ab initio molecular dynamics (AIMD) simulations, and classical molecular dynamics (CMD) simulations as well. The hygroscopicity of sorbent and the humidity of gas flow are crucial to shifting the carbonation reaction from the gas—solid mode to the gas—liquid mode, boosting the kinetics. Moreover, it briefly introduced a machine learning (ML) approach as a promising method to aid sorbent design. Furthermore, it demonstrated a conceptual compact operando measurement system in order to understand the behavior of ACSs in the real operation process. The proposed measurement system includes a micro fluidized-bed (MFB) reactor for kinetic analysis, a multi-camera sub-system for 3D particle movement tracking, and a combined Raman and IR sub-system for solid/gas components and temperature monitoring. It is believed that this system is useful to evaluate the real-time sorbent performance, validating the theoretical prediction and promoting the industrial scale-up of ACSs for CO2 capture.
{"title":"Operando modeling and measurements: Powerful tools for revealing the mechanism of alkali carbonate-based sorbents for CO2 capture in real conditions","authors":"Tianyi Cai, Mengshi Wang, Xiaoping Chen, Ye Wu, Jiliang Ma, Wu Zhou","doi":"10.1007/s11708-023-0872-x","DOIUrl":"10.1007/s11708-023-0872-x","url":null,"abstract":"<div><p>Alkali carbonate-based sorbents (ACSs), including Na<sub>2</sub>CO<sub>3</sub>- and K<sub>2</sub>CO<sub>3</sub>-based sorbents, are promising for CO<sub>2</sub> capture. However, the complex sorbent components and operation conditions lead to the versatile kinetics of CO<sub>2</sub> sorption on these sorbents. This paper proposed that operando modeling and measurements are powerful tools to understand the mechanism of sorbents in real operating conditions, facilitating the sorbent development, reactor design, and operation parameter optimization. It reviewed the theoretical simulation achievements during the development of ACSs. It elucidated the findings obtained by utilizing density functional theory (DFT) calculations, ab initio molecular dynamics (AIMD) simulations, and classical molecular dynamics (CMD) simulations as well. The hygroscopicity of sorbent and the humidity of gas flow are crucial to shifting the carbonation reaction from the gas—solid mode to the gas—liquid mode, boosting the kinetics. Moreover, it briefly introduced a machine learning (ML) approach as a promising method to aid sorbent design. Furthermore, it demonstrated a conceptual compact operando measurement system in order to understand the behavior of ACSs in the real operation process. The proposed measurement system includes a micro fluidized-bed (MFB) reactor for kinetic analysis, a multi-camera sub-system for 3D particle movement tracking, and a combined Raman and IR sub-system for solid/gas components and temperature monitoring. It is believed that this system is useful to evaluate the real-time sorbent performance, validating the theoretical prediction and promoting the industrial scale-up of ACSs for CO<sub>2</sub> capture.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 3","pages":"380 - 389"},"PeriodicalIF":2.9,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4834287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, using fractured shale cores, isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO2 geological storage efficiency under real reservoir conditions. The adsorption process of shale to different gases was in agreement with the extended-Langmuir model, and the adsorption capacity of CO2 was the largest, followed by CH4, and that of N2 was the smallest of the three pure gases. In addition, when the CO2 concentration in the mixed gas exceeded 50%, the adsorption capacity of the mixed gas was greater than that of CH4, and had a strong competitive adsorption effect. For the core flooding tests, pure gas injection showed that the breakthrough time of CO2 was longer than that of N2, and the CH4 recovery factor at the breakthrough time (left({{R_{{rm{C}}{{rm{H}}_4}}}} right)) was also higher than that of N2. The ({R_{{rm{C}}{{rm{H}}_4}}}) of CO2 gas injection was approximately 44.09%, while the ({R_{{rm{C}}{{rm{H}}_4}}}) of N2 was only 31.63%. For CO2/N2 mixed gas injection, with the increase of CO2 concentration, the ({R_{{rm{C}}{{rm{H}}_4}}}) increased, and the ({R_{{rm{C}}{{rm{H}}_4}}}) for mixed gas CO2/N2 = 8:2 was close to that of pure CO2, about 40.24%. Moreover, the breakthrough time of N2 in mixed gas was not much different from that when pure N2 was injected, while the breakthrough time of CO2 was prolonged, which indicated that with the increase of N2 concentration in the mixed gas, the breakthrough time of CO2 could be extended. Furthermore, an abnormal surge of N2 concentration in the produced gas was observed after N2 breakthrough. In regards to CO2 storage efficiency (left({{S_{{rm{storage - C}}{{rm{O}}_2}}}} right)), as the CO2 concentration increased, ({S_{{rm{storage - C}}{{rm{O}}_2}}}) also increased. The ({S_{{rm{storage - C}}{{rm{O}}_2}}}) of the pure CO2 gas injection was about 35.96%, while for mixed gas CO2/N2 = 8:2, ({S_{{rm{storage - C}}{{rm{O}}_2}}}) was about 32.28%.
本文采用裂缝型页岩岩心,通过等温吸附实验和岩心驱油试验,研究了在真实储层条件下注入不同气体提高页岩气采收率和CO2地质储气效率的效果。页岩对不同气体的吸附过程符合扩展langmuir模型,3种纯气体中CO2吸附量最大,CH4次之,N2吸附量最小。此外,当混合气体中的CO2浓度超过50%, the adsorption capacity of the mixed gas was greater than that of CH4, and had a strong competitive adsorption effect. For the core flooding tests, pure gas injection showed that the breakthrough time of CO2 was longer than that of N2, and the CH4 recovery factor at the breakthrough time (left({{R_{{rm{C}}{{rm{H}}_4}}}} right)) was also higher than that of N2. The ({R_{{rm{C}}{{rm{H}}_4}}}) of CO2 gas injection was approximately 44.09%, while the ({R_{{rm{C}}{{rm{H}}_4}}}) of N2 was only 31.63%. For CO2/N2 mixed gas injection, with the increase of CO2 concentration, the ({R_{{rm{C}}{{rm{H}}_4}}}) increased, and the ({R_{{rm{C}}{{rm{H}}_4}}}) for mixed gas CO2/N2 = 8:2 was close to that of pure CO2, about 40.24%. Moreover, the breakthrough time of N2 in mixed gas was not much different from that when pure N2 was injected, while the breakthrough time of CO2 was prolonged, which indicated that with the increase of N2 concentration in the mixed gas, the breakthrough time of CO2 could be extended. Furthermore, an abnormal surge of N2 concentration in the produced gas was observed after N2 breakthrough. In regards to CO2 storage efficiency (left({{S_{{rm{storage - C}}{{rm{O}}_2}}}} right)), as the CO2 concentration increased, ({S_{{rm{storage - C}}{{rm{O}}_2}}}) also increased. The ({S_{{rm{storage - C}}{{rm{O}}_2}}}) of the pure CO2 gas injection was about 35.96%, while for mixed gas CO2/N2 = 8:2, ({S_{{rm{storage - C}}{{rm{O}}_2}}}) was about 32.28%.
{"title":"CO2, N2, and CO2/N2 mixed gas injection for enhanced shale gas recovery and CO2 geological storage","authors":"Jianfa Wu, Haoran Hu, Cheng Chang, Deliang Zhang, Jian Zhang, Shengxian Zhao, Bo Wang, Qiushi Zhang, Yiming Chen, Fanhua Zeng","doi":"10.1007/s11708-023-0865-9","DOIUrl":"10.1007/s11708-023-0865-9","url":null,"abstract":"<div><p>In this work, using fractured shale cores, isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO<sub>2</sub> geological storage efficiency under real reservoir conditions. The adsorption process of shale to different gases was in agreement with the extended-Langmuir model, and the adsorption capacity of CO<sub>2</sub> was the largest, followed by CH<sub>4</sub>, and that of N<sub>2</sub> was the smallest of the three pure gases. In addition, when the CO<sub>2</sub> concentration in the mixed gas exceeded 50%, the adsorption capacity of the mixed gas was greater than that of CH<sub>4</sub>, and had a strong competitive adsorption effect. For the core flooding tests, pure gas injection showed that the breakthrough time of CO<sub>2</sub> was longer than that of N<sub>2</sub>, and the CH<sub>4</sub> recovery factor at the breakthrough time <span>(left({{R_{{rm{C}}{{rm{H}}_4}}}} right))</span> was also higher than that of N<sub>2</sub>. The <span>({R_{{rm{C}}{{rm{H}}_4}}})</span> of CO<sub>2</sub> gas injection was approximately 44.09%, while the <span>({R_{{rm{C}}{{rm{H}}_4}}})</span> of N<sub>2</sub> was only 31.63%. For CO<sub>2</sub>/N<sub>2</sub> mixed gas injection, with the increase of CO<sub>2</sub> concentration, the <span>({R_{{rm{C}}{{rm{H}}_4}}})</span> increased, and the <span>({R_{{rm{C}}{{rm{H}}_4}}})</span> for mixed gas CO<sub>2</sub>/N<sub>2</sub> = 8:2 was close to that of pure CO<sub>2</sub>, about 40.24%. Moreover, the breakthrough time of N<sub>2</sub> in mixed gas was not much different from that when pure N2 was injected, while the breakthrough time of CO<sub>2</sub> was prolonged, which indicated that with the increase of N<sub>2</sub> concentration in the mixed gas, the breakthrough time of CO<sub>2</sub> could be extended. Furthermore, an abnormal surge of N<sub>2</sub> concentration in the produced gas was observed after N<sub>2</sub> breakthrough. In regards to CO<sub>2</sub> storage efficiency <span>(left({{S_{{rm{storage - C}}{{rm{O}}_2}}}} right))</span>, as the CO<sub>2</sub> concentration increased, <span>({S_{{rm{storage - C}}{{rm{O}}_2}}})</span> also increased. The <span>({S_{{rm{storage - C}}{{rm{O}}_2}}})</span> of the pure CO<sub>2</sub> gas injection was about 35.96%, while for mixed gas CO<sub>2</sub>/N<sub>2</sub> = 8:2, <span>({S_{{rm{storage - C}}{{rm{O}}_2}}})</span> was about 32.28%.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 3","pages":"428 - 445"},"PeriodicalIF":2.9,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5081708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-28DOI: 10.1007/s11708-023-0867-7
Juntian Niu, Cunxin Zhang, Haiyu Liu, Yan Jin, Riguang Zhang
The effect of oxygen vacancies on the adsorption and activation of CO2 on the surface of different phases of ZrO2 is investigated by density functional theory (DFT) calculations. The calculations show that the oxygen vacancies contribute greatly to both the adsorption and activation of CO2. The adsorption energy of CO2 on the c-ZrO2, t-ZrO2 and, m-ZrO2 surfaces is enhanced to 5, 4, and 3 folds with the help of oxygen vacancies, respectively. Moreover, the energy barrier of CO2 dissociation on the defective surfaces of c-ZrO2, t-ZrO2, and m-ZrO2 is reduced to 1/2, 1/4, and 1/5 of the perfect surface with the assistance of oxygen vacancies. Furthermore, the activation of CO2 on the ZrO2 surface where oxygen vacancies are present, and changes from an endothermic reaction to an exothermic reaction. This finding demonstrates that the presence of oxygen vacancies promotes the activation of CO2 both kinetically and thermodynamically. These results could provide guidance for the high-efficient utilization of CO2 at an atomic scale.
{"title":"Enhanced performance of oxygen vacancies on CO2 adsorption and activation over different phases of ZrO2","authors":"Juntian Niu, Cunxin Zhang, Haiyu Liu, Yan Jin, Riguang Zhang","doi":"10.1007/s11708-023-0867-7","DOIUrl":"10.1007/s11708-023-0867-7","url":null,"abstract":"<div><p>The effect of oxygen vacancies on the adsorption and activation of CO<sub>2</sub> on the surface of different phases of ZrO<sub>2</sub> is investigated by density functional theory (DFT) calculations. The calculations show that the oxygen vacancies contribute greatly to both the adsorption and activation of CO<sub>2</sub>. The adsorption energy of CO<sub>2</sub> on the c-ZrO<sub>2</sub>, t-ZrO<sub>2</sub> and, m-ZrO<sub>2</sub> surfaces is enhanced to 5, 4, and 3 folds with the help of oxygen vacancies, respectively. Moreover, the energy barrier of CO<sub>2</sub> dissociation on the defective surfaces of c-ZrO<sub>2</sub>, t-ZrO<sub>2</sub>, and m-ZrO<sub>2</sub> is reduced to 1/2, 1/4, and 1/5 of the perfect surface with the assistance of oxygen vacancies. Furthermore, the activation of CO<sub>2</sub> on the ZrO<sub>2</sub> surface where oxygen vacancies are present, and changes from an endothermic reaction to an exothermic reaction. This finding demonstrates that the presence of oxygen vacancies promotes the activation of CO<sub>2</sub> both kinetically and thermodynamically. These results could provide guidance for the high-efficient utilization of CO<sub>2</sub> at an atomic scale.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 4","pages":"545 - 554"},"PeriodicalIF":2.9,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5078459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}