Pub Date : 2023-10-20DOI: 10.1021/acs.jpclett.3c02392
Alexander Zika, Mohit Agarwal, Ralf Schweins and Franziska Gröhn*,
Quadruple-switchable nanoscale assemblies are built by combining two types of water-soluble molecular photoswitches through dipole–dipole interaction. Uniting the wavelength-specific proton dissociation of a photoacid and ring-opening of an anionic spirooxazine results in an assembly that can be addressed by irradiation with two different wavelengths: pH and darkness.
{"title":"Double-Wavelength-Switchable Molecular Self-Assembly of a Photoacid and Spirooxazine in an Aqueous Solution","authors":"Alexander Zika, Mohit Agarwal, Ralf Schweins and Franziska Gröhn*, ","doi":"10.1021/acs.jpclett.3c02392","DOIUrl":"10.1021/acs.jpclett.3c02392","url":null,"abstract":"<p >Quadruple-switchable nanoscale assemblies are built by combining two types of water-soluble molecular photoswitches through dipole–dipole interaction. Uniting the wavelength-specific proton dissociation of a photoacid and ring-opening of an anionic spirooxazine results in an assembly that can be addressed by irradiation with two different wavelengths: pH and darkness.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 43","pages":"9563–9568"},"PeriodicalIF":5.7,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1021/acs.jpclett.3c02626
George Mitrikas*,
Encapsulated atomic hydrogen in cube-shaped octasilsesquioxane (POSS) cages of the Si8O12R8 type (where R is an organic group) is one of the simplest alternative stable systems to paramagnetic endofullerenes that have been regarded as key elements of spin-based quantum technologies. Apart from common sources of decoherence such as nuclear spin and spectral diffusion, all H@POSS species studied so far suffer from additional shortening of T2 at low temperatures due to methyl group rotations. Here we eliminate this factor for the first time by studying the smallest methyl-free derivative with R = H, namely, H@T8H8. By applying dynamical decoupling methods, we measure electron spin coherence times T2 up to 280 ± 76 μs at T = 90 K and observe a linear dependence of the decoherence rate 1/T2 on trapped hydrogen concentrations, which we attribute to the spin dephasing mechanism of instantaneous diffusion and a nonuniform spatial distribution of encapsulated H atoms.
{"title":"Long Electron Spin Coherence Times of Atomic Hydrogen Trapped in Silsesquioxane Cages","authors":"George Mitrikas*, ","doi":"10.1021/acs.jpclett.3c02626","DOIUrl":"10.1021/acs.jpclett.3c02626","url":null,"abstract":"<p >Encapsulated atomic hydrogen in cube-shaped octasilsesquioxane (POSS) cages of the Si<sub>8</sub>O<sub>12</sub>R<sub>8</sub> type (where R is an organic group) is one of the simplest alternative stable systems to paramagnetic endofullerenes that have been regarded as key elements of spin-based quantum technologies. Apart from common sources of decoherence such as nuclear spin and spectral diffusion, all H@POSS species studied so far suffer from additional shortening of <i>T</i><sub>2</sub> at low temperatures due to methyl group rotations. Here we eliminate this factor for the first time by studying the smallest methyl-free derivative with R = H, namely, H@T<sub>8</sub>H<sub>8</sub>. By applying dynamical decoupling methods, we measure electron spin coherence times <i>T</i><sub>2</sub> up to 280 ± 76 μs at <i>T</i> = 90 K and observe a linear dependence of the decoherence rate 1/<i>T</i><sub>2</sub> on trapped hydrogen concentrations, which we attribute to the spin dephasing mechanism of instantaneous diffusion and a nonuniform spatial distribution of encapsulated H atoms.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 43","pages":"9590–9595"},"PeriodicalIF":5.7,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1021/acs.jpclett.3c02730
Abinash Das, Dongyu Liu, Riu Riu Wary, Andrey S. Vasenko, Oleg V. Prezhdo* and Ranjith G. Nair*,
Doping of zinc oxide (ZnO) with manganese (Mn) tunes midbandgap states of ZnO to enhance its optical properties and makes it into an efficient photoactive material for photoelectrochemical water splitting, waste removal from water, and other applications. We demonstrate that ZnO modified with 1 at. % Mn exhibits the best performance, as rationalized by experimental, structural, and optical characterization and theoretical analysis. ZnO doped with the optimal Mn content possesses improved light absorption in the visible region and minimizes charge carrier recombination. The doping is substitutional and creates midgap states near the valence band. Mn atoms break localized charge traps at oxygen vacancy sites and eliminate photoluminescence peaks associated with oxygen vacancies. The optimal performance of Mn-modified ZnO is demonstrated with the photodegradation of Congo red and photoelectrochemical water splitting.
{"title":"Mn-Modified ZnO Nanoflakes for Optimal Photoelectrochemical Performance Under Visible Light: Experimental Design and Theoretical Rationalization","authors":"Abinash Das, Dongyu Liu, Riu Riu Wary, Andrey S. Vasenko, Oleg V. Prezhdo* and Ranjith G. Nair*, ","doi":"10.1021/acs.jpclett.3c02730","DOIUrl":"10.1021/acs.jpclett.3c02730","url":null,"abstract":"<p >Doping of zinc oxide (ZnO) with manganese (Mn) tunes midbandgap states of ZnO to enhance its optical properties and makes it into an efficient photoactive material for photoelectrochemical water splitting, waste removal from water, and other applications. We demonstrate that ZnO modified with 1 at. % Mn exhibits the best performance, as rationalized by experimental, structural, and optical characterization and theoretical analysis. ZnO doped with the optimal Mn content possesses improved light absorption in the visible region and minimizes charge carrier recombination. The doping is substitutional and creates midgap states near the valence band. Mn atoms break localized charge traps at oxygen vacancy sites and eliminate photoluminescence peaks associated with oxygen vacancies. The optimal performance of Mn-modified ZnO is demonstrated with the photodegradation of Congo red and photoelectrochemical water splitting.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 43","pages":"9604–9611"},"PeriodicalIF":5.7,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1021/acs.jpclett.3c02375
Kevin K. Huguenin-Dumittan, Philip Loche, Ni Haoran and Michele Ceriotti*,
One essential ingredient in many machine learning (ML) based methods for atomistic modeling of materials and molecules is the use of locality. While allowing better system-size scaling, this systematically neglects long-range (LR) effects such as electrostatic or dispersion interactions. We present an extension of the long distance equivariant (LODE) framework that can handle diverse LR interactions in a consistent way and seamlessly integrates with preexisting methods by building new sets of atom centered features. We provide a direct physical interpretation of these using the multipole expansion, which allows for simpler and more efficient implementations. The framework is applied to simple toy systems as proof of concept and a heterogeneous set of molecular dimers to push the method to its limits. By generalizing LODE to arbitrary asymptotic behaviors, we provide a coherent approach to treat arbitrary two- and many-body nonbonded interactions in the data-driven modeling of matter.
{"title":"Physics-Inspired Equivariant Descriptors of Nonbonded Interactions","authors":"Kevin K. Huguenin-Dumittan, Philip Loche, Ni Haoran and Michele Ceriotti*, ","doi":"10.1021/acs.jpclett.3c02375","DOIUrl":"10.1021/acs.jpclett.3c02375","url":null,"abstract":"<p >One essential ingredient in many machine learning (ML) based methods for atomistic modeling of materials and molecules is the use of locality. While allowing better system-size scaling, this systematically neglects long-range (LR) effects such as electrostatic or dispersion interactions. We present an extension of the long distance equivariant (LODE) framework that can handle diverse LR interactions in a consistent way and seamlessly integrates with preexisting methods by building new sets of atom centered features. We provide a direct physical interpretation of these using the multipole expansion, which allows for simpler and more efficient implementations. The framework is applied to simple toy systems as proof of concept and a heterogeneous set of molecular dimers to push the method to its limits. By generalizing LODE to arbitrary asymptotic behaviors, we provide a coherent approach to treat arbitrary two- and many-body nonbonded interactions in the data-driven modeling of matter.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 43","pages":"9612–9618"},"PeriodicalIF":5.7,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1021/acs.jpclett.3c02318
Joseph E. Schneider, and , John S. Anderson*,
Recently, there have been several experimental demonstrations of how the rates of concerted proton electron transfer (CPET) are affected by stepwise thermodynamic parameters of only proton (ΔG°PT) or electron (ΔG°ET) transfer. Semiclassical structure–activity relationships have been invoked to rationalize these linear free energy relationships, but it is not clear how they would manifest in a nonadiabatic reaction. Using density functional theory calculations, we demonstrate how a decrease in ΔG°PT can lead to transition state imbalance in a nonadiabatic framework. We then use these calculations to anchor a theoretical model that reproduces experimental trends with ΔG°PT and ΔG°ET. Our results reconcile predictions from semiclassical transition state theory with models that treat proton transfer quantum mechanically in CPET reactivity, make new predictions about the importance of basicity for uphill CPET reactions, and suggest similar treatments may be possible for other nonadiabatic reactions.
{"title":"Reconciling Imbalanced and Nonadiabatic Reactivity in Transition Metal–Oxo-Mediated Concerted Proton Electron Transfer (CPET)","authors":"Joseph E. Schneider, and , John S. Anderson*, ","doi":"10.1021/acs.jpclett.3c02318","DOIUrl":"10.1021/acs.jpclett.3c02318","url":null,"abstract":"<p >Recently, there have been several experimental demonstrations of how the rates of concerted proton electron transfer (CPET) are affected by stepwise thermodynamic parameters of only proton (Δ<i>G</i>°<sub>PT</sub>) or electron (Δ<i>G</i>°<sub>ET</sub>) transfer. Semiclassical structure–activity relationships have been invoked to rationalize these linear free energy relationships, but it is not clear how they would manifest in a nonadiabatic reaction. Using density functional theory calculations, we demonstrate how a decrease in Δ<i>G</i>°<sub>PT</sub> can lead to transition state imbalance in a nonadiabatic framework. We then use these calculations to anchor a theoretical model that reproduces experimental trends with Δ<i>G</i>°<sub>PT</sub> and Δ<i>G</i>°<sub>ET</sub>. Our results reconcile predictions from semiclassical transition state theory with models that treat proton transfer quantum mechanically in CPET reactivity, make new predictions about the importance of basicity for uphill CPET reactions, and suggest similar treatments may be possible for other nonadiabatic reactions.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 43","pages":"9548–9555"},"PeriodicalIF":5.7,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stereoelectronic effects in single-molecule junctions have been widely utilized to achieve a molecular switch, but high-efficiency and reproducible switching remain challenging. Here, we demonstrate that there are three stable intramolecular conformations in the 9,10-diphenyl-9,10-methanoanthracen-11-one (DPMAO) systems due to steric effect. Interestingly, different electronic coupling approaches including weak coupling (through-space), decoupling, and strong coupling (through-bond) between two terminal benzene rings are accomplished in the three stable conformations, respectively. Theoretical calculations show that the molecular conductance of three stable conformations differs by more than 1 order of magnitude. Furthermore, the populations of the three stable conformations are highly dependent on the solvent effect and the external electric field. Therefore, an excellent molecular switch can be achieved using the DPMAO molecule junctions and external stimuli. Our findings reveal that modulating intramolecular electronic coupling approaches may be a useful manner to enable molecular switches with high switching ratios. This opens up a new route for building high-efficiency molecular switches in single-molecular junctions.
{"title":"Stereoelectronic Switches of Single-Molecule Junctions through Conformation-Modulated Intramolecular Coupling Approaches","authors":"Zhuan-Yun Cai, Zi-Wei Ma, Wen-Kai Wu, Jian-De Lin, Lin-Qi Pei, Jia-Zheng Wang, Tai-Rui Wu, Shan Jin, De-Yin Wu* and Zhong-Qun Tian, ","doi":"10.1021/acs.jpclett.3c02577","DOIUrl":"10.1021/acs.jpclett.3c02577","url":null,"abstract":"<p >Stereoelectronic effects in single-molecule junctions have been widely utilized to achieve a molecular switch, but high-efficiency and reproducible switching remain challenging. Here, we demonstrate that there are three stable intramolecular conformations in the 9,10-diphenyl-9,10-methanoanthracen-11-one (DPMAO) systems due to steric effect. Interestingly, different electronic coupling approaches including weak coupling (through-space), decoupling, and strong coupling (through-bond) between two terminal benzene rings are accomplished in the three stable conformations, respectively. Theoretical calculations show that the molecular conductance of three stable conformations differs by more than 1 order of magnitude. Furthermore, the populations of the three stable conformations are highly dependent on the solvent effect and the external electric field. Therefore, an excellent molecular switch can be achieved using the DPMAO molecule junctions and external stimuli. Our findings reveal that modulating intramolecular electronic coupling approaches may be a useful manner to enable molecular switches with high switching ratios. This opens up a new route for building high-efficiency molecular switches in single-molecular junctions.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 43","pages":"9539–9547"},"PeriodicalIF":5.7,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1021/acs.jpclett.3c02275
Mathew Chow, Tao E. Li and Sharon Hammes-Schiffer*,
Simulating the nuclear–electronic quantum dynamics of large-scale molecular systems in the condensed phase is key for studying biologically and chemically important processes such as proton transfer and proton-coupled electron transfer reactions. Herein, the real-time nuclear–electronic orbital time-dependent density functional theory (RT-NEO-TDDFT) approach is combined with a hybrid quantum mechanical/molecular mechanical (QM/MM) strategy to enable the accurate description of coupled nuclear–electronic quantum dynamics in the presence of heterogeneous environments such as solvent or proteins. The densities of the electrons and quantum protons are propagated in real time, while the other nuclei are propagated classically on the instantaneous electron–proton vibronic surface. This approach is applied to phenol bound to lysozyme, intramolecular proton transfer in malonaldehyde, and nonequilibrium excited-state intramolecular proton transfer in o-hydroxybenzaldehyde. These examples illustrate that the RT-NEO-TDDFT framework, coupled with an atomistic representation of the environment, allows the simulation of condensed-phase systems that exhibit significant nuclear quantum effects.
{"title":"Nuclear–Electronic Orbital Quantum Mechanical/Molecular Mechanical Real-Time Dynamics","authors":"Mathew Chow, Tao E. Li and Sharon Hammes-Schiffer*, ","doi":"10.1021/acs.jpclett.3c02275","DOIUrl":"10.1021/acs.jpclett.3c02275","url":null,"abstract":"<p >Simulating the nuclear–electronic quantum dynamics of large-scale molecular systems in the condensed phase is key for studying biologically and chemically important processes such as proton transfer and proton-coupled electron transfer reactions. Herein, the real-time nuclear–electronic orbital time-dependent density functional theory (RT-NEO-TDDFT) approach is combined with a hybrid quantum mechanical/molecular mechanical (QM/MM) strategy to enable the accurate description of coupled nuclear–electronic quantum dynamics in the presence of heterogeneous environments such as solvent or proteins. The densities of the electrons and quantum protons are propagated in real time, while the other nuclei are propagated classically on the instantaneous electron–proton vibronic surface. This approach is applied to phenol bound to lysozyme, intramolecular proton transfer in malonaldehyde, and nonequilibrium excited-state intramolecular proton transfer in <i>o</i>-hydroxybenzaldehyde. These examples illustrate that the RT-NEO-TDDFT framework, coupled with an atomistic representation of the environment, allows the simulation of condensed-phase systems that exhibit significant nuclear quantum effects.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 43","pages":"9556–9562"},"PeriodicalIF":5.7,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1021/acs.jpclett.3c02614
Feiyue Ge, Yingying Han, Changsheng Feng, Han Zhang, Feifan Chen, Dan Xu, Chen-Lei Tao, Fang Cheng* and Xue-Jun Wu*,
The geometry and surface state of nanocrystals (NCs) strongly affect their physiochemical properties, self-assembly behaviors, and potential applications, but there is still a lack of a facile method to regulate the exposed facets of the NCs, especially metal@semiconductor core–shell NCs. Herein, we present a reproducible approach for tuning the morphology of PbS NCs from nanocubes to nano-octahedrons by introducing lead halides as precursors. Excitingly, the method can be easily extended to the synthesis of metal@PbS core–shell NCs with single-crystalline shells and specific exposed facets. In addition, the halide passivation layers on the NCs are found to greatly improve their antioxidant ability. Therefore, the Cl-passivated NCs can self-assemble into atomic-coupled monolayer films via oriented attachment under ambient conditions, which exhibit enhanced electrical conductivities compared with uncoupled counterparts. The precise synthesis of nanocrystals with tunable shapes and the construction of self-assembled films provide a way to expand their application in high-performance optoelectronic devices.
{"title":"Halide Ions Regulating the Morphologies of PbS and Au@PbS Core–Shell Nanocrystals: Synthesis, Self-Assembly, and Electrical Transport Properties","authors":"Feiyue Ge, Yingying Han, Changsheng Feng, Han Zhang, Feifan Chen, Dan Xu, Chen-Lei Tao, Fang Cheng* and Xue-Jun Wu*, ","doi":"10.1021/acs.jpclett.3c02614","DOIUrl":"10.1021/acs.jpclett.3c02614","url":null,"abstract":"<p >The geometry and surface state of nanocrystals (NCs) strongly affect their physiochemical properties, self-assembly behaviors, and potential applications, but there is still a lack of a facile method to regulate the exposed facets of the NCs, especially metal@semiconductor core–shell NCs. Herein, we present a reproducible approach for tuning the morphology of PbS NCs from nanocubes to nano-octahedrons by introducing lead halides as precursors. Excitingly, the method can be easily extended to the synthesis of metal@PbS core–shell NCs with single-crystalline shells and specific exposed facets. In addition, the halide passivation layers on the NCs are found to greatly improve their antioxidant ability. Therefore, the Cl-passivated NCs can self-assemble into atomic-coupled monolayer films via oriented attachment under ambient conditions, which exhibit enhanced electrical conductivities compared with uncoupled counterparts. The precise synthesis of nanocrystals with tunable shapes and the construction of self-assembled films provide a way to expand their application in high-performance optoelectronic devices.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 42","pages":"9521–9530"},"PeriodicalIF":5.7,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1021/acs.jpclett.3c01749
Samrendra K. Singh, Kelsie King, Cole Gannett, Christina Chuong, Soumil Y. Joshi, Charles Plate, Parisa Farzeen, Emily M. Webb, Lakshmi Kumar Kunche, James Weger-Lucarelli, Andrew N. Lowell, Anne M. Brown* and Sanket A. Deshmukh*,
Emerging pathogens are a historic threat to public health and economic stability. Current trial-and-error approaches to identify new therapeutics are often ineffective due to their inefficient exploration of the enormous small molecule design space. Here, we present a data-driven computational framework composed of hybrid evolutionary algorithms for evolving functional groups on existing drugs to improve their binding affinity toward the main protease (Mpro) of SARS-CoV-2. We show that combinations of functional groups and sites are critical to design drugs with improved binding affinity, which can be easily achieved using our framework by exploring a fraction of the available search space. Atomistic simulations and experimental validation elucidate that enhanced and prolonged interactions between functionalized drugs and Mpro residues result in their improved therapeutic value over that of the parental compound. Overall, this novel framework is extremely flexible and has the potential to rapidly design inhibitors for any protein with available crystal structures.
{"title":"Data Driven Computational Design and Experimental Validation of Drugs for Accelerated Mitigation of Pandemic-like Scenarios","authors":"Samrendra K. Singh, Kelsie King, Cole Gannett, Christina Chuong, Soumil Y. Joshi, Charles Plate, Parisa Farzeen, Emily M. Webb, Lakshmi Kumar Kunche, James Weger-Lucarelli, Andrew N. Lowell, Anne M. Brown* and Sanket A. Deshmukh*, ","doi":"10.1021/acs.jpclett.3c01749","DOIUrl":"10.1021/acs.jpclett.3c01749","url":null,"abstract":"<p >Emerging pathogens are a historic threat to public health and economic stability. Current trial-and-error approaches to identify new therapeutics are often ineffective due to their inefficient exploration of the enormous small molecule design space. Here, we present a data-driven computational framework composed of hybrid evolutionary algorithms for evolving functional groups on existing drugs to improve their binding affinity toward the main protease (M<sup>pro</sup>) of SARS-CoV-2. We show that combinations of functional groups and sites are critical to design drugs with improved binding affinity, which can be easily achieved using our framework by exploring a fraction of the available search space. Atomistic simulations and experimental validation elucidate that enhanced and prolonged interactions between functionalized drugs and M<sup>pro</sup> residues result in their improved therapeutic value over that of the parental compound. Overall, this novel framework is extremely flexible and has the potential to rapidly design inhibitors for any protein with available crystal structures.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 42","pages":"9490–9499"},"PeriodicalIF":5.7,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41230405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16DOI: 10.1021/acs.jpclett.3c01783
Sophie Baker, Joshua Pagotto, Timothy T. Duignan and Alister J. Page*,
Neural network potentials have recently emerged as an efficient and accurate tool for accelerating ab initio molecular dynamics (AIMD) in order to simulate complex condensed phases such as electrolyte solutions. Their principal limitation, however, is their requirement for sufficiently large and accurate training sets, which are often composed of Kohn–Sham density functional theory (DFT) calculations. Here we examine the feasibility of using existing density functional tight-binding (DFTB) molecular dynamics trajectory data available in the IonSolvR database in order to accelerate the training of E(3)-equivariant graph neural network potentials. We show that the solvation structure of Na+ and Cl– in aqueous NaCl solutions can be accurately reproduced with remarkably small amounts of data (i.e., 100 MD frames). We further show that these predictions can be systematically improved further via an embarrassingly parallel resampling approach.
{"title":"High-Throughput Aqueous Electrolyte Structure Prediction Using IonSolvR and Equivariant Graph Neural Network Potentials","authors":"Sophie Baker, Joshua Pagotto, Timothy T. Duignan and Alister J. Page*, ","doi":"10.1021/acs.jpclett.3c01783","DOIUrl":"10.1021/acs.jpclett.3c01783","url":null,"abstract":"<p >Neural network potentials have recently emerged as an efficient and accurate tool for accelerating <i>ab initio</i> molecular dynamics (AIMD) in order to simulate complex condensed phases such as electrolyte solutions. Their principal limitation, however, is their requirement for sufficiently large and accurate training sets, which are often composed of Kohn–Sham density functional theory (DFT) calculations. Here we examine the feasibility of using existing density functional tight-binding (DFTB) molecular dynamics trajectory data available in the IonSolvR database in order to accelerate the training of E(3)-equivariant graph neural network potentials. We show that the solvation structure of Na<sup>+</sup> and Cl<sup>–</sup> in aqueous NaCl solutions can be accurately reproduced with remarkably small amounts of data (i.e., 100 MD frames). We further show that these predictions can be systematically improved further via an embarrassingly parallel resampling approach.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 42","pages":"9508–9515"},"PeriodicalIF":5.7,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41230306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}