{"title":"[The role and biological functions of ubiquitin-proteasome system in production and metabolism of amyloid-beta].","authors":"Li-Li Sun, Hao Wang, Shu-Cun Qin, Ji-Guo Zhang","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 2","pages":"153-6"},"PeriodicalIF":0.0,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36023526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Progress in research of osteopontin (OPN) in hypertension and its target organ damage].","authors":"Su-Jing Fan, Xiu-Hong Yang","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 2","pages":"113-8"},"PeriodicalIF":0.0,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36023535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis to increase the utility of LCFAs and fibroblast growth factor 21. PPAR-delta induces genes for LCFA oxidation during fasting and endurance exercise in skeletal muscle. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. PPAR-gamma can induces the pathways to store LCFAs as triglycerides in adipocytes. Adiponectin, another important target of PPAR-gamma may maintain insulin sensitivity between adipocytes. The present review summarize that PPARs mediate the regulation of energy metabolism by long-chain fatty acids.
{"title":"[PPARs Mediate the Regulation of Energy Metabolism By Long-Chain Fatty Acids].","authors":"Yao Yan, Zong-Bao Wang, Chao-Ke Tang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis to increase the utility of LCFAs and fibroblast growth factor 21. PPAR-delta induces genes for LCFA oxidation during fasting and endurance exercise in skeletal muscle. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. PPAR-gamma can induces the pathways to store LCFAs as triglycerides in adipocytes. Adiponectin, another important target of PPAR-gamma may maintain insulin sensitivity between adipocytes. The present review summarize that PPARs mediate the regulation of energy metabolism by long-chain fatty acids.</p>","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34675186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ezrin, also known as cytovillin or vilin 2, is one of the members of ERM (Ezrin/Radixin/Moesin) protein family. Ezrin, which is a tyrosine kinase substrate, functions to bridge membrane proteins and the actin cytoskeleton. Recent studies have demonstrated that Ezrin regulates the proliferation, apoptosis, adhesion, invasion, metastasis and angiogenesis of breast cancer cells. These processes are not only associated with changes in expression level and subcellular localization of Ezrin itself, but also influenced by alteration in microenvironment of primary breast cancer cells. The regulation of Ezrin in mammary carcinoma cells involves interactions among signaling pathways mediated by adhesion molecules (CD44, ICAM, E-cadherin) and the tyrosine kinase growth factors, Epidermal Growth Factor (EGF), and Platelet-derived Growth Factor (PDGF) and their receptors. The determination of the functions and mechanism(s) of action of Ezrin in the migration and invasion of breast cancer cells will provide new information on the basic mechanisms of metastasis of breast cancer cells and has the potential to identify a novel drug target for the prevention and treatment of breast cancer. This article addresses the role of Ezrin in the migration and invasion of breast cancer cells.
{"title":"[Advances of the Role of Ezrin in Migration and Invasion of Breast Cancer Cells].","authors":"Zhi-Yuan Long, Ting-Huai Wang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Ezrin, also known as cytovillin or vilin 2, is one of the members of ERM (Ezrin/Radixin/Moesin) protein family. Ezrin, which is a tyrosine kinase substrate, functions to bridge membrane proteins and the actin cytoskeleton. Recent studies have demonstrated that Ezrin regulates the proliferation, apoptosis, adhesion, invasion, metastasis and angiogenesis of breast cancer cells. These processes are not only associated with changes in expression level and subcellular localization of Ezrin itself, but also influenced by alteration in microenvironment of primary breast cancer cells. The regulation of Ezrin in mammary carcinoma cells involves interactions among signaling pathways mediated by adhesion molecules (CD44, ICAM, E-cadherin) and the tyrosine kinase growth factors, Epidermal Growth Factor (EGF), and Platelet-derived Growth Factor (PDGF) and their receptors. The determination of the functions and mechanism(s) of action of Ezrin in the migration and invasion of breast cancer cells will provide new information on the basic mechanisms of metastasis of breast cancer cells and has the potential to identify a novel drug target for the prevention and treatment of breast cancer. This article addresses the role of Ezrin in the migration and invasion of breast cancer cells.</p>","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 1","pages":"21-6"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34675189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Advances in vascular dementia in the endoplasmic reticulum stress pathway by homocysteine].","authors":"Tian-Jiao Meng, Ling Qi, Wei-Yao Wang","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 1","pages":"61-4"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34675197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shan-Shan Li, Xiao-Xi Guo, Shu An, Yang Yang, Ying Liu, Tian-Rui Xu
Rap has different biological functions on intracellular signaling pathways, such as regulating cell polarity, cell proliferation, cell differentiation, cell adhesion and cell movement. Furthermore, at tissue and organ level, Rap controls the establishment of neural polarity, synaptic growth, synaptic plasticity, neuronal migration and so on. Rap belongs to Ras family which contains two subtypes, Rap1 and Rap2. By binding GTP or GDP Rap transform between active or inactive state, and plays an important role as a molecular switch. Moreover, in the signal pathway of tumor, Rap inhibits cell transformation induced by the oncogene Ras, therefore inhibits the proliferation, invasion and migration of certain cancer cells by interacting with its downstream target molecules. In this review, we summarized the biological functions of Rap and discussed It's significance in cancer therapy and drug treatment of neurological diseases.
{"title":"[Biological Function of The Small G Protein Rap].","authors":"Shan-Shan Li, Xiao-Xi Guo, Shu An, Yang Yang, Ying Liu, Tian-Rui Xu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Rap has different biological functions on intracellular signaling pathways, such as regulating cell polarity, cell proliferation, cell differentiation, cell adhesion and cell movement. Furthermore, at tissue and organ level, Rap controls the establishment of neural polarity, synaptic growth, synaptic plasticity, neuronal migration and so on. Rap belongs to Ras family which contains two subtypes, Rap1 and Rap2. By binding GTP or GDP Rap transform between active or inactive state, and plays an important role as a molecular switch. Moreover, in the signal pathway of tumor, Rap inhibits cell transformation induced by the oncogene Ras, therefore inhibits the proliferation, invasion and migration of certain cancer cells by interacting with its downstream target molecules. In this review, we summarized the biological functions of Rap and discussed It's significance in cancer therapy and drug treatment of neurological diseases.</p>","PeriodicalId":58541,"journal":{"name":"生理科学进展","volume":"47 1","pages":"14-20"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34675188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}