首页 > 最新文献

Frontiers of Physics最新文献

英文 中文
Low-energy elastic (anti)neutrino–nucleon scattering in covariant baryon chiral perturbation theory 协变重子手性扰动理论中的低能弹性(反)中微子-核子散射
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-06-20 DOI: 10.1007/s11467-024-1417-4
Jin-Man Chen, Ze-Rui Liang, De-Liang Yao

The low-energy antineutrino- and neutrino–nucleon neutral current elastic scattering is studied within the framework of the relativistic SU(2) baryon chiral perturbation theory up to the order of ({cal O}({p^{3}})). We have derived the model-independent hadronic amplitudes and extracted the form factors from them. It is found that differential cross sections dσ/dQ2 for the processes of (anti)neutrino–proton scattering are in good agreement with the existing MiniBooNE data in the Q2 region [0.13, 0.20] GeV2, where nuclear effects are expected to be negligible. For Q2 ≤ 0.13 GeV2, large deviation is observed, which is mainly owing to the sizeable Pauli blocking effect. Comparisons with the simulation data produced by the NuWro and GENIE Mento Carlo events generators are also discussed. The chiral results obtained in this work can be utilized as inputs in various nuclear models to achieve the goal of precise determination of the strangeness axial vector form factor, in particular when the low-energy MicroBooNE data are available in the near future.

我们在相对论性SU(2)重子手性扰动理论的框架内研究了低能反中子和中子-核子中性电流弹性散射,直到({cal O}({p^{3}}))阶。我们导出了与模型无关的强子振幅,并从中提取了形式因子。我们发现,(反)中微子-质子散射过程的微分截面 dσ/dQ2 与 Q2 区域 [0.13, 0.20] GeV2 的现有 MiniBooNE 数据非常吻合,在该区域,核效应预计可以忽略不计。在 Q2 ≤ 0.13 GeV2 时,观察到了较大的偏差,这主要是由于相当大的保利阻挡效应造成的。此外,还讨论了与 NuWro 和 GENIE 门托卡罗事件发生器产生的模拟数据的比较。这项工作中获得的手性结果可以作为各种核模型的输入,以实现精确测定陌生化轴向矢量形式因子的目标,特别是在不久的将来获得低能微布恩数据时。
{"title":"Low-energy elastic (anti)neutrino–nucleon scattering in covariant baryon chiral perturbation theory","authors":"Jin-Man Chen,&nbsp;Ze-Rui Liang,&nbsp;De-Liang Yao","doi":"10.1007/s11467-024-1417-4","DOIUrl":"10.1007/s11467-024-1417-4","url":null,"abstract":"<div><p>The low-energy antineutrino- and neutrino–nucleon neutral current elastic scattering is studied within the framework of the relativistic <i>SU</i>(2) baryon chiral perturbation theory up to the order of <span>({cal O}({p^{3}}))</span>. We have derived the model-independent hadronic amplitudes and extracted the form factors from them. It is found that differential cross sections d<i>σ</i>/d<i>Q</i><sup>2</sup> for the processes of (anti)neutrino–proton scattering are in good agreement with the existing MiniBooNE data in the <i>Q</i><sup>2</sup> region [0.13, 0.20] GeV<sup>2</sup>, where nuclear effects are expected to be negligible. For <i>Q</i><sup>2</sup> ≤ 0.13 GeV<sup>2</sup>, large deviation is observed, which is mainly owing to the sizeable Pauli blocking effect. Comparisons with the simulation data produced by the NuWro and GENIE Mento Carlo events generators are also discussed. The chiral results obtained in this work can be utilized as inputs in various nuclear models to achieve the goal of precise determination of the strangeness axial vector form factor, in particular when the low-energy MicroBooNE data are available in the near future.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 6","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum vortices get stretched 量子漩涡被拉伸
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-06-05 DOI: 10.1007/s11467-024-1410-y
Emanuel A. L. Henn
{"title":"Quantum vortices get stretched","authors":"Emanuel A. L. Henn","doi":"10.1007/s11467-024-1410-y","DOIUrl":"10.1007/s11467-024-1410-y","url":null,"abstract":"","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 3","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141406365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures 二维 HfSe2 模板的稳定碱卤化物气相辅助化学气相沉积及其异质结构的可控氧化作用
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-06-05 DOI: 10.1007/s11467-024-1414-7
Wenlong Chu, Xilong Zhou, Ze Wang, Xiulian Fan, Xuehao Guo, Cheng Li, Jianling Yue, Fangping Ouyang, Jiong Zhao, Yu Zhou

Two-dimensional hafnium-based semiconductors and their heterostructures with native oxides have been shown unique physical properties and potential electronic and optoelectronic applications. However, the scalable synthesis methods for ultrathin layered hafnium-based semiconductor laterally epitaxy growth and its heterostructure are still restricted, also for the understanding of its formation mechanism. Herein, we report the stable sublimation of alkali halide vapor assisted synthesis strategy for high-quality 2D HfSe2 nanosheets via chemical vapor deposition. Single-crystalline ultrathin 2D HfSe2 nanosheets were systematically grown by tuning the growth parameters, reaching the lateral size of 6–40 µm and the thickness down to 4.5 nm. The scalable amorphous HfO2 and HfSe2 heterostructures were achieved by the controllable oxidation, which benefited from the approximate zero Gibbs free energy of unstable 2D HfSe2 templates. The crystal structure, elemental, and time dependent Raman characterization were carried out to understand surface precipitated Se atoms and the formation of amorphous Hf–O bonds, confirming the slow surface oxidation and lattice incorporation of oxygen atoms. The relatively smooth surface roughness and electrical potential change of HfO2–HfSe2 heterostructures indicate the excellent interface quality, which helps obtain the high performance memristor with high on/off ratio of 105 and long retention period over 9000 s. Our work introduces a new vapor catalysts strategy for the synthesis of lateral 2D HfSe2 nanosheets, also providing the scalable oxidation of the Hf-based heterostructures for 2D electronic devices.

二维铪基半导体及其与原生氧化物的异质结构已显示出独特的物理特性和潜在的电子和光电应用。然而,超薄层状铪基半导体横向外延生长及其异质结构的可扩展合成方法仍然受到限制,这也不利于对其形成机理的理解。在此,我们报告了通过化学气相沉积稳定升华碱卤化物气相辅助合成高质量二维 HfSe2 纳米片的策略。通过调整生长参数,系统地生长出了单晶超薄二维 HfSe2 纳米片,其横向尺寸达到 6-40 µm,厚度低至 4.5 nm。由于不稳定的二维 HfSe2 模板的吉布斯自由能近似为零,通过可控氧化实现了可扩展的非晶态 HfO2 和 HfSe2 异质结构。为了了解表面析出的硒原子和非晶态 Hf-O 键的形成情况,对晶体结构、元素和时间依赖性拉曼特性进行了分析,证实了缓慢的表面氧化和氧原子的晶格结合。HfO2-HfSe2 异质结构相对平滑的表面粗糙度和电势变化表明其具有优异的界面质量,这有助于获得高性能的忆阻器,其开关比高达 105,保持时间长达 9000 秒以上。我们的工作为横向二维 HfSe2 纳米片的合成引入了一种新的气相催化剂策略,同时也为二维电子器件提供了可扩展的铪基异质结构氧化方法。
{"title":"Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures","authors":"Wenlong Chu,&nbsp;Xilong Zhou,&nbsp;Ze Wang,&nbsp;Xiulian Fan,&nbsp;Xuehao Guo,&nbsp;Cheng Li,&nbsp;Jianling Yue,&nbsp;Fangping Ouyang,&nbsp;Jiong Zhao,&nbsp;Yu Zhou","doi":"10.1007/s11467-024-1414-7","DOIUrl":"10.1007/s11467-024-1414-7","url":null,"abstract":"<div><p>Two-dimensional hafnium-based semiconductors and their heterostructures with native oxides have been shown unique physical properties and potential electronic and optoelectronic applications. However, the scalable synthesis methods for ultrathin layered hafnium-based semiconductor laterally epitaxy growth and its heterostructure are still restricted, also for the understanding of its formation mechanism. Herein, we report the stable sublimation of alkali halide vapor assisted synthesis strategy for high-quality 2D HfSe<sub>2</sub> nanosheets via chemical vapor deposition. Single-crystalline ultrathin 2D HfSe<sub>2</sub> nanosheets were systematically grown by tuning the growth parameters, reaching the lateral size of 6–40 µm and the thickness down to 4.5 nm. The scalable amorphous HfO<sub>2</sub> and HfSe<sub>2</sub> heterostructures were achieved by the controllable oxidation, which benefited from the approximate zero Gibbs free energy of unstable 2D HfSe<sub>2</sub> templates. The crystal structure, elemental, and time dependent Raman characterization were carried out to understand surface precipitated Se atoms and the formation of amorphous Hf–O bonds, confirming the slow surface oxidation and lattice incorporation of oxygen atoms. The relatively smooth surface roughness and electrical potential change of HfO<sub>2</sub>–HfSe<sub>2</sub> heterostructures indicate the excellent interface quality, which helps obtain the high performance memristor with high on/off ratio of 10<sup>5</sup> and long retention period over 9000 s. Our work introduces a new vapor catalysts strategy for the synthesis of lateral 2D HfSe<sub>2</sub> nanosheets, also providing the scalable oxidation of the Hf-based heterostructures for 2D electronic devices.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 3","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping 掺杂 Ge 的本征磁性拓扑绝缘体 MnBi2Te4 的磁学和电学输运研究
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-05-31 DOI: 10.1007/s11467-024-1408-5
Qingwang Bai, Mingxiang Xu

As an intrinsic magnetic topological insulator with magnetic order and non-trivial topological structure, MnBi2Te4 is an ideal material for studying exotic topological states such as quantum anomalous Hall effect and topological axion insulating states. Here, we carry out magnetic and electrical transport measurements on (Mn1−xGex)Bi2Te4 (x = 0, 0.15, 0.30, 0.45, 0.60, and 0.75) single crystals. It is found that with increasing x, the dilution of magnetic moments gradually weakens the antiferromagnetic exchange interaction. Moreover, Ge doping reduces the critical field of ferromagnetic ordering, which may provide a possible way to implement the quantum anomalous Hall effect at lower magnetic field. Electrical transport measurements suggest that electrons are the dominant charge carriers, and the carrier density increases with the Ge doping ratio. Additionally, the Kondo effect is observed in the samples with x = 0.45, 0.60, and 0.75. Our results suggest that doping germanium is a viable way to tune the magnetic and electrical transport properties of MnBi2Te4, opening up the possibility of future applications in magnetic topological insulators.

作为一种具有磁有序和非三重拓扑结构的本征磁性拓扑绝缘体,MnBi2Te4 是研究量子反常霍尔效应和拓扑轴心绝缘态等奇异拓扑态的理想材料。在这里,我们对 (Mn1-xGex)Bi2Te4(x = 0、0.15、0.30、0.45、0.60 和 0.75)单晶体进行了磁学和电学输运测量。研究发现,随着 x 的增加,磁矩的稀释会逐渐减弱反铁磁交换相互作用。此外,Ge 掺杂降低了铁磁有序的临界磁场,这为在较低磁场下实现量子反常霍尔效应提供了可能。电传输测量表明,电子是主要的电荷载流子,载流子密度随 Ge 掺杂比例的增加而增加。此外,在 x = 0.45、0.60 和 0.75 的样品中观察到了近藤效应。我们的研究结果表明,掺杂锗是调整 MnBi2Te4 的磁性和电性传输特性的一种可行方法,为未来应用于磁性拓扑绝缘体提供了可能。
{"title":"Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping","authors":"Qingwang Bai,&nbsp;Mingxiang Xu","doi":"10.1007/s11467-024-1408-5","DOIUrl":"10.1007/s11467-024-1408-5","url":null,"abstract":"<div><p>As an intrinsic magnetic topological insulator with magnetic order and non-trivial topological structure, MnBi<sub>2</sub>Te<sub>4</sub> is an ideal material for studying exotic topological states such as quantum anomalous Hall effect and topological axion insulating states. Here, we carry out magnetic and electrical transport measurements on (Mn<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>)Bi<sub>2</sub>Te<sub>4</sub> (<i>x</i> = 0, 0.15, 0.30, 0.45, 0.60, and 0.75) single crystals. It is found that with increasing <i>x</i>, the dilution of magnetic moments gradually weakens the antiferromagnetic exchange interaction. Moreover, Ge doping reduces the critical field of ferromagnetic ordering, which may provide a possible way to implement the quantum anomalous Hall effect at lower magnetic field. Electrical transport measurements suggest that electrons are the dominant charge carriers, and the carrier density increases with the Ge doping ratio. Additionally, the Kondo effect is observed in the samples with <i>x</i> = 0.45, 0.60, and 0.75. Our results suggest that doping germanium is a viable way to tune the magnetic and electrical transport properties of MnBi<sub>2</sub>Te<sub>4</sub>, opening up the possibility of future applications in magnetic topological insulators.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 3","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of thermal effects on atomic Bloch oscillation 热效应对原子布洛赫振荡的影响
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-05-31 DOI: 10.1007/s11467-024-1420-9
Guoling Yin, Chi-Kin Lai, Nana Chang, Yi Liang, Dekai Mao, Xiaoji Zhou

Advancements in the experimental toolbox of cold atoms have enabled the meticulous control of atomic Bloch oscillation (BO) within optical lattices, thereby enhancing the capabilities of gravity interferometers. This work delves into the impact of thermal effects on Bloch oscillation in 1D accelerated optical lattices aligned with gravity by varying the system’s initial temperature. Through the application of Raman cooling, we effectively reduce the longitudinal thermal effect, stabilizing the longitudinal coherence length over the timescale of its lifetime. The atomic losses over multiple Bloch periods are measured, which are primarily attributed to transverse excitation. Furthermore, we identify two distinct inverse scaling behaviors in the oscillation lifetime scaled by the corresponding density with respect to temperatures, implying diverse equilibrium processes within or outside the Bose–Einstein condensate (BEC) regime. The competition between the system’s coherence and atomic density leads to a relatively smooth variation in the actual lifetime versus temperature. Our findings provide valuable insights into the interaction between thermal effects and BO, offering avenues for the refinement of quantum measurement technologies.

冷原子实验工具箱的进步实现了对光学晶格内原子布洛赫振荡(BO)的精细控制,从而提高了重力干涉仪的能力。这项工作通过改变系统的初始温度,深入研究热效应对与重力对齐的一维加速光学晶格中布洛赫振荡的影响。通过应用拉曼冷却,我们有效地降低了纵向热效应,稳定了纵向相干长度在其生命周期内的时间尺度。我们测量了多个布洛赫周期的原子损耗,这主要归因于横向激发。此外,我们在振荡寿命中发现了两种截然不同的反向缩放行为,即相应密度与温度的缩放关系,这意味着在玻色-爱因斯坦凝聚态(BEC)机制内外存在着不同的平衡过程。系统的相干性和原子密度之间的竞争导致实际寿命相对于温度的平滑变化。我们的发现为热效应与玻色-爱因斯坦凝聚态之间的相互作用提供了宝贵的见解,为完善量子测量技术提供了途径。
{"title":"Influence of thermal effects on atomic Bloch oscillation","authors":"Guoling Yin,&nbsp;Chi-Kin Lai,&nbsp;Nana Chang,&nbsp;Yi Liang,&nbsp;Dekai Mao,&nbsp;Xiaoji Zhou","doi":"10.1007/s11467-024-1420-9","DOIUrl":"10.1007/s11467-024-1420-9","url":null,"abstract":"<div><p>Advancements in the experimental toolbox of cold atoms have enabled the meticulous control of atomic Bloch oscillation (BO) within optical lattices, thereby enhancing the capabilities of gravity interferometers. This work delves into the impact of thermal effects on Bloch oscillation in 1D accelerated optical lattices aligned with gravity by varying the system’s initial temperature. Through the application of Raman cooling, we effectively reduce the longitudinal thermal effect, stabilizing the longitudinal coherence length over the timescale of its lifetime. The atomic losses over multiple Bloch periods are measured, which are primarily attributed to transverse excitation. Furthermore, we identify two distinct inverse scaling behaviors in the oscillation lifetime scaled by the corresponding density with respect to temperatures, implying diverse equilibrium processes within or outside the Bose–Einstein condensate (BEC) regime. The competition between the system’s coherence and atomic density leads to a relatively smooth variation in the actual lifetime versus temperature. Our findings provide valuable insights into the interaction between thermal effects and BO, offering avenues for the refinement of quantum measurement technologies.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 6","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localization–delocalization transitions in non-Hermitian Aharonov–Bohm cages 非ermitian Aharonov-Bohm 笼中的局域化-非局域化转变
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-05-31 DOI: 10.1007/s11467-024-1412-9
Xiang Li, Jin Liu, Tao Liu

A unique feature of non-Hermitian systems is the extreme sensitivity of the eigenspectrum to boundary conditions with the emergence of the non-Hermitian skin effect (NHSE). A NHSE originates from the point-gap topology of complex eigenspectrum, where an extensive number of eigen-states are anomalously localized at the boundary driven by nonreciprocal dissipation. Two different approaches to create localization are disorder and flat-band spectrum, and their interplay can lead to the anomalous inverse Anderson localization, where the Bernoulli anti-symmetric disorder induces mobility in a full-flat band system in the presence of Aharonov–Bohm (AB) Cage. In this work, we study the localization–delocalization transitions due to the interplay of the point-gap topology, flat band and correlated disorder in the one-dimensional rhombic lattice, where both its Hermitian and non-Hermitian structures show AB cage in the presence of magnetic flux. Although it remains the coexistence of localization and delocalization for the Hermitian rhombic lattice in the presence of the random anti-symmetric disorder, it surprisingly becomes complete delocalization, accompanied by the emergence of NHSE. To further study the effects from the Bernoulli anti-symmetric disorder, we found the similar NHSE due to the interplay of the point-gap topology, correlated disorder and flat bands. Our anomalous localization–delocalization property can be experimentally tested in the classical physical platform, such as electrical circuit.

非赫米提系统的一个独特特征是其特征谱对边界条件极其敏感,并出现非赫米提趋肤效应(NHSE)。NHSE 源自复杂特征谱的点隙拓扑,在这种拓扑中,大量特征状态在非互易耗散的驱动下异常地局部化在边界上。产生局域化的两种不同方法是无序和平带谱,它们之间的相互作用会导致反常的反安德森局域化,即在阿哈诺夫-玻姆(AB)笼存在的情况下,伯努利反对称无序会诱导全平带系统中的流动性。在这项研究中,我们研究了一维菱形晶格中的点隙拓扑、平带和相关无序相互作用引起的局部化-非局部化转变,在磁通存在的情况下,菱形晶格的赫米特结构和非赫米特结构都显示出 AB 笼。虽然赫米蒂菱形晶格在存在随机反对称无序的情况下仍然是局域化和脱局域化并存,但令人惊讶的是它变成了完全脱局域化,并伴随着 NHSE 的出现。为了进一步研究伯努利反对称无序的影响,我们发现点隙拓扑、相关无序和平带的相互作用也会导致类似的 NHSE。我们的反常局域化-去局域化特性可以在电路等经典物理平台上进行实验检验。
{"title":"Localization–delocalization transitions in non-Hermitian Aharonov–Bohm cages","authors":"Xiang Li,&nbsp;Jin Liu,&nbsp;Tao Liu","doi":"10.1007/s11467-024-1412-9","DOIUrl":"10.1007/s11467-024-1412-9","url":null,"abstract":"<div><p>A unique feature of non-Hermitian systems is the extreme sensitivity of the eigenspectrum to boundary conditions with the emergence of the non-Hermitian skin effect (NHSE). A NHSE originates from the point-gap topology of complex eigenspectrum, where an extensive number of eigen-states are anomalously localized at the boundary driven by nonreciprocal dissipation. Two different approaches to create localization are disorder and flat-band spectrum, and their interplay can lead to the anomalous inverse Anderson localization, where the Bernoulli anti-symmetric disorder induces mobility in a full-flat band system in the presence of Aharonov–Bohm (AB) Cage. In this work, we study the localization–delocalization transitions due to the interplay of the point-gap topology, flat band and correlated disorder in the one-dimensional rhombic lattice, where both its Hermitian and non-Hermitian structures show AB cage in the presence of magnetic flux. Although it remains the coexistence of localization and delocalization for the Hermitian rhombic lattice in the presence of the random anti-symmetric disorder, it surprisingly becomes complete delocalization, accompanied by the emergence of NHSE. To further study the effects from the Bernoulli anti-symmetric disorder, we found the similar NHSE due to the interplay of the point-gap topology, correlated disorder and flat bands. Our anomalous localization–delocalization property can be experimentally tested in the classical physical platform, such as electrical circuit.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 3","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Effect of ambient pressures on laser-induced breakdown spectroscopy signals 勘误:环境压力对激光诱导击穿光谱信号的影响
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-05-27 DOI: 10.1007/s11467-024-1416-5
Kaifan Zhang, Weiran Song, Zongyu Hou, Zhe Wang
{"title":"Erratum to: Effect of ambient pressures on laser-induced breakdown spectroscopy signals","authors":"Kaifan Zhang,&nbsp;Weiran Song,&nbsp;Zongyu Hou,&nbsp;Zhe Wang","doi":"10.1007/s11467-024-1416-5","DOIUrl":"10.1007/s11467-024-1416-5","url":null,"abstract":"","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 4","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy 通过先进的原子力显微镜识别双分子层-MoS2界面上的应变工程波纹
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-05-27 DOI: 10.1007/s11467-024-1409-4
Haoyu Dong, Songyang Li, Shuo Mi, Jianfeng Guo, Zhaxi Suonan, Hanxiang Wu, Yanyan Geng, Manyu Wang, Huiwen Xu, Li Guan, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng

The van der Waals interface structures and behaviors are of great importance in determining the physical properties of two-dimensional atomic crystals and their heterostructures. The delicate interfacial properties are sensitively dependent on the mechanical behaviors of atomically thin films under external strain. Here, we investigated the strain-engineered rippling structures at the CVD-grown bilayer-MoS2 interface with advanced atomic force microscopy (AFM). The in-plane compressive strain is sequentially introduced into the 1L-substrate and 2L-1L interface of bilayer-MoS2 flakes via a fast-cooling process. The thermal strain-engineered rippling structures were directly visualized at the central 2H- and 3R-MoS2 bilayer regions with friction force microscopy (FFM) and bimodal AFM techniques. These rippling structures can be further artificially manipulated into the beating-like rippling features and fully erased via the contact mode AFM scanning. Our results shed lights on the strain-engineered interfacial structures of two-dimensional materials and also inspire the further investigation on the interface engineering of their electronic and optical properties.

范德华界面结构和行为对决定二维原子晶体及其异质结构的物理性质非常重要。微妙的界面特性敏感地依赖于原子薄膜在外部应变下的机械行为。在这里,我们利用先进的原子力显微镜(AFM)研究了 CVD 生长的双层膜-MoS2 界面的应变工程波纹结构。通过快速冷却过程,将平面内压应变依次引入双电层-MoS2 薄片的 1L- 基质和 2L-1L 界面。利用摩擦力显微镜(FFM)和双模原子力显微镜(AFM)技术,可以直接观察到在 2H 和 3R-MoS2 双分子层中心区域的热应变工程波纹结构。这些波纹结构可以进一步被人为地操纵成类似跳动的波纹特征,并通过接触模式原子力显微镜扫描完全消除。我们的研究结果揭示了二维材料的应变工程界面结构,同时也启发了人们进一步研究其电子和光学性能的界面工程。
{"title":"Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy","authors":"Haoyu Dong,&nbsp;Songyang Li,&nbsp;Shuo Mi,&nbsp;Jianfeng Guo,&nbsp;Zhaxi Suonan,&nbsp;Hanxiang Wu,&nbsp;Yanyan Geng,&nbsp;Manyu Wang,&nbsp;Huiwen Xu,&nbsp;Li Guan,&nbsp;Fei Pang,&nbsp;Wei Ji,&nbsp;Rui Xu,&nbsp;Zhihai Cheng","doi":"10.1007/s11467-024-1409-4","DOIUrl":"10.1007/s11467-024-1409-4","url":null,"abstract":"<div><p>The van der Waals interface structures and behaviors are of great importance in determining the physical properties of two-dimensional atomic crystals and their heterostructures. The delicate interfacial properties are sensitively dependent on the mechanical behaviors of atomically thin films under external strain. Here, we investigated the strain-engineered rippling structures at the CVD-grown bilayer-MoS<sub>2</sub> interface with advanced atomic force microscopy (AFM). The in-plane compressive strain is sequentially introduced into the 1L-substrate and 2L-1L interface of bilayer-MoS<sub>2</sub> flakes via a fast-cooling process. The thermal strain-engineered rippling structures were directly visualized at the central 2H- and 3R-MoS<sub>2</sub> bilayer regions with friction force microscopy (FFM) and bimodal AFM techniques. These rippling structures can be further artificially manipulated into the beating-like rippling features and fully erased via the contact mode AFM scanning. Our results shed lights on the strain-engineered interfacial structures of two-dimensional materials and also inspire the further investigation on the interface engineering of their electronic and optical properties.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 6","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardware-efficient and fast three-qubit gate in superconducting quantum circuits 超导量子电路中的硬件高效快速三量子位门
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-05-18 DOI: 10.1007/s11467-024-1405-8
Xiao-Le Li, Ziyu Tao, Kangyuan Yi, Kai Luo, Libo Zhang, Yuxuan Zhou, Song Liu, Tongxing Yan, Yuanzhen Chen, Dapeng Yu

While the common practice of decomposing general quantum algorithms into a collection of single- and two-qubit gates is conceptually simple, in many cases it is possible to have more efficient solutions where quantum gates engaging multiple qubits are used. In the noisy intermediate-scale quantum (NISQ) era where a universal error correction is still unavailable, this strategy is particularly appealing since it can significantly reduce the computational resources required for executing quantum algorithms. In this work, we experimentally investigate a three-qubit Controlled-CPHASE-SWAP (CCZS) gate on superconducting quantum circuits. By exploiting the higher energy levels of superconducting qubits, we are able to realize a Fredkin-like CCZS gate with a duration of 40 ns, which is comparable to typical single- and two-qubit gates realized on the same platform. By performing quantum process tomography for the two target qubits, we obtain a process fidelity of 86.0% and 81.1% for the control qubit being prepared in ∣0〉 and ∣1〉, respectively. We also show that our scheme can be readily extended to realize a general CCZS gate with an arbitrary swap angle. The results reported here provide valuable additions to the toolbox for achieving large-scale hardware-efficient quantum circuits.

虽然将一般量子算法分解为一系列单量子比特和双量子比特门的常见做法在概念上很简单,但在许多情况下,使用具有多个量子比特的量子门可以获得更高效的解决方案。在噪声中量子(NISQ)时代,通用纠错仍然不可用,因此这种策略特别有吸引力,因为它能显著减少执行量子算法所需的计算资源。在这项工作中,我们通过实验研究了超导量子电路上的三量子比特受控CPHASE-SWAP(CCZS)门。通过利用超导量子比特的高能级,我们能够实现持续时间为 40 ns 的类似 Fredkin 的 CCZS 门,这与在同一平台上实现的典型单量子比特和双量子比特门相当。通过对两个目标量子比特进行量子过程层析,我们获得了在∣0〉和∣1〉中制备控制量子比特的过程保真度,分别为86.0%和81.1%。我们还表明,我们的方案可以很容易地扩展到实现具有任意交换角的通用 CCZS 门。本文报告的结果为实现大规模硬件高效量子电路的工具箱提供了宝贵的补充。
{"title":"Hardware-efficient and fast three-qubit gate in superconducting quantum circuits","authors":"Xiao-Le Li,&nbsp;Ziyu Tao,&nbsp;Kangyuan Yi,&nbsp;Kai Luo,&nbsp;Libo Zhang,&nbsp;Yuxuan Zhou,&nbsp;Song Liu,&nbsp;Tongxing Yan,&nbsp;Yuanzhen Chen,&nbsp;Dapeng Yu","doi":"10.1007/s11467-024-1405-8","DOIUrl":"10.1007/s11467-024-1405-8","url":null,"abstract":"<div><p>While the common practice of decomposing general quantum algorithms into a collection of single- and two-qubit gates is conceptually simple, in many cases it is possible to have more efficient solutions where quantum gates engaging multiple qubits are used. In the noisy intermediate-scale quantum (NISQ) era where a universal error correction is still unavailable, this strategy is particularly appealing since it can significantly reduce the computational resources required for executing quantum algorithms. In this work, we experimentally investigate a three-qubit Controlled-CPHASE-SWAP (CCZS) gate on superconducting quantum circuits. By exploiting the higher energy levels of superconducting qubits, we are able to realize a Fredkin-like CCZS gate with a duration of 40 ns, which is comparable to typical single- and two-qubit gates realized on the same platform. By performing quantum process tomography for the two target qubits, we obtain a process fidelity of 86.0% and 81.1% for the control qubit being prepared in ∣0〉 and ∣1〉, respectively. We also show that our scheme can be readily extended to realize a general CCZS gate with an arbitrary swap angle. The results reported here provide valuable additions to the toolbox for achieving large-scale hardware-efficient quantum circuits.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 5","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Holographic images of an AdS black hole within the framework of f(R) gravity theory f(R)引力理论框架内 AdS 黑洞的全息图像
IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-05-18 DOI: 10.1007/s11467-024-1393-8
Guo-Ping Li, Ke-Jian He, Xin-Yun Hu, Qing-Quan Jiang

Based on the AdS/CFT correspondence, this study employs an oscillating Gaussian source to numerically study the holographic images of an AdS black hole under f(R) gravity using wave optics. Due to the diffraction of scalar wave, it turns out that one can clearly observed the interference patten of the absolute amplitude of response function on the AdS boundary. Furthermore, it is observed that its peak increases with the f(R) parameter α but decreases with the global monopole η, frequency ω, and horizon rh. More importantly, the results reveal that the holographic Einstein ring is a series of concentric striped patterns for an observer at the North Pole and that their center is analogous to a Poisson–Arago spot. This ring can evolve into a luminosity-deformed ring or two light spots when the observer is at a different position. According to geometrical optics, it is true that the size of the brightest holographic ring is approximately equal to that of the photon sphere, and the two light spots correspond to clockwise and anticlockwise light rays. In addition, holographic images for different values of black holes and optical system parameters were obtained, and different features emerged. Finally, we conclude that the holographic rings of the AdS black hole in modified gravities are more suitable and helpful for testing the existence of a gravity dual for a given material.

基于AdS/CFT对应关系,本研究采用振荡高斯源,利用波光学数值研究了f(R)引力下AdS黑洞的全息图像。由于标量波的衍射作用,我们可以在 AdS 边界上清晰地观察到响应函数绝对振幅的干涉斑。此外,还观察到其峰值随 f(R) 参数 α 的增大而增大,但随全局单极 η、频率 ω 和地平线 rh 的增大而减小。更重要的是,研究结果表明,对于北极的观测者来说,全息爱因斯坦环是一系列同心条纹图案,其中心类似于泊松-阿拉戈光斑。当观察者处于不同位置时,这个环会演变成一个光度变形环或两个光点。根据几何光学原理,最亮的全息环的大小近似等于光子球的大小,而两个光点分别对应顺时针和逆时针方向的光线。此外,我们还获得了不同黑洞值和光学系统参数的全息图像,并发现了不同的特征。最后,我们得出结论:修正引力下的 AdS 黑洞全息环更适合和有助于检验特定材料是否存在引力对偶。
{"title":"Holographic images of an AdS black hole within the framework of f(R) gravity theory","authors":"Guo-Ping Li,&nbsp;Ke-Jian He,&nbsp;Xin-Yun Hu,&nbsp;Qing-Quan Jiang","doi":"10.1007/s11467-024-1393-8","DOIUrl":"10.1007/s11467-024-1393-8","url":null,"abstract":"<div><p>Based on the AdS/CFT correspondence, this study employs an oscillating Gaussian source to numerically study the holographic images of an AdS black hole under <i>f</i>(<i>R</i>) gravity using wave optics. Due to the diffraction of scalar wave, it turns out that one can clearly observed the interference patten of the absolute amplitude of response function on the AdS boundary. Furthermore, it is observed that its peak increases with the <i>f</i>(<i>R</i>) parameter <i>α</i> but decreases with the global monopole <i>η</i>, frequency <i>ω</i>, and horizon <i>r</i><sub><i>h</i></sub>. More importantly, the results reveal that the holographic Einstein ring is a series of concentric striped patterns for an observer at the North Pole and that their center is analogous to a Poisson–Arago spot. This ring can evolve into a luminosity-deformed ring or two light spots when the observer is at a different position. According to geometrical optics, it is true that the size of the brightest holographic ring is approximately equal to that of the photon sphere, and the two light spots correspond to clockwise and anticlockwise light rays. In addition, holographic images for different values of black holes and optical system parameters were obtained, and different features emerged. Finally, we conclude that the holographic rings of the AdS black hole in modified gravities are more suitable and helpful for testing the existence of a gravity dual for a given material.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 5","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers of Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1