Pub Date : 2023-11-21DOI: 10.1007/s10858-023-00428-1
Alexander R. Davis, Elijah T. Roberts, I. Jonathan Amster, Adam W. Barb
Despite the prevalence and importance of glycoproteins in human biology, methods for isotope labeling suffer significant limitations. Common prokaryotic platforms do not produce mammalian post-translation modifications that are essential to the function of many human glycoproteins, including immunoglobulin G1 (IgG1). Mammalian expression systems require complex media and thus introduce significant costs to achieve uniform labeling. Expression with Pichia is available, though expertise and equipment requirements surpass E. coli culture. We developed a system utilizing Saccharomyces cerevisiae, [13C]-glucose, and [15N]-ammonium chloride with complexity comparable to E. coli. Here we report two vectors for expressing the crystallizable fragment (Fc) of IgG1 for secretion into the culture medium, utilizing the ADH2 or DDI2 promoters. We also report a strategy to optimize the expression yield using orthogonal Taguchi arrays. Lastly, we developed two different media formulations, a standard medium which provides 86–92% 15N and 30% 13C incorporation into the polypeptide, or a rich medium which provides 98% 15N and 95% 13C incorporation as determined by mass spectrometry. This advance represents an expression and optimization strategy accessible to experimenters with the capability to grow and produce proteins for NMR-based experiments using E. coli.
{"title":"Uniform [13C,15N]-labeled and glycosylated IgG1 Fc expressed in Saccharomyces cerevisiae","authors":"Alexander R. Davis, Elijah T. Roberts, I. Jonathan Amster, Adam W. Barb","doi":"10.1007/s10858-023-00428-1","DOIUrl":"10.1007/s10858-023-00428-1","url":null,"abstract":"<div><p>Despite the prevalence and importance of glycoproteins in human biology, methods for isotope labeling suffer significant limitations. Common prokaryotic platforms do not produce mammalian post-translation modifications that are essential to the function of many human glycoproteins, including immunoglobulin G1 (IgG1). Mammalian expression systems require complex media and thus introduce significant costs to achieve uniform labeling. Expression with Pichia is available, though expertise and equipment requirements surpass <i>E. coli</i> culture. We developed a system utilizing <i>Saccharomyces cerevisiae</i>, [<sup>13</sup>C]-glucose, and [<sup>15</sup>N]-ammonium chloride with complexity comparable to <i>E. coli</i>. Here we report two vectors for expressing the crystallizable fragment (Fc) of IgG1 for secretion into the culture medium, utilizing the ADH2 or DDI2 promoters. We also report a strategy to optimize the expression yield using orthogonal Taguchi arrays. Lastly, we developed two different media formulations, a standard medium which provides 86–92% <sup>15</sup>N and 30% <sup>13</sup>C incorporation into the polypeptide, or a rich medium which provides 98% <sup>15</sup>N and 95% <sup>13</sup>C incorporation as determined by mass spectrometry. This advance represents an expression and optimization strategy accessible to experimenters with the capability to grow and produce proteins for NMR-based experiments using <i>E. coli</i>.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"78 1","pages":"9 - 18"},"PeriodicalIF":1.3,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138290066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.1007/s10858-023-00426-3
Sina Kazemi, Anna Lopata, Andreas Kniss, Lukas Pluska, Peter Güntert, Thomas Sommer, Thomas F. Prisner, Alberto Collauto, Volker Dötsch
Many proteins can adopt multiple conformations which are important for their function. This is also true for proteins and domains that are covalently linked to each other. One important example is ubiquitin, which can form chains of different conformations depending on which of its lysine side chains is used to form an isopeptide bond with the C-terminus of another ubiquitin molecule. Similarly, ubiquitin gets covalently attached to active-site residues of E2 ubiquitin-conjugating enzymes. Due to weak interactions between ubiquitin and its interaction partners, these covalent complexes adopt multiple conformations. Understanding the function of these complexes requires the characterization of the entire accessible conformation space and its modulation by interaction partners. Long-range (1.8–10 nm) distance restraints obtained by EPR spectroscopy in the form of probability distributions are ideally suited for this task as not only the mean distance but also information about the conformation dynamics is encoded in the experimental data. Here we describe a computational method that we have developed based on well-established structure determination software using NMR restraints to calculate the accessible conformation space using PELDOR/DEER data.
{"title":"Efficient determination of the accessible conformation space of multi-domain complexes based on EPR PELDOR data","authors":"Sina Kazemi, Anna Lopata, Andreas Kniss, Lukas Pluska, Peter Güntert, Thomas Sommer, Thomas F. Prisner, Alberto Collauto, Volker Dötsch","doi":"10.1007/s10858-023-00426-3","DOIUrl":"10.1007/s10858-023-00426-3","url":null,"abstract":"<div><p>Many proteins can adopt multiple conformations which are important for their function. This is also true for proteins and domains that are covalently linked to each other. One important example is ubiquitin, which can form chains of different conformations depending on which of its lysine side chains is used to form an isopeptide bond with the C-terminus of another ubiquitin molecule. Similarly, ubiquitin gets covalently attached to active-site residues of E2 ubiquitin-conjugating enzymes. Due to weak interactions between ubiquitin and its interaction partners, these covalent complexes adopt multiple conformations. Understanding the function of these complexes requires the characterization of the entire accessible conformation space and its modulation by interaction partners. Long-range (1.8–10 nm) distance restraints obtained by EPR spectroscopy in the form of probability distributions are ideally suited for this task as not only the mean distance but also information about the conformation dynamics is encoded in the experimental data. Here we describe a computational method that we have developed based on well-established structure determination software using NMR restraints to calculate the accessible conformation space using PELDOR/DEER data.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 5-6","pages":"261 - 269"},"PeriodicalIF":2.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107590024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-09DOI: 10.1007/s10858-023-00424-5
Alexander Klein, Suresh K. Vasa, Rasmus Linser
1H-detected solid-state NMR spectroscopy has been becoming increasingly popular for the characterization of protein structure, dynamics, and function. Recently, we showed that higher-dimensionality solid-state NMR spectroscopy can aid resonance assignments in large micro-crystalline protein targets to combat ambiguity (Klein et al., Proc. Natl. Acad. Sci. U.S.A. 2022). However, assignments represent both, a time-limiting factor and one of the major practical disadvantages within solid-state NMR studies compared to other structural-biology techniques from a very general perspective. Here, we show that 5D solid-state NMR spectroscopy is not only justified for high-molecular-weight targets but will also be a realistic and practicable method to streamline resonance assignment in small to medium-sized protein targets, which such methodology might not have been expected to be of advantage for. Using a combination of non-uniform sampling and the signal separating algorithm for spectral reconstruction on a deuterated and proton back-exchanged micro-crystalline protein at fast magic-angle spinning, direct amide-to-amide correlations in five dimensions are obtained with competitive sensitivity compatible with common hardware and measurement time commitments. The self-sufficient backbone walks enable efficient assignment with very high confidence and can be combined with higher-dimensionality sidechain-to-backbone correlations from protonated preparations into minimal sets of experiments to be acquired for simultaneous backbone and sidechain assignment. The strategies present themselves as potent alternatives for efficient assignment compared to the traditional assignment approaches in 3D, avoiding user misassignments derived from ambiguity or loss of overview and facilitating automation. This will ease future access to NMR-based characterization for the typical solid-state NMR targets at fast MAS.
{"title":"5D solid-state NMR spectroscopy for facilitated resonance assignment","authors":"Alexander Klein, Suresh K. Vasa, Rasmus Linser","doi":"10.1007/s10858-023-00424-5","DOIUrl":"10.1007/s10858-023-00424-5","url":null,"abstract":"<div><p><sup>1</sup>H-detected solid-state NMR spectroscopy has been becoming increasingly popular for the characterization of protein structure, dynamics, and function. Recently, we showed that higher-dimensionality solid-state NMR spectroscopy can aid resonance assignments in large micro-crystalline protein targets to combat ambiguity (Klein et al., Proc. Natl. Acad. Sci. U.S.A. 2022). However, assignments represent both, a time-limiting factor and one of the major practical disadvantages within solid-state NMR studies compared to other structural-biology techniques from a very general perspective. Here, we show that 5D solid-state NMR spectroscopy is not only justified for high-molecular-weight targets but will also be a realistic and practicable method to streamline resonance assignment in small to medium-sized protein targets, which such methodology might not have been expected to be of advantage for. Using a combination of non-uniform sampling and the signal separating algorithm for spectral reconstruction on a deuterated and proton back-exchanged micro-crystalline protein at fast magic-angle spinning, direct amide-to-amide correlations in five dimensions are obtained with competitive sensitivity compatible with common hardware and measurement time commitments. The self-sufficient backbone walks enable efficient assignment with very high confidence and can be combined with higher-dimensionality sidechain-to-backbone correlations from protonated preparations into minimal sets of experiments to be acquired for simultaneous backbone and sidechain assignment. The strategies present themselves as potent alternatives for efficient assignment compared to the traditional assignment approaches in 3D, avoiding user misassignments derived from ambiguity or loss of overview and facilitating automation. This will ease future access to NMR-based characterization for the typical solid-state NMR targets at fast MAS.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 5-6","pages":"229 - 245"},"PeriodicalIF":2.7,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71520147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1007/s10858-023-00425-4
Leonardo Querci, Deborah Grifagni, Inês B. Trindade, José Malanho Silva, Ricardo O. Louro, Francesca Cantini, Mario Piccioli
The robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed Cα/C’ connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation. Optimized 13C direct detected experiments can significantly extend the available assignments, improving the overall knowledge of these systems. The different relaxation properties of Cα and C’ nuclei are exploited in CACO vs COCA experiments and the complementarity of the two experiments is used to obtain structural information. The two [Fe2S2]+ clusters containing NEET protein CISD3 and the one [Fe4S4]2+ cluster containing HiPIP protein PioC have been taken as model systems. We show that tailored experiments contribute to decrease the blind sphere around the cluster, to extend resonance assignment of cluster bound cysteine residues and to retrieve details on the topology of the iron-bound ligand residues.
{"title":"Paramagnetic NMR to study iron sulfur proteins: 13C detected experiments illuminate the vicinity of the metal center","authors":"Leonardo Querci, Deborah Grifagni, Inês B. Trindade, José Malanho Silva, Ricardo O. Louro, Francesca Cantini, Mario Piccioli","doi":"10.1007/s10858-023-00425-4","DOIUrl":"10.1007/s10858-023-00425-4","url":null,"abstract":"<div><p>The robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed C<sup>α</sup>/C’ connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation. Optimized <sup>13</sup>C direct detected experiments can significantly extend the available assignments, improving the overall knowledge of these systems. The different relaxation properties of C<sup>α</sup> and C’ nuclei are exploited in CACO vs COCA experiments and the complementarity of the two experiments is used to obtain structural information. The two [Fe<sub>2</sub>S<sub>2</sub>]<sup>+</sup> clusters containing NEET protein CISD3 and the one [Fe<sub>4</sub>S<sub>4</sub>]<sup>2+</sup> cluster containing HiPIP protein PioC have been taken as model systems. We show that tailored experiments contribute to decrease the blind sphere around the cluster, to extend resonance assignment of cluster bound cysteine residues and to retrieve details on the topology of the iron-bound ligand residues.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 5-6","pages":"247 - 259"},"PeriodicalIF":2.7,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49673020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.1007/s10858-023-00427-2
Theresa Höfurthner, Giorgia Toscano, Georg Kontaxis, Andreas Beier, Moriz Mayer, Leonhard Geist, Darryl B. McConnell, Harald Weinstabl, Roman Lichtenecker, Robert Konrat
In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum 13C−1 H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased 13C-T2 times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-π interactions in protein-ligand complexes.
{"title":"Synthesis of a 13C-methylene-labeled isoleucine precursor as a useful tool for studying protein side-chain interactions and dynamics","authors":"Theresa Höfurthner, Giorgia Toscano, Georg Kontaxis, Andreas Beier, Moriz Mayer, Leonhard Geist, Darryl B. McConnell, Harald Weinstabl, Roman Lichtenecker, Robert Konrat","doi":"10.1007/s10858-023-00427-2","DOIUrl":"10.1007/s10858-023-00427-2","url":null,"abstract":"<div><p>In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum <sup>13</sup>C−<sup>1</sup> H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased <sup>13</sup>C-T<sub>2</sub> times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-π interactions in protein-ligand complexes.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"78 1","pages":"1 - 8"},"PeriodicalIF":1.3,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-07DOI: 10.1007/s10858-023-00423-6
Andrea Estefania Lopez Giraldo, Zowie Werner, Mehdi Rahimi, Woonghee Lee
Nuclear magnetic resonance is a crucial technique for studying biological complexes, as it provides precise structural and dynamic information at the atomic level. However, the process of assigning resonances can be time-consuming and challenging, particularly in cases where peaks overlap, or the data quality is poor. In this paper, we present TINTO (Two and three-dimensional Imaging for NMR sTrip Operation via CV/ML), an advanced semiautomatic toolset for NMR resonance assignment. TINTO comprises two separate tools, each tailored for either two-dimensional or three-dimensional imaging. The toolset utilizes a computer-vision approach and a machine learning approach, specifically structural similarity index and principal components analysis, to perform visual similarity searches of resonances and quickly locate similar strips, and in that way overcome the challenges associated with peak overlap without requiring peak picking. Our tool offers a user-friendly interface and has the potential to enhance the efficiency and accuracy of NMR resonance assignment, particularly in complex cases. This advancement holds promising implications for furthering our understanding of biological systems at the molecular level. TINTO is pre-installed in the POKY suite, which is available at https://poky.clas.ucdenver.edu.
{"title":"Breaking boundaries: TINTO in POKY for computer vision-based NMR walking strategies","authors":"Andrea Estefania Lopez Giraldo, Zowie Werner, Mehdi Rahimi, Woonghee Lee","doi":"10.1007/s10858-023-00423-6","DOIUrl":"10.1007/s10858-023-00423-6","url":null,"abstract":"<div><p>Nuclear magnetic resonance is a crucial technique for studying biological complexes, as it provides precise structural and dynamic information at the atomic level. However, the process of assigning resonances can be time-consuming and challenging, particularly in cases where peaks overlap, or the data quality is poor. In this paper, we present TINTO (Two and three-dimensional Imaging for NMR sTrip Operation via CV/ML), an advanced semiautomatic toolset for NMR resonance assignment. TINTO comprises two separate tools, each tailored for either two-dimensional or three-dimensional imaging. The toolset utilizes a computer-vision approach and a machine learning approach, specifically structural similarity index and principal components analysis, to perform visual similarity searches of resonances and quickly locate similar strips, and in that way overcome the challenges associated with peak overlap without requiring peak picking. Our tool offers a user-friendly interface and has the potential to enhance the efficiency and accuracy of NMR resonance assignment, particularly in complex cases. This advancement holds promising implications for furthering our understanding of biological systems at the molecular level. TINTO is pre-installed in the POKY suite, which is available at https://poky.clas.ucdenver.edu.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 5-6","pages":"217 - 228"},"PeriodicalIF":2.7,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41113412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-09DOI: 10.1007/s10858-023-00422-7
Matej Dzurov, Šárka Pospíšilová, Michaela Krafčíková, Lukáš Trantírek, Lucy Vojtová, Jan Ryneš
Introducing the flow through the bioreactor has revolutionized in-cell NMR spectroscopy by prolonging the measurement time available to acquire spectral information about biomacromolecules in metabolically active cells. Bioreactor technology relies on immobilizer matrices, which secure cells in the active volume of the NMR coil and enable uniform perfusion of the growth medium, supplying fresh nutrients to the cells while removing toxic byproducts of their metabolism. The main drawbacks of commonly used matrices include the inability to recover intact cells post-measurement for additional analyses and/or requirements for specific operating temperatures. Here, we report on the development and characterization of a set of thermosensitive and nontoxic triblock copolymers based on poly(D,L-lactide)-b-poly(ethylene glycol)-b-poly(D,L-lactide) (PLA-PEG-PLA). Here, we show for the first time that these copolymers are suitable as immobilizer matrices for the acquisition of in-cell NMR spectra of nucleic acids and proteins over a commonly used sample temperature range of 15–40 °C and, importantly, allow recovery of cells after completion of in-cell NMR spectra acquisition. We compared the performances of currently used matrices in terms of cell viability (dye exclusion assays), cellular metabolism (1D 31P NMR), and quality of in-cell NMR spectra of two model biomacromolecules (hybrid double-stranded/i-motif DNA and ubiquitin). Our results demonstrate the suitability and advantages of PLA-PEG-PLA copolymers for application in bioreactor-assisted in-cell NMR.
通过引入生物反应器的流动,通过延长可获得代谢活跃细胞中生物大分子光谱信息的测量时间,彻底改变了细胞内核磁共振波谱。生物反应器技术依赖于固定化基质,它将细胞固定在核磁共振线圈的活性体积中,并使生长介质均匀灌注,为细胞提供新鲜营养,同时去除其代谢的有毒副产物。常用基质的主要缺点包括无法在测量后恢复完整的细胞以进行额外的分析和/或对特定工作温度的要求。在这里,我们报道了一组基于聚(D, l -丙交酯)-b-聚(乙二醇)-b-聚(D, l -丙交酯)(PLA-PEG-PLA)的热敏无毒三嵌段共聚物的开发和表征。在这里,我们首次证明这些共聚物适合作为固定化基质,用于在15-40°C的常用样品温度范围内获取核酸和蛋白质的细胞内NMR光谱,重要的是,在完成细胞内NMR光谱采集后,可以恢复细胞。我们比较了目前使用的基质在细胞活力(染料排除试验)、细胞代谢(1D 31P核磁共振)和两种模型生物大分子(杂交双链/i-motif DNA和泛素)的细胞内核磁共振光谱质量方面的性能。我们的研究结果证明了PLA-PEG-PLA共聚物在生物反应器辅助细胞内核磁共振中的适用性和优势。
{"title":"A thermosensitive gel matrix for bioreactor-assisted in-cell NMR of nucleic acids and proteins","authors":"Matej Dzurov, Šárka Pospíšilová, Michaela Krafčíková, Lukáš Trantírek, Lucy Vojtová, Jan Ryneš","doi":"10.1007/s10858-023-00422-7","DOIUrl":"10.1007/s10858-023-00422-7","url":null,"abstract":"<div><p>Introducing the flow through the bioreactor has revolutionized in-cell NMR spectroscopy by prolonging the measurement time available to acquire spectral information about biomacromolecules in metabolically active cells. Bioreactor technology relies on immobilizer matrices, which secure cells in the active volume of the NMR coil and enable uniform perfusion of the growth medium, supplying fresh nutrients to the cells while removing toxic byproducts of their metabolism. The main drawbacks of commonly used matrices include the inability to recover intact cells post-measurement for additional analyses and/or requirements for specific operating temperatures. Here, we report on the development and characterization of a set of thermosensitive and nontoxic triblock copolymers based on poly(D,L-lactide)-<i>b</i>-poly(ethylene glycol)-<i>b</i>-poly(D,L-lactide) (PLA-PEG-PLA). Here, we show for the first time that these copolymers are suitable as immobilizer matrices for the acquisition of in-cell NMR spectra of nucleic acids and proteins over a commonly used sample temperature range of 15–40 °C and, importantly, allow recovery of cells after completion of in-cell NMR spectra acquisition. We compared the performances of currently used matrices in terms of cell viability (dye exclusion assays), cellular metabolism (1D <sup>31</sup>P NMR), and quality of in-cell NMR spectra of two model biomacromolecules (hybrid double-stranded/i-motif DNA and ubiquitin). Our results demonstrate the suitability and advantages of PLA-PEG-PLA copolymers for application in bioreactor-assisted in-cell NMR.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 5-6","pages":"203 - 215"},"PeriodicalIF":2.7,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10189696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26DOI: 10.1007/s10858-023-00421-8
Evan J. van Aalst, Jun Jang, Ty C. Halligan, Benjamin J. Wylie
In protein nuclear magnetic resonance (NMR), chemical shift assignment provides a wealth of information. However, acquisition of high-quality solid-state NMR spectra depends on protein-specific dynamics. For membrane proteins, bilayer heterogeneity further complicates this observation. Since the efficiency of cross-polarization transfer is strongly entwined with protein dynamics, optimal temperatures for spectral sensitivity and resolution will depend not only on inherent protein dynamics, but temperature-dependent phase properties of the bilayer environment. We acquired 1-, 2-, and 3D homo- and heteronuclear experiments of the chemokine receptor CCR3 in a 7:3 phosphatidylcholine:cholesterol lipid environment. 1D direct polarization, cross polarization (CP), and T2’ experiments indicate sample temperatures below − 25 °C facilitate higher CP enhancement and longer-lived transverse relaxation times. T1rho experiments indicate intermediate timescales are minimized below a sample temperature of − 20 °C. 2D DCP NCA experiments indicated optimal CP efficiency and resolution at a sample temperature of − 30 °C, corroborated by linewidth analysis in 3D NCACX at − 30 °C compared to − 5 °C. This optimal temperature is concluded to be directly related the lipid phase transition, measured to be between − 20 and 15 °C based on rINEPT signal of all-trans and trans-gauche lipid acyl conformations. Our results have critical implications in acquisition of SSNMR membrane protein assignment spectra, as we hypothesize that different lipid compositions with different phase transition properties influence protein dynamics and therefore the optimal acquisition temperature.
{"title":"Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study","authors":"Evan J. van Aalst, Jun Jang, Ty C. Halligan, Benjamin J. Wylie","doi":"10.1007/s10858-023-00421-8","DOIUrl":"10.1007/s10858-023-00421-8","url":null,"abstract":"<div><p>In protein nuclear magnetic resonance (NMR), chemical shift assignment provides a wealth of information. However, acquisition of high-quality solid-state NMR spectra depends on protein-specific dynamics. For membrane proteins, bilayer heterogeneity further complicates this observation. Since the efficiency of cross-polarization transfer is strongly entwined with protein dynamics, optimal temperatures for spectral sensitivity and resolution will depend not only on inherent protein dynamics, but temperature-dependent phase properties of the bilayer environment. We acquired 1-, 2-, and 3D homo- and heteronuclear experiments of the chemokine receptor CCR3 in a 7:3 phosphatidylcholine:cholesterol lipid environment. 1D direct polarization, cross polarization (CP), and T<sub>2</sub>’ experiments indicate sample temperatures below − 25 °C facilitate higher CP enhancement and longer-lived transverse relaxation times. T<sub>1</sub><sub>rho</sub> experiments indicate intermediate timescales are minimized below a sample temperature of − 20 °C. 2D DCP NCA experiments indicated optimal CP efficiency and resolution at a sample temperature of − 30 °C, corroborated by linewidth analysis in 3D NCACX at − 30 °C compared to − 5 °C. This optimal temperature is concluded to be directly related the lipid phase transition, measured to be between − 20 and 15 °C based on rINEPT signal of all-trans and trans-gauche lipid acyl conformations. Our results have critical implications in acquisition of SSNMR membrane protein assignment spectra, as we hypothesize that different lipid compositions with different phase transition properties influence protein dynamics and therefore the optimal acquisition temperature.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 4","pages":"191 - 202"},"PeriodicalIF":2.7,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5411758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20DOI: 10.1007/s10858-023-00420-9
Damian Van Raad, Thomas Huber, Gottfried Otting
Cell-free protein synthesis using eCells allows production of amino acids from inexpensive 13C-labelled precursors. We show that the metabolic pathway converting pyruvate, glucose and erythrose into aromatic amino acids is maintained in eCells. Judicious choice of 13C-labelled starting material leads to proteins, where the sidechains of aromatic amino acids display [13C,1H]-HSQC cross-peaks free of one-bond 13C–13C couplings. Selective 13C-labelling of tyrosine and phenylalanine residues is achieved simply by using different compositions of the reaction buffers.
{"title":"Improved spectral resolution of [13C,1H]-HSQC spectra of aromatic amino acid residues in proteins produced by cell-free synthesis from inexpensive 13C-labelled precursors","authors":"Damian Van Raad, Thomas Huber, Gottfried Otting","doi":"10.1007/s10858-023-00420-9","DOIUrl":"10.1007/s10858-023-00420-9","url":null,"abstract":"<div><p>Cell-free protein synthesis using eCells allows production of amino acids from inexpensive <sup>13</sup>C-labelled precursors. We show that the metabolic pathway converting pyruvate, glucose and erythrose into aromatic amino acids is maintained in eCells. Judicious choice of <sup>13</sup>C-labelled starting material leads to proteins, where the sidechains of aromatic amino acids display [<sup>13</sup>C,<sup>1</sup>H]-HSQC cross-peaks free of one-bond <sup>13</sup>C–<sup>13</sup>C couplings. Selective <sup>13</sup>C-labelling of tyrosine and phenylalanine residues is achieved simply by using different compositions of the reaction buffers.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 4","pages":"183 - 190"},"PeriodicalIF":2.7,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-023-00420-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5093205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-13DOI: 10.1007/s10858-023-00417-4
Roman Levin, Frank Löhr, Betül Karakoc, Roman Lichtenecker, Volker Dötsch, Frank Bernhard
Cell-free (CF) synthesis with highly productive E. coli lysates is a convenient method to produce labeled proteins for NMR studies. Despite reduced metabolic activity in CF lysates, a certain scrambling of supplied isotope labels is still notable. Most problematic are conversions of 15N labels of the amino acids L-Asp, L-Asn, L-Gln, L-Glu and L-Ala, resulting in ambiguous NMR signals as well as in label dilution. Specific inhibitor cocktails suppress most undesired conversion reactions, while limited availability and potential side effects on CF system productivity need to be considered. As alternative route to address NMR label conversion in CF systems, we describe the generation of optimized E. coli lysates with reduced amino acid scrambling activity. Our strategy is based on the proteome blueprint of standardized CF S30 lysates of the E. coli strain A19. Identified lysate enzymes with suspected amino acid scrambling activity were eliminated by engineering corresponding single and cumulative chromosomal mutations in A19. CF lysates prepared from the mutants were analyzed for their CF protein synthesis efficiency and for residual scrambling activity. The A19 derivative “Stablelabel” containing the cumulative mutations asnA, ansA/B, glnA, aspC and ilvE yielded the most useful CF S30 lysates. We demonstrate the optimized NMR spectral complexity of selectively labeled proteins CF synthesized in “Stablelabel” lysates. By taking advantage of ilvE deletion in "Stablelabel", we further exemplify a new strategy for methyl group specific labeling of membrane proteins with the proton pump proteorhodopsin.
{"title":"E. coli “Stablelabel” S30 lysate for optimized cell-free NMR sample preparation","authors":"Roman Levin, Frank Löhr, Betül Karakoc, Roman Lichtenecker, Volker Dötsch, Frank Bernhard","doi":"10.1007/s10858-023-00417-4","DOIUrl":"10.1007/s10858-023-00417-4","url":null,"abstract":"<div><p>Cell-free (CF) synthesis with highly productive <i>E. coli</i> lysates is a convenient method to produce labeled proteins for NMR studies. Despite reduced metabolic activity in CF lysates, a certain scrambling of supplied isotope labels is still notable. Most problematic are conversions of <sup>15</sup>N labels of the amino acids L-Asp, L-Asn, L-Gln, L-Glu and L-Ala, resulting in ambiguous NMR signals as well as in label dilution. Specific inhibitor cocktails suppress most undesired conversion reactions, while limited availability and potential side effects on CF system productivity need to be considered. As alternative route to address NMR label conversion in CF systems, we describe the generation of optimized <i>E. coli</i> lysates with reduced amino acid scrambling activity. Our strategy is based on the proteome blueprint of standardized CF S30 lysates of the <i>E. coli</i> strain A19. Identified lysate enzymes with suspected amino acid scrambling activity were eliminated by engineering corresponding single and cumulative chromosomal mutations in A19. CF lysates prepared from the mutants were analyzed for their CF protein synthesis efficiency and for residual scrambling activity. The A19 derivative “Stablelabel” containing the cumulative mutations <i>asnA, ansA/B, glnA, aspC</i> and <i>ilvE</i> yielded the most useful CF S30 lysates. We demonstrate the optimized NMR spectral complexity of selectively labeled proteins CF synthesized in “Stablelabel” lysates. By taking advantage of <i>ilvE</i> deletion in \"Stablelabel\", we further exemplify a new strategy for methyl group specific labeling of membrane proteins with the proton pump proteorhodopsin.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 4","pages":"131 - 147"},"PeriodicalIF":2.7,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-023-00417-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4545957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}