首页 > 最新文献

Journal of Biomolecular NMR最新文献

英文 中文
Efficient 18.8 T MAS-DNP NMR reveals hidden side chains in amyloid fibrils 高效的18.8 T MAS-DNP NMR揭示了淀粉样蛋白原纤维中隐藏的侧链
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-06-08 DOI: 10.1007/s10858-023-00416-5
Alons Lends, Nicolas Birlirakis, Xinyi Cai, Asen Daskalov, Jayakrishna Shenoy, Muhammed Bilal Abdul-Shukkoor, Mélanie Berbon, Fabien Ferrage, Yangping Liu, Antoine Loquet, Kong Ooi Tan

Amyloid fibrils are large and insoluble protein assemblies composed of a rigid core associated with a cross-β arrangement rich in β-sheet structural elements. It has been widely observed in solid-state NMR experiments that semi-rigid protein segments or side chains do not yield easily observable NMR signals at room temperature. The reasons for the missing peaks may be due to the presence of unfavorable dynamics that interfere with NMR experiments, which result in very weak or unobservable NMR signals. Therefore, for amyloid fibrils, semi-rigid and dynamically disordered segments flanking the amyloid core are very challenging to study. Here, we show that high-field dynamic nuclear polarization (DNP), an NMR hyperpolarization technique typically performed at low temperatures, can circumvent this issue because (i) the low-temperature environment (~ 100 K) slows down the protein dynamics to escape unfavorable detection regime, (ii) DNP improves the overall NMR sensitivity including those of flexible side chains, and (iii) efficient cross-effect DNP biradicals (SNAPol-1) optimized for high-field DNP (≥ 18.8 T) are employed to offer high sensitivity and resolution suitable for biomolecular NMR applications. By combining these factors, we have successfully established an impressive enhancement factor of ε ~ 50 on amyloid fibrils using an 18.8 T/ 800 MHz magnet. We have compared the DNP efficiencies of M-TinyPol, NATriPol-3, and SNAPol-1 biradicals on amyloid fibrils. We found that SNAPol-1 (with ε ~ 50) outperformed the other two radicals. The MAS DNP experiments revealed signals of flexible side chains previously inaccessible at conventional room-temperature experiments. These results demonstrate the potential of MAS-DNP NMR as a valuable tool for structural investigations of amyloid fibrils, particularly for side chains and dynamically disordered segments otherwise hidden at room temperature.

淀粉样蛋白原纤维是一种大而不溶性的蛋白质组合,由刚性核心组成,并具有丰富的β-片结构元素的交叉β排列。在固态核磁共振实验中广泛观察到,半刚性的蛋白质片段或侧链在室温下不易产生可观察到的核磁共振信号。缺失峰的原因可能是由于存在不利的动力学干扰了核磁共振实验,导致核磁共振信号非常微弱或不可观测。因此,对于淀粉样蛋白原纤维来说,研究淀粉样蛋白核心两侧的半刚性和动态无序的片段是非常有挑战性的。在这里,我们发现高场动态核极化(DNP),一种通常在低温下进行的核磁共振超极化技术,可以避免这个问题,因为(i)低温环境(~ 100 K)减缓了蛋白质动力学以逃避不利的检测机制,(ii) DNP提高了包括柔性侧链在内的整体核磁共振灵敏度,(iii)采用针对高场DNP(≥18.8 T)优化的高效交叉效应DNP双自由基(SNAPol-1),提供适合生物分子核磁共振应用的高灵敏度和高分辨率。通过综合这些因素,我们成功地在18.8 T/ 800 MHz磁体上建立了一个令人印象深刻的淀粉样蛋白原纤维增强因子ε ~ 50。我们比较了M-TinyPol、NATriPol-3和SNAPol-1双自由基对淀粉样蛋白原纤维的DNP效率。结果表明,ε ~ 50的SNAPol-1自由基表现优于其他两种自由基。MAS DNP实验揭示了以前在常规室温实验中无法获得的柔性侧链信号。这些结果证明了MAS-DNP NMR作为淀粉样蛋白原纤维结构研究的有价值工具的潜力,特别是对于侧链和动态无序段,否则在室温下隐藏。
{"title":"Efficient 18.8 T MAS-DNP NMR reveals hidden side chains in amyloid fibrils","authors":"Alons Lends,&nbsp;Nicolas Birlirakis,&nbsp;Xinyi Cai,&nbsp;Asen Daskalov,&nbsp;Jayakrishna Shenoy,&nbsp;Muhammed Bilal Abdul-Shukkoor,&nbsp;Mélanie Berbon,&nbsp;Fabien Ferrage,&nbsp;Yangping Liu,&nbsp;Antoine Loquet,&nbsp;Kong Ooi Tan","doi":"10.1007/s10858-023-00416-5","DOIUrl":"10.1007/s10858-023-00416-5","url":null,"abstract":"<div><p>Amyloid fibrils are large and insoluble protein assemblies composed of a rigid core associated with a cross-β arrangement rich in β-sheet structural elements. It has been widely observed in solid-state NMR experiments that semi-rigid protein segments or side chains do not yield easily observable NMR signals at room temperature. The reasons for the missing peaks may be due to the presence of unfavorable dynamics that interfere with NMR experiments, which result in very weak or unobservable NMR signals. Therefore, for amyloid fibrils, semi-rigid and dynamically disordered segments flanking the amyloid core are very challenging to study. Here, we show that high-field dynamic nuclear polarization (DNP), an NMR hyperpolarization technique typically performed at low temperatures, can circumvent this issue because (i) the low-temperature environment (~ 100 K) slows down the protein dynamics to escape unfavorable detection regime, (ii) DNP improves the overall NMR sensitivity including those of flexible side chains, and (iii) efficient cross-effect DNP biradicals (SNAPol-1) optimized for high-field DNP (≥ 18.8 T) are employed to offer high sensitivity and resolution suitable for biomolecular NMR applications. By combining these factors, we have successfully established an impressive enhancement factor of ε ~ 50 on amyloid fibrils using an 18.8 T/ 800 MHz magnet. We have compared the DNP efficiencies of M-TinyPol, NATriPol-3, and SNAPol-1 biradicals on amyloid fibrils. We found that SNAPol-1 (with ε ~ 50) outperformed the other two radicals. The MAS DNP experiments revealed signals of flexible side chains previously inaccessible at conventional room-temperature experiments. These results demonstrate the potential of MAS-DNP NMR as a valuable tool for structural investigations of amyloid fibrils, particularly for side chains and dynamically disordered segments otherwise hidden at room temperature.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 3","pages":"121 - 130"},"PeriodicalIF":2.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4348719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-uniform sampling of similar NMR spectra and its application to studies of the interaction between alpha-synuclein and liposomes 相似核磁共振波谱的非均匀取样及其在α -突触核蛋白与脂质体相互作用研究中的应用
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-05-26 DOI: 10.1007/s10858-023-00418-3
Alexandra Shchukina, Thomas C. Schwarz, Michał Nowakowski, Robert Konrat, Krzysztof Kazimierczuk

The accelerated acquisition of multidimensional NMR spectra using sparse non-uniform sampling (NUS) has been widely adopted in recent years. The key concept in NUS is that a major part of the data is omitted during measurement, and then reconstructed using, for example, compressed sensing (CS) methods. CS requires spectra to be compressible, that is, they should contain relatively few “significant” points. The more compressible the spectrum, the fewer experimental NUS points needed in order for it to be accurately reconstructed. In this paper we show that the CS processing of similar spectra can be enhanced by reconstructing only the differences between them. Accurate reconstruction can be obtained at lower sampling levels as the difference is sparser than the spectrum itself. In many situations this method is superior to “conventional” compressed sensing. We exemplify the concept of “difference CS” with one such case—the study of alpha-synuclein binding to liposomes and its dependence on temperature. To obtain information on temperature-dependent transitions between different states, we need to acquire several dozen spectra at various temperatures, with and without the presence of liposomes. Our detailed investigation reveals that changes in the binding modes of the alpha-synuclein ensemble are not only temperature-dependent but also show non-linear behavior in their transitions. Our proposed CS processing approach dramatically reduces the number of NUS points required and thus significantly shortens the experimental time.

近年来,利用稀疏非均匀采样(NUS)加速获取多维核磁共振波谱已被广泛采用。NUS的关键概念是在测量过程中省略大部分数据,然后使用压缩感知(CS)方法进行重建。CS要求光谱是可压缩的,也就是说,它们应该包含相对较少的“有效”点。光谱的可压缩性越强,精确重建光谱所需的实验NUS点就越少。在本文中,我们证明了CS处理可以通过只重建它们之间的差异来增强。由于差异比光谱本身更稀疏,因此可以在较低的采样水平下获得精确的重建。在许多情况下,这种方法优于“传统的”压缩感知。我们举例说明了“差异CS”的概念与这样一个例子- α -突触核蛋白结合脂质体及其对温度的依赖性的研究。为了获得不同状态之间的温度依赖转变信息,我们需要在不同温度下获得几十个光谱,有和没有脂质体的存在。我们的详细研究表明,α -突触核蛋白系综结合模式的变化不仅与温度有关,而且在其转变过程中表现出非线性行为。我们提出的CS处理方法大大减少了所需的NUS点数量,从而大大缩短了实验时间。
{"title":"Non-uniform sampling of similar NMR spectra and its application to studies of the interaction between alpha-synuclein and liposomes","authors":"Alexandra Shchukina,&nbsp;Thomas C. Schwarz,&nbsp;Michał Nowakowski,&nbsp;Robert Konrat,&nbsp;Krzysztof Kazimierczuk","doi":"10.1007/s10858-023-00418-3","DOIUrl":"10.1007/s10858-023-00418-3","url":null,"abstract":"<div><p>The accelerated acquisition of multidimensional NMR spectra using sparse non-uniform sampling (NUS) has been widely adopted in recent years. The key concept in NUS is that a major part of the data is omitted during measurement, and then reconstructed using, for example, compressed sensing (CS) methods. CS requires spectra to be compressible, that is, they should contain relatively few “significant” points. The more compressible the spectrum, the fewer experimental NUS points needed in order for it to be accurately reconstructed. In this paper we show that the CS processing of similar spectra can be enhanced by reconstructing only the differences between them. Accurate reconstruction can be obtained at lower sampling levels as the difference is sparser than the spectrum itself. In many situations this method is superior to “conventional” compressed sensing. We exemplify the concept of “difference CS” with one such case—the study of alpha-synuclein binding to liposomes and its dependence on temperature. To obtain information on temperature-dependent transitions between different states, we need to acquire several dozen spectra at various temperatures, with and without the presence of liposomes. Our detailed investigation reveals that changes in the binding modes of the alpha-synuclein ensemble are not only temperature-dependent but also show non-linear behavior in their transitions. Our proposed CS processing approach dramatically reduces the number of NUS points required and thus significantly shortens the experimental time.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 4","pages":"149 - 163"},"PeriodicalIF":2.7,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-023-00418-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5020485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methyl-TROSY based 13C relaxation dispersion NMR experiment for studies of chemical exchange in proteins 基于甲基- trosy的13C弛豫色散核磁共振实验研究蛋白质中的化学交换
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-25 DOI: 10.1007/s10858-023-00413-8
Vitali Tugarinov, James L. Baber, G. Marius Clore

A methyl Transverse Relaxation Optimized Spectroscopy (methyl-TROSY) based, multiple quantum (MQ) 13C Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiment is described. The experiment is derived from the previously developed MQ 13C–1H CPMG scheme (Korzhnev in J Am Chem Soc 126: 3964–73, 2004) supplemented with a CPMG train of refocusing 1H pulses applied with constant frequency and synchronized with the 13C CPMG pulse train. The optimal 1H ‘decoupling’ scheme that minimizes the amount of fast-relaxing methyl MQ magnetization present during CPMG intervals, makes use of an XY-4 phase cycling of the refocusing composite 1H pulses. For small-to-medium sized proteins, the MQ 13C CPMG experiment has the advantage over its single quantum (SQ) 13C counterpart of significantly reducing intrinsic, exchange-free relaxation rates of methyl coherences. For high molecular weight proteins, the MQ 13C CPMG experiment eliminates complications in the interpretation of MQ 13C–1H CPMG relaxation dispersion profiles arising from contributions to exchange from differences in methyl 1H chemical shifts between ground and excited states. The MQ 13C CPMG experiment is tested on two protein systems: (1) a triple mutant of the Fyn SH3 domain that interconverts slowly on the chemical shift time scale between the major folded state and an excited state folding intermediate; and (2) the 82-kDa enzyme Malate Synthase G (MSG), where chemical exchange at individual Ile δ1 methyl positions occurs on a much faster time-scale.

描述了一个基于甲基横向弛豫优化光谱(methyl- trosy)的多量子(MQ) 13C carr - purcell - meiboomm - gill (CPMG)弛豫色散核磁共振实验。该实验源自先前开发的MQ 13C - 1H CPMG方案(Korzhnev in J Am Chem Soc 126: 3964 - 73,2004),并辅以恒频重聚焦1H脉冲的CPMG序列,并与13C CPMG脉冲序列同步。最佳的1H“解耦”方案利用了重聚焦复合1H脉冲的XY-4相位循环,最大限度地减少了CPMG间隔期间存在的快速放松甲基MQ磁化量。对于中小型蛋白质,MQ 13C CPMG实验比单量子(SQ) 13C实验具有显著降低甲基相干的内在、无交换弛豫率的优势。对于高分子量蛋白质,MQ 13C CPMG实验消除了MQ 13C - 1H CPMG弛豫色散谱解释的复杂性,这些弛豫色散谱是由基态和激发态之间甲基1H化学位移差异对交换的贡献引起的。MQ 13C CPMG实验在两种蛋白质体系上进行了测试:(1)Fyn SH3结构域的三突变体在主要折叠态和激发态折叠中间体之间的化学位移时间尺度上缓慢相互转换;(2) 82 kda的苹果酸合成酶G (MSG),其中在单个Ile δ1甲基位置的化学交换发生的时间尺度要快得多。
{"title":"A methyl-TROSY based 13C relaxation dispersion NMR experiment for studies of chemical exchange in proteins","authors":"Vitali Tugarinov,&nbsp;James L. Baber,&nbsp;G. Marius Clore","doi":"10.1007/s10858-023-00413-8","DOIUrl":"10.1007/s10858-023-00413-8","url":null,"abstract":"<div><p>A methyl Transverse Relaxation Optimized Spectroscopy (methyl-TROSY) based, multiple quantum (MQ) <sup>13</sup>C Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiment is described. The experiment is derived from the previously developed MQ <sup>13</sup>C–<sup>1</sup>H CPMG scheme (Korzhnev in J Am Chem Soc 126: 3964–73, 2004) supplemented with a CPMG train of refocusing <sup>1</sup>H pulses applied with constant frequency and synchronized with the <sup>13</sup>C CPMG pulse train. The optimal <sup>1</sup>H ‘decoupling’ scheme that minimizes the amount of fast-relaxing methyl MQ magnetization present during CPMG intervals, makes use of an XY-4 phase cycling of the refocusing composite <sup>1</sup>H pulses. For small-to-medium sized proteins, the MQ <sup>13</sup>C CPMG experiment has the advantage over its single quantum (SQ) <sup>13</sup>C counterpart of significantly reducing intrinsic, exchange-free relaxation rates of methyl coherences. For high molecular weight proteins, the MQ <sup>13</sup>C CPMG experiment eliminates complications in the interpretation of MQ <sup>13</sup>C–<sup>1</sup>H CPMG relaxation dispersion profiles arising from contributions to exchange from differences in methyl <sup>1</sup>H chemical shifts between ground and excited states. The MQ <sup>13</sup>C CPMG experiment is tested on two protein systems: (1) a triple mutant of the Fyn SH3 domain that interconverts slowly on the chemical shift time scale between the major folded state and an excited state folding intermediate; and (2) the 82-kDa enzyme Malate Synthase G (MSG), where chemical exchange at individual Ile δ1 methyl positions occurs on a much faster time-scale.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 3","pages":"83 - 91"},"PeriodicalIF":2.7,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-023-00413-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5316525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR detection and conformational dependence of two, three, and four-bond isotope shifts due to deuteration of backbone amides 主链酰胺氘化引起的二键、三键和四键同位素移位的核磁共振检测和构象依赖性
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-24 DOI: 10.1007/s10858-023-00414-7
Andrei T. Alexandrescu, Aurelio J. Dregni, Carolyn M. Teschke

NMR isotope shifts occur due to small differences in nuclear shielding when nearby atoms are different isotopes. For molecules dissolved in 1:1 H2O:D2O, the resulting mixture of N-H and N-D isotopes leads to a small splitting of resonances from adjacent nuclei. We used multidimensional NMR to measure isotope shifts for the proteins CUS-3iD and CspA. We observed four-bond 4∆N(ND) isotope shifts in high-resolution 2D 15N-TROSY experiments of the perdeuterated proteins that correlate with the torsional angle psi. Three-bond 3∆C’(ND) isotope shifts detected in H(N)CO spectra correlate with the intraresidue H-O distance, and to a lesser extent with the dihedral angle phi. The conformational dependence of the isotope shifts agree with those previously reported in the literature. Both the 4∆N(ND) and 3∆C’(ND) isotope shifts are sensitive to distances between the atoms giving rise to the isotope shifts and the atoms experiencing the splitting, however, these distances are strongly correlated with backbone dihedral angles making it difficult to resolve distance from stereochemical contributions to the isotope shift. H(NCA)CO spectra were used to measure two-bond 2∆C’(ND) isotope shifts and [D]/[H] fractionation factors. Neither parameter showed significant differences for hydrogen-bonded sites, or changes over a 25° temperature range, suggesting they are not sensitive to hydrogen bonding. Finally, the quartet that arises from the combination of 2∆C’(ND) and 3∆C’(ND) isotope shifts in H(CA)CO spectra was used to measure synchronized hydrogen exchange for the sequence neighbors A315-S316 in the protein CUS-3iD. In many of our experiments we observed minor resonances due to the 10% D2O used for the sample deuterium lock, indicating isotope shifts can be a source of spectral heterogeneity in standard NMR experiments. We suggest that applications of isotope shifts such as conformational analysis and correlated hydrogen exchange could benefit from the larger magnetic fields becoming available.

当附近的原子是不同的同位素时,由于核屏蔽的微小差异而发生核磁共振同位素移位。对于溶解在1:1 H2O:D2O中的分子,所产生的N-H和N-D同位素的混合物导致相邻原子核的共振发生小的分裂。我们使用多维核磁共振来测量蛋白质CUS-3iD和CspA的同位素位移。在高分辨率二维15N-TROSY实验中,我们观察到四键4∆N(ND)同位素位移与扭转角psi相关。在H(N)CO光谱中检测到的三键3∆C′(ND)同位素位移与残留内H- o距离相关,与二面角phi的相关性较小。同位素位移的构象依赖性与先前文献报道的一致。4∆N(ND)和3∆C’(ND)同位素位移对引起同位素位移的原子之间的距离和经历分裂的原子之间的距离都很敏感,然而,这些距离与主二面角密切相关,因此很难通过立体化学对同位素位移的贡献来解决距离问题。H(NCA)CO光谱用于测量双键2∆C′(ND)同位素位移和[D]/[H]分馏因子。在25°温度范围内,这两个参数对氢键位点没有显著差异,表明它们对氢键不敏感。最后,利用H(CA)CO光谱中2∆C′(ND)和3∆C′(ND)同位素移位组合产生的四重调,测量了蛋白质cu - 3id中相邻序列A315-S316的同步氢交换。在我们的许多实验中,我们观察到由于样品氘锁使用10% D2O而产生的轻微共振,这表明同位素位移可能是标准核磁共振实验中光谱异质性的来源。我们认为同位素转移的应用,如构象分析和相关氢交换可以受益于更大的磁场变得可用。
{"title":"NMR detection and conformational dependence of two, three, and four-bond isotope shifts due to deuteration of backbone amides","authors":"Andrei T. Alexandrescu,&nbsp;Aurelio J. Dregni,&nbsp;Carolyn M. Teschke","doi":"10.1007/s10858-023-00414-7","DOIUrl":"10.1007/s10858-023-00414-7","url":null,"abstract":"<div><p>NMR isotope shifts occur due to small differences in nuclear shielding when nearby atoms are different isotopes. For molecules dissolved in 1:1 H<sub>2</sub>O:D<sub>2</sub>O, the resulting mixture of N-H and N-D isotopes leads to a small splitting of resonances from adjacent nuclei. We used multidimensional NMR to measure isotope shifts for the proteins CUS-3iD and CspA. We observed four-bond <sup>4</sup>∆N(ND) isotope shifts in high-resolution 2D <sup>15</sup>N-TROSY experiments of the perdeuterated proteins that correlate with the torsional angle psi. Three-bond <sup>3</sup>∆C’(ND) isotope shifts detected in H(N)CO spectra correlate with the intraresidue H-O distance, and to a lesser extent with the dihedral angle phi. The conformational dependence of the isotope shifts agree with those previously reported in the literature. Both the <sup>4</sup>∆N(ND) and <sup>3</sup>∆C’(ND) isotope shifts are sensitive to distances between the atoms giving rise to the isotope shifts and the atoms experiencing the splitting, however, these distances are strongly correlated with backbone dihedral angles making it difficult to resolve distance from stereochemical contributions to the isotope shift. H(NCA)CO spectra were used to measure two-bond <sup>2</sup>∆C’(ND) isotope shifts and [D]/[H] fractionation factors. Neither parameter showed significant differences for hydrogen-bonded sites, or changes over a 25° temperature range, suggesting they are not sensitive to hydrogen bonding. Finally, the quartet that arises from the combination of <sup>2</sup>∆C’(ND) and <sup>3</sup>∆C’(ND) isotope shifts in H(CA)CO spectra was used to measure synchronized hydrogen exchange for the sequence neighbors A315-S316 in the protein CUS-3iD. In many of our experiments we observed minor resonances due to the 10% D<sub>2</sub>O used for the sample deuterium lock, indicating isotope shifts can be a source of spectral heterogeneity in standard NMR experiments. We suggest that applications of isotope shifts such as conformational analysis and correlated hydrogen exchange could benefit from the larger magnetic fields becoming available.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 3","pages":"93 - 109"},"PeriodicalIF":2.7,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4919257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse pseudocontact shift NMR data obtained from a non-canonical amino acid-linked lanthanide tag improves integral membrane protein structure prediction 从非规范氨基酸连接镧系元素标签获得的稀疏伪接触位移核磁共振数据改善了整体膜蛋白结构预测
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-04-04 DOI: 10.1007/s10858-023-00412-9
Kaitlyn V. Ledwitch, Georg Künze, Jacob R. McKinney, Elleansar Okwei, Katherine Larochelle, Lisa Pankewitz, Soumya Ganguly, Heather L. Darling, Irene Coin, Jens Meiler

A single experimental method alone often fails to provide the resolution, accuracy, and coverage needed to model integral membrane proteins (IMPs). Integrating computation with experimental data is a powerful approach to supplement missing structural information with atomic detail. We combine RosettaNMR with experimentally-derived paramagnetic NMR restraints to guide membrane protein structure prediction. We demonstrate this approach using the disulfide bond formation protein B (DsbB), an α-helical IMP. Here, we attached a cyclen-based paramagnetic lanthanide tag to an engineered non-canonical amino acid (ncAA) using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reaction. Using this tagging strategy, we collected 203 backbone HN pseudocontact shifts (PCSs) for three different labeling sites and used these as input to guide de novo membrane protein structure prediction protocols in Rosetta. We find that this sparse PCS dataset combined with 44 long-range NOEs as restraints in our calculations improves structure prediction of DsbB by enhancements in model accuracy, sampling, and scoring. The inclusion of this PCS dataset improved the Cα-RMSD transmembrane segment values of the best-scoring and best-RMSD models from 9.57 Å and 3.06 Å (no NMR data) to 5.73 Å and 2.18 Å, respectively.

单一的实验方法往往无法提供完整膜蛋白(IMPs)模型所需的分辨率、准确性和覆盖范围。将计算与实验数据相结合是用原子细节补充缺失结构信息的有效方法。我们将RosettaNMR与实验衍生的顺磁NMR约束相结合,以指导膜蛋白结构预测。我们利用二硫键形成蛋白B (DsbB) (α-螺旋IMP)证明了这种方法。在这里,我们使用铜催化叠氮-炔环加成(CuAAC)点击化学反应将环基顺磁性镧系元素标签连接到工程非规范氨基酸(ncAA)上。使用这种标记策略,我们收集了3个不同标记位点的203个骨干HN伪接触位移(PCSs),并将其作为指导Rosetta从头膜蛋白结构预测方案的输入。我们发现这个稀疏的PCS数据集结合了44个远程noe作为我们计算中的约束,通过增强模型精度、采样和评分来改善DsbB的结构预测。该PCS数据集的加入将最佳评分模型和最佳rmsd模型的Cα-RMSD跨膜段值分别从9.57 Å和3.06 Å(无NMR数据)提高到5.73 Å和2.18 Å。
{"title":"Sparse pseudocontact shift NMR data obtained from a non-canonical amino acid-linked lanthanide tag improves integral membrane protein structure prediction","authors":"Kaitlyn V. Ledwitch,&nbsp;Georg Künze,&nbsp;Jacob R. McKinney,&nbsp;Elleansar Okwei,&nbsp;Katherine Larochelle,&nbsp;Lisa Pankewitz,&nbsp;Soumya Ganguly,&nbsp;Heather L. Darling,&nbsp;Irene Coin,&nbsp;Jens Meiler","doi":"10.1007/s10858-023-00412-9","DOIUrl":"10.1007/s10858-023-00412-9","url":null,"abstract":"<div><p>A single experimental method alone often fails to provide the resolution, accuracy, and coverage needed to model integral membrane proteins (IMPs). Integrating computation with experimental data is a powerful approach to supplement missing structural information with atomic detail. We combine RosettaNMR with experimentally-derived paramagnetic NMR restraints to guide membrane protein structure prediction. We demonstrate this approach using the disulfide bond formation protein B (DsbB), an α-helical IMP. Here, we attached a cyclen-based paramagnetic lanthanide tag to an engineered non-canonical amino acid (ncAA) using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reaction. Using this tagging strategy, we collected 203 backbone H<sup>N</sup> pseudocontact shifts (PCSs) for three different labeling sites and used these as input to guide <i>de novo</i> membrane protein structure prediction protocols in Rosetta. We find that this sparse PCS dataset combined with 44 long-range NOEs as restraints in our calculations improves structure prediction of DsbB by enhancements in model accuracy, sampling, and scoring. The inclusion of this PCS dataset improved the Cα-RMSD transmembrane segment values of the best-scoring and best-RMSD models from 9.57 Å and 3.06 Å (no NMR data) to 5.73 Å and 2.18 Å, respectively.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 3","pages":"69 - 82"},"PeriodicalIF":2.7,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-023-00412-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4490545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the applicability of 19F labeled tryptophan residues to quantify protein dynamics 评估19F标记色氨酸残基定量蛋白质动力学的适用性
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-14 DOI: 10.1007/s10858-022-00411-2
Christina Krempl, Remco Sprangers

Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited to study the dynamics of biomolecules in solution. Most NMR studies exploit the spins of proton, carbon and nitrogen isotopes, as these atoms are highly abundant in proteins and nucleic acids. As an alternative and complementary approach, fluorine atoms can be introduced into biomolecules at specific sites of interest. These labels can then be used as sensitive probes for biomolecular structure, dynamics or interactions. Here, we address if the replacement of tryptophan with 5-fluorotryptophan residues has an effect on the overall dynamics of proteins and if the introduced fluorine probe is able to accurately report on global exchange processes. For the four different model proteins (KIX, Dcp1, Dcp2 and DcpS) that we examined, we established that 15N CPMG relaxation dispersion or EXSY profiles are not affected by the 5-fluorotryptophan, indicating that this replacement of a proton with a fluorine has no effect on the protein motions. However, we found that the motions that the 5-fluorotryptophan reports on can be significantly faster than the backbone motions. This implies that care needs to be taken when interpreting fluorine relaxation data in terms of global protein motions. In summary, our results underscore the great potential of fluorine NMR methods, but also highlight potential pitfalls that need to be considered.

核磁共振波谱是研究溶液中生物分子动力学的独特方法。大多数核磁共振研究利用质子、碳和氮同位素的自旋,因为这些原子在蛋白质和核酸中含量很高。作为一种替代和补充的方法,氟原子可以在感兴趣的特定位点引入生物分子。然后,这些标签可以用作生物分子结构、动力学或相互作用的敏感探针。在这里,我们讨论用5-氟色氨酸残基取代色氨酸是否会对蛋白质的整体动力学产生影响,以及引入的氟探针是否能够准确地报告全局交换过程。对于我们检测的四种不同的模型蛋白(KIX, Dcp1, Dcp2和dcp),我们建立了15N CPMG弛豫分散或EXSY谱不受5-氟色氨酸的影响,这表明用氟取代质子对蛋白质运动没有影响。然而,我们发现5-氟色氨酸报告的运动可以明显快于骨干运动。这意味着在根据整体蛋白质运动解释氟弛豫数据时需要小心。总之,我们的结果强调了氟核磁共振方法的巨大潜力,但也强调了需要考虑的潜在缺陷。
{"title":"Assessing the applicability of 19F labeled tryptophan residues to quantify protein dynamics","authors":"Christina Krempl,&nbsp;Remco Sprangers","doi":"10.1007/s10858-022-00411-2","DOIUrl":"10.1007/s10858-022-00411-2","url":null,"abstract":"<div><p>Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited to study the dynamics of biomolecules in solution. Most NMR studies exploit the spins of proton, carbon and nitrogen isotopes, as these atoms are highly abundant in proteins and nucleic acids. As an alternative and complementary approach, fluorine atoms can be introduced into biomolecules at specific sites of interest. These labels can then be used as sensitive probes for biomolecular structure, dynamics or interactions. Here, we address if the replacement of tryptophan with 5-fluorotryptophan residues has an effect on the overall dynamics of proteins and if the introduced fluorine probe is able to accurately report on global exchange processes. For the four different model proteins (KIX, Dcp1, Dcp2 and DcpS) that we examined, we established that <sup>15</sup>N CPMG relaxation dispersion or EXSY profiles are not affected by the 5-fluorotryptophan, indicating that this replacement of a proton with a fluorine has no effect on the protein motions. However, we found that the motions that the 5-fluorotryptophan reports on can be significantly faster than the backbone motions. This implies that care needs to be taken when interpreting fluorine relaxation data in terms of global protein motions. In summary, our results underscore the great potential of fluorine NMR methods, but also highlight potential pitfalls that need to be considered.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 1-2","pages":"55 - 67"},"PeriodicalIF":2.7,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-022-00411-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4572563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Three segment ligation of a 104 kDa multi-domain protein by SrtA and OaAEP1 一个104 kDa多结构域蛋白的三段连接的SrtA和OaAEP1
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-12-21 DOI: 10.1007/s10858-022-00409-w
Stephan B. Azatian, Marella D. Canny, Michael P. Latham

NMR spectroscopy is an excellent tool for studying protein structure and dynamics which provides a deeper understanding of biological function. As the size of the biomolecule of interest increases, it can become advantageous to dilute the number of observed signals in the NMR spectrum to decrease spectral overlap and increase resolution. One way to limit the number of resonances in the NMR data is by selectively labeling a smaller domain within the larger macromolecule, a process called segmental isotopic labeling. Many examples of segmental isotopic labeling have been described where two segments of a protein are ligated together by chemical or enzymatic means, but there are far fewer descriptions of a three or more segment ligation reaction. Herein, we describe an enzymatic segmental labeling scheme that combines the widely used Sortase A and more recently described OaAEP1 for a two site ligation strategy. In preparation to study proposed long-range allostery in the 104 kDa DNA damage repair protein Rad50, we ligated side-chain methyl group labeled Zn Hook domain between two long segments of otherwise unlabeled P.furiosus Rad50. Enzymatic activity data demonstrated that the scars resulting from the ligation reactions did not affect Rad50 function within the Mre11-Rad50 DNA double strand break repair complex. Finally, methyl-based NMR spectroscopy confirmed the formation of the full-length ligated protein. Our strategy highlights the strengths of OaAEP1 for segmental labeling, namely faster reaction times and a smaller recognition sequence, and provides a straightforward template for using these two enzymes in multisite segmental labeling reactions.

核磁共振波谱是研究蛋白质结构和动力学的一个很好的工具,它提供了对生物功能的更深入的了解。随着感兴趣的生物分子的大小增加,稀释核磁共振光谱中观测信号的数量以减少光谱重叠和提高分辨率是有利的。限制核磁共振数据中共振数量的一种方法是在较大的大分子中选择性地标记较小的区域,这一过程称为片段同位素标记。已经描述了许多片段同位素标记的例子,其中通过化学或酶的方法将蛋白质的两个片段连接在一起,但对三个或更多片段连接反应的描述要少得多。在这里,我们描述了一种酶片段标记方案,该方案结合了广泛使用的Sortase A和最近描述的OaAEP1,用于两个位点的连接策略。为了研究104 kDa DNA损伤修复蛋白Rad50的远程变结构,我们在P.furiosus Rad50的两个长片段之间连接了侧链甲基标记的Zn Hook结构域。酶活性数据表明,连接反应产生的疤痕不影响Mre11-Rad50 DNA双链断裂修复复合体内Rad50的功能。最后,基于甲基的核磁共振光谱证实了全长连接蛋白的形成。我们的策略突出了OaAEP1在片段标记方面的优势,即更快的反应时间和更小的识别序列,并为在多位点片段标记反应中使用这两种酶提供了一个简单的模板。
{"title":"Three segment ligation of a 104 kDa multi-domain protein by SrtA and OaAEP1","authors":"Stephan B. Azatian,&nbsp;Marella D. Canny,&nbsp;Michael P. Latham","doi":"10.1007/s10858-022-00409-w","DOIUrl":"10.1007/s10858-022-00409-w","url":null,"abstract":"<div><p>NMR spectroscopy is an excellent tool for studying protein structure and dynamics which provides a deeper understanding of biological function. As the size of the biomolecule of interest increases, it can become advantageous to dilute the number of observed signals in the NMR spectrum to decrease spectral overlap and increase resolution. One way to limit the number of resonances in the NMR data is by selectively labeling a smaller domain within the larger macromolecule, a process called segmental isotopic labeling. Many examples of segmental isotopic labeling have been described where two segments of a protein are ligated together by chemical or enzymatic means, but there are far fewer descriptions of a three or more segment ligation reaction. Herein, we describe an enzymatic segmental labeling scheme that combines the widely used Sortase A and more recently described OaAEP1 for a two site ligation strategy. In preparation to study proposed long-range allostery in the 104 kDa DNA damage repair protein Rad50, we ligated side-chain methyl group labeled Zn Hook domain between two long segments of otherwise unlabeled <i>P.furiosus</i> Rad50. Enzymatic activity data demonstrated that the scars resulting from the ligation reactions did not affect Rad50 function within the Mre11-Rad50 DNA double strand break repair complex. Finally, methyl-based NMR spectroscopy confirmed the formation of the full-length ligated protein. Our strategy highlights the strengths of OaAEP1 for segmental labeling, namely faster reaction times and a smaller recognition sequence, and provides a straightforward template for using these two enzymes in multisite segmental labeling reactions.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 1-2","pages":"25 - 37"},"PeriodicalIF":2.7,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-022-00409-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4814291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water irradiation devoid pulses enhance the sensitivity of 1H,1H nuclear Overhauser effects 水辐照无源脉冲增强了1H、1H核Overhauser效应的敏感性
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-12-19 DOI: 10.1007/s10858-022-00407-y
V. S. Manu, Cristina Olivieri, Gianluigi Veglia

The nuclear Overhauser effect (NOE) is one of NMR spectroscopy's most important and versatile parameters. NOE is routinely utilized to determine the structures of medium-to-large size biomolecules and characterize protein–protein, protein–RNA, protein–DNA, and protein–ligand interactions in aqueous solutions. Typical [1H,1H] NOESY pulse sequences incorporate water suppression schemes to reduce the water signal that dominates 1H-detected spectra and minimize NOE intensity losses due to unwanted polarization exchange between water and labile protons. However, at high- and ultra-high magnetic fields, the excitation of the water signal during the execution of the NOESY pulse sequences may cause significant attenuation of NOE cross-peak intensities. Using an evolutionary algorithm coupled with artificial intelligence, we recently designed high-fidelity pulses [Water irrAdiation DEvoid (WADE) pulses] that elude water excitation and irradiate broader bandwidths relative to commonly used pulses. Here, we demonstrate that WADE pulses, implemented into the 2D [1H,1H] NOESY experiments, increase the intensity of the NOE cross-peaks for labile and, to a lesser extent, non-exchangeable protons. We applied the new 2D [1H,1H] WADE-NOESY pulse sequence to two well-folded, medium-size proteins, i.e., the K48C mutant of ubiquitin and the Raf kinase inhibitor protein. We observed a net increase of the NOE intensities varying from 30 to 170% compared to the commonly used NOESY experiments. The new WADE pulses can be easily engineered into 2D and 3D homo- and hetero-nuclear NOESY pulse sequences to boost their sensitivity.

核过大用户效应(NOE)是核磁共振波谱学中最重要和最通用的参数之一。NOE通常用于确定中大型生物分子的结构,并表征水溶液中蛋白质-蛋白质、蛋白质- rna、蛋白质- dna和蛋白质-配体的相互作用。典型的[1H,1H] NOESY脉冲序列包含水抑制方案,以减少主导1H探测光谱的水信号,并最大限度地减少由于水和不稳定质子之间不必要的极化交换造成的NOE强度损失。然而,在高磁场和超高磁场下,水信号在执行NOESY脉冲序列时的激发可能导致NOE交叉峰强度的显著衰减。利用一种结合人工智能的进化算法,我们最近设计了高保真脉冲[水辐照无(WADE)脉冲],它可以避开水的激发,并且相对于常用脉冲的照射带宽更宽。在这里,我们证明了WADE脉冲在2D [1H,1H] NOESY实验中,增加了不稳定质子和在较小程度上不可交换质子的NOE交叉峰的强度。我们将新的2D [1H,1H] WADE-NOESY脉冲序列应用于两个折叠良好的中等大小蛋白,即泛素的K48C突变体和Raf激酶抑制剂蛋白。与常用的NOESY实验相比,我们观察到NOE强度的净增加从30%到170%不等。新的WADE脉冲可以很容易地设计成二维和三维同核和异核NOESY脉冲序列,以提高它们的灵敏度。
{"title":"Water irradiation devoid pulses enhance the sensitivity of 1H,1H nuclear Overhauser effects","authors":"V. S. Manu,&nbsp;Cristina Olivieri,&nbsp;Gianluigi Veglia","doi":"10.1007/s10858-022-00407-y","DOIUrl":"10.1007/s10858-022-00407-y","url":null,"abstract":"<div><p>The nuclear Overhauser effect (NOE) is one of NMR spectroscopy's most important and versatile parameters. NOE is routinely utilized to determine the structures of medium-to-large size biomolecules and characterize protein–protein, protein–RNA, protein–DNA, and protein–ligand interactions in aqueous solutions. Typical [<sup>1</sup>H,<sup>1</sup>H] NOESY pulse sequences incorporate water suppression schemes to reduce the water signal that dominates <sup>1</sup>H-detected spectra and minimize NOE intensity losses due to unwanted polarization exchange between water and labile protons. However, at high- and ultra-high magnetic fields, the excitation of the water signal during the execution of the NOESY pulse sequences may cause significant attenuation of NOE cross-peak intensities. Using an evolutionary algorithm coupled with artificial intelligence, we recently designed high-fidelity pulses [<i>W</i>ater irr<i>A</i>diation <i>DE</i>void (WADE) pulses] that elude water excitation and irradiate broader bandwidths relative to commonly used pulses. Here, we demonstrate that WADE pulses, implemented into the 2D [<sup>1</sup>H,<sup>1</sup>H] NOESY experiments, increase the intensity of the NOE cross-peaks for labile and, to a lesser extent, non-exchangeable protons. We applied the new 2D [<sup>1</sup>H,<sup>1</sup>H] WADE-NOESY pulse sequence to two well-folded, medium-size proteins, i.e., the K48C mutant of ubiquitin and the Raf kinase inhibitor protein. We observed a net increase of the NOE intensities varying from 30 to 170% compared to the commonly used NOESY experiments. The new WADE pulses can be easily engineered into 2D and 3D homo- and hetero-nuclear NOESY pulse sequences to boost their sensitivity.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 1-2","pages":"1 - 14"},"PeriodicalIF":2.7,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4745842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficiently driving protein-based fragment screening and lead discovery using two-dimensional NMR 利用二维核磁共振有效地驱动基于蛋白质的片段筛选和先导物发现
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-12-13 DOI: 10.1007/s10858-022-00410-3
Chen Peng, Andrew T. Namanja, Eva Munoz, Haihong Wu, Thomas E. Frederick, Mitcheell Maestre-Martinez, Isaac Iglesias Fernandez, Qi Sun, Carlos Cobas, Chaohong Sun, Andrew M. Petros

Fragment-based drug discovery (FBDD) and validation of small molecule binders using NMR spectroscopy is an established and widely used method in the early stages of drug discovery. Starting from a library of small compounds, ligand- or protein-observed NMR methods are employed to detect binders, typically weak, that become the starting points for structure–activity relationships (SAR) by NMR. Unlike the more frequently used ligand-observed 1D NMR techniques, protein-observed 2D 1H-15N or 1H-13C heteronuclear correlation (HSQC or HMQC) methods offer insights that include the mechanism of ligand engagement on the target and direct binding affinity measurements in addition to routine screening. We hereby present the development of a set of software tools within the MestReNova (Mnova) package for analyzing 2D NMR for FBDD and hit validation purposes. The package covers three main tasks: (1) unsupervised profiling of raw data to identify outlier data points to exclude in subsequent analyses; (2) batch processing of single-point spectra to identify and rank binders based on chemical shift perturbations or spectral peak intensity changes; and (3) batch processing of multiple titration series to derive binding affinities (KD) by tracing the changes in peak locations or measuring global spectral changes. Toward this end, we implemented and evaluated a set of algorithms for automated peak tracing, spectral binning, and variance analysis by PCA, and a new tool for spectral data intensity comparison using ECHOS. The accuracy and speed of the tools are demonstrated on 2D NMR binding data collected on ligands used in the development of potential inhibitors of the anti-apoptotic MCL-1 protein.

Graphical abstract

基于片段的药物发现(FBDD)和小分子结合剂的核磁共振波谱验证是一种成熟且广泛应用于药物发现早期阶段的方法。从小化合物库开始,采用配体或蛋白质观察的核磁共振方法来检测通常较弱的结合物,这些结合物成为核磁共振结构-活性关系(SAR)的起点。与更常用的配体观察1D NMR技术不同,蛋白质观察2D 1H-15N或1H-13C异核相关(HSQC或HMQC)方法除了常规筛选外,还提供了包括配体与靶标结合机制和直接结合亲和力测量的见解。在此,我们在MestReNova (Mnova)软件包中开发了一套软件工具,用于分析用于FBDD和命中验证目的的2D NMR。该软件包包括三个主要任务:(1)对原始数据进行无监督分析,以识别在后续分析中排除的异常数据点;(2)基于化学位移扰动或光谱峰强度变化对单点光谱进行批量处理,对粘结剂进行识别和分级;(3)批量处理多个滴定序列,通过追踪峰位变化或测量全局光谱变化来获得结合亲和度(KD)。为此,我们实现并评估了一套基于PCA的自动峰值跟踪、光谱分束和方差分析算法,以及一个基于ECHOS的光谱数据强度比较新工具。这些工具的准确性和速度在用于开发抗凋亡MCL-1蛋白潜在抑制剂的配体上收集的2D NMR结合数据上得到了证明。图形抽象
{"title":"Efficiently driving protein-based fragment screening and lead discovery using two-dimensional NMR","authors":"Chen Peng,&nbsp;Andrew T. Namanja,&nbsp;Eva Munoz,&nbsp;Haihong Wu,&nbsp;Thomas E. Frederick,&nbsp;Mitcheell Maestre-Martinez,&nbsp;Isaac Iglesias Fernandez,&nbsp;Qi Sun,&nbsp;Carlos Cobas,&nbsp;Chaohong Sun,&nbsp;Andrew M. Petros","doi":"10.1007/s10858-022-00410-3","DOIUrl":"10.1007/s10858-022-00410-3","url":null,"abstract":"<div><p>Fragment-based drug discovery (FBDD) and validation of small molecule binders using NMR spectroscopy is an established and widely used method in the early stages of drug discovery. Starting from a library of small compounds, ligand- or protein-observed NMR methods are employed to detect binders, typically weak, that become the starting points for structure–activity relationships (SAR) by NMR. Unlike the more frequently used ligand-observed 1D NMR techniques, protein-observed 2D <sup>1</sup>H-<sup>15</sup>N or <sup>1</sup>H-<sup>13</sup>C heteronuclear correlation (HSQC or HMQC) methods offer insights that include the mechanism of ligand engagement on the target and direct binding affinity measurements in addition to routine screening. We hereby present the development of a set of software tools within the MestReNova (Mnova) package for analyzing 2D NMR for FBDD and hit validation purposes. The package covers three main tasks: (1) unsupervised profiling of raw data to identify outlier data points to exclude in subsequent analyses; (2) batch processing of single-point spectra to identify and rank binders based on chemical shift perturbations or spectral peak intensity changes; and (3) batch processing of multiple titration series to derive binding affinities (<i>K</i><sub>D</sub>) by tracing the changes in peak locations or measuring global spectral changes. Toward this end, we implemented and evaluated a set of algorithms for automated peak tracing, spectral binning, and variance analysis by PCA, and a new tool for spectral data intensity comparison using ECHOS. The accuracy and speed of the tools are demonstrated on 2D NMR binding data collected on ligands used in the development of potential inhibitors of the anti-apoptotic MCL-1 protein.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 1-2","pages":"39 - 53"},"PeriodicalIF":2.7,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-022-00410-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4526950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Investigation of lipid/protein interactions in trifluoroethanol-water mixtures proposes the strategy for the refolding of helical transmembrane domains 对三氟乙醇-水混合物中脂质/蛋白质相互作用的研究提出了螺旋跨膜结构域重折叠的策略
IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-11-30 DOI: 10.1007/s10858-022-00408-x
Vladislav V. Motov, Erik F. Kot, Alexandra V. Shabalkina, Sergey A. Goncharuk, Alexander S. Arseniev, Marina V. Goncharuk, Konstantin S. Mineev

Membrane proteins are one of the keystone objects in molecular biology, but their structural studies often require an extensive search for an appropriate membrane-like environment and an efficient refolding protocol for a recombinant protein. Isotropic bicelles are a convenient membrane mimetic used in structural studies of membrane proteins. Helical membrane domains are often transferred into bicelles from trifluoroethanol–water mixtures. However, the protocols for such a refolding are empirical and the process itself is still not understood in detail. In search of the optimal refolding approaches for helical membrane proteins, we studied here how membrane proteins, lipids, and detergents interact with each other at various trifluoroethanol–water ratios. Using high-resolution NMR spectroscopy and dynamic light scattering, we determined the key states of the listed compounds in the trifluoroethanol/water mixture, found the factors that could be critical for the efficiency of refolding, and proposed several most optimal protocols. These protocols were developed on the transmembrane domain of neurotrophin receptor TrkA and tested on two model helical membrane domains—transmembrane of Toll-like receptor TLR9 and voltage-sensing domain of a potassium channel KvAP.

膜蛋白是分子生物学的重要研究对象之一,但其结构研究往往需要广泛寻找合适的膜样环境和重组蛋白的有效重折叠方案。各向同性双胞体是一种方便的膜模拟物,用于膜蛋白的结构研究。螺旋膜结构域通常从三氟乙醇-水混合物中转移到双胞体中。然而,这种重新折叠的协议是经验性的,过程本身仍然没有详细了解。为了寻找螺旋膜蛋白的最佳再折叠方法,我们在这里研究了膜蛋白、脂质和洗涤剂在不同的三氟乙醇-水比下如何相互作用。利用高分辨率核磁共振波谱和动态光散射,我们确定了所列化合物在三氟乙醇/水混合物中的关键状态,发现了可能对再折叠效率至关重要的因素,并提出了几种最优方案。这些方案是在神经营养因子受体TrkA的跨膜结构域上开发的,并在toll样受体TLR9的跨膜结构域和钾通道KvAP的电压感应结构域两个模型螺旋膜结构域上进行了测试。
{"title":"Investigation of lipid/protein interactions in trifluoroethanol-water mixtures proposes the strategy for the refolding of helical transmembrane domains","authors":"Vladislav V. Motov,&nbsp;Erik F. Kot,&nbsp;Alexandra V. Shabalkina,&nbsp;Sergey A. Goncharuk,&nbsp;Alexander S. Arseniev,&nbsp;Marina V. Goncharuk,&nbsp;Konstantin S. Mineev","doi":"10.1007/s10858-022-00408-x","DOIUrl":"10.1007/s10858-022-00408-x","url":null,"abstract":"<div><p>Membrane proteins are one of the keystone objects in molecular biology, but their structural studies often require an extensive search for an appropriate membrane-like environment and an efficient refolding protocol for a recombinant protein. Isotropic bicelles are a convenient membrane mimetic used in structural studies of membrane proteins. Helical membrane domains are often transferred into bicelles from trifluoroethanol–water mixtures. However, the protocols for such a refolding are empirical and the process itself is still not understood in detail. In search of the optimal refolding approaches for helical membrane proteins, we studied here how membrane proteins, lipids, and detergents interact with each other at various trifluoroethanol–water ratios. Using high-resolution NMR spectroscopy and dynamic light scattering, we determined the key states of the listed compounds in the trifluoroethanol/water mixture, found the factors that could be critical for the efficiency of refolding, and proposed several most optimal protocols. These protocols were developed on the transmembrane domain of neurotrophin receptor TrkA and tested on two model helical membrane domains—transmembrane of Toll-like receptor TLR9 and voltage-sensing domain of a potassium channel KvAP.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 1-2","pages":"15 - 24"},"PeriodicalIF":2.7,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5164133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Journal of Biomolecular NMR
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1