Pedro Cal, Matthew A. Lim, Darren J. Scott, Frank J. Tackmann, Wouter J. Waalewijn
Measurements of Higgs boson processes by the ATLAS and CMS experiments at the LHC use Simplified Template Cross Sections (STXS) as a common framework for the combination of measurements in different decay channels and their further interpretation, e.g. to measure Higgs couplings. The different Higgs production processes are measured in predefined kinematic regions — the STXS bins — requiring precise theory predictions for each individual bin. In gluon-fusion Higgs production a main division is into 0-jet, 1-jet, and ≥ 2-jet bins, which are further subdivided in bins of the Higgs transverse momentum ( {p}_T^H ). Requiring a fixed number of jets induces logarithms ln ( {p}_T^{textrm{cut}}/Q ) in the cross section where ( {p}_T^{textrm{cut}} ) is the jet-pT threshold and Q ∼ ( {p}_T^H ) ∼ mH the hard-interaction scale. These jet-veto logarithms can be resummed to all orders in perturbation theory to achieve the highest possible perturbative precision. We provide state-of-the art predictions for the ( {p}_T^H ) spectrum in exclusive H+1-jet production and the corresponding H+1-jet STXS bins in the kinematic regime ( {p}_T^{textrm{cut}} ) ≪ ( {p}_T^H ) ∼ mH. We carry out the resummation at NNLL′ accuracy, using theory nuisance parameters to account for the few unknown ingredients at this order, and match to full NNLO. We revisit the jet-veto factorization for this process and find that it requires refactorizing the total soft function into a global and soft-collinear contribution in order to fully account for logarithms of the signal jet radius. The leading nonglobal logarithms are also included, though they are numerically small for the region of phenomenological interest.
{"title":"Jet veto resummation for STXS H+1-jet bins at aNNLL′+NNLO","authors":"Pedro Cal, Matthew A. Lim, Darren J. Scott, Frank J. Tackmann, Wouter J. Waalewijn","doi":"10.1007/JHEP03(2025)155","DOIUrl":"10.1007/JHEP03(2025)155","url":null,"abstract":"<p>Measurements of Higgs boson processes by the ATLAS and CMS experiments at the LHC use Simplified Template Cross Sections (STXS) as a common framework for the combination of measurements in different decay channels and their further interpretation, e.g. to measure Higgs couplings. The different Higgs production processes are measured in predefined kinematic regions — the STXS bins — requiring precise theory predictions for each individual bin. In gluon-fusion Higgs production a main division is into 0-jet, 1-jet, and ≥ 2-jet bins, which are further subdivided in bins of the Higgs transverse momentum <span>( {p}_T^H )</span>. Requiring a fixed number of jets induces logarithms ln <span>( {p}_T^{textrm{cut}}/Q )</span> in the cross section where <span>( {p}_T^{textrm{cut}} )</span> is the jet-<i>p</i><sub><i>T</i></sub> threshold and <i>Q</i> ∼ <span>( {p}_T^H )</span> ∼ <i>m</i><sub><i>H</i></sub> the hard-interaction scale. These jet-veto logarithms can be resummed to all orders in perturbation theory to achieve the highest possible perturbative precision. We provide state-of-the art predictions for the <span>( {p}_T^H )</span> spectrum in exclusive <i>H+</i>1-jet production and the corresponding <i>H+</i>1-jet STXS bins in the kinematic regime <span>( {p}_T^{textrm{cut}} )</span> ≪ <span>( {p}_T^H )</span> ∼ <i>m</i><sub><i>H</i></sub>. We carry out the resummation at NNLL<sup><i>′</i></sup> accuracy, using theory nuisance parameters to account for the few unknown ingredients at this order, and match to full NNLO. We revisit the jet-veto factorization for this process and find that it requires refactorizing the total soft function into a global and soft-collinear contribution in order to fully account for logarithms of the signal jet radius. The leading nonglobal logarithms are also included, though they are numerically small for the region of phenomenological interest.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)155.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Higgs boson decay into bottom quarks is the dominant decay channel contributing to its total decay width, which can be used to measure the bottom quark Yukawa coupling and mass. This decay width has been computed up to ( mathcal{O}left({alpha}_s^4right) ) for the process induced by the bottom quark Yukawa coupling, assuming massless final states, and the corresponding corrections beyond ( mathcal{O}left({alpha}_s^2right) ) are found to be less than 0.2%. We present an analytical result for the decay into massive bottom quarks at ( mathcal{O}left({alpha}_s^3right) ) that includes the contribution from the top quark Yukawa coupling induced process. We have made use of the optical theorem, canonical differential equations and the regular basis in the calculation and expressed the result in terms of multiple polylogarithms and elliptic functions. We propose a systematic and unified procedure to derive the ϵ-factorized differential equation for the three-loop kite integral family, which includes the three-loop banana integrals as a sub-sector. We find that the ( mathcal{O}left({alpha}_s^3right) ) corrections increase the decay width, relative to the result up to ( mathcal{O}left({alpha}_s^2right) ), by 1% due to the large logarithms ( {log}^ileft({m}_H^2/{m}_b^2right) ) with 1 ≤ i ≤ 4 in the small bottom quark mass limit. The coefficient of the double logarithm is proportional to CA – CF, which is the typical color structure in the resummation of soft quark contributions at subleading power.
{"title":"Analytic decay width of the Higgs boson to massive bottom quarks at order ( {alpha}_s^3 )","authors":"Jian Wang, Xing Wang, Yefan Wang","doi":"10.1007/JHEP03(2025)163","DOIUrl":"10.1007/JHEP03(2025)163","url":null,"abstract":"<p>The Higgs boson decay into bottom quarks is the dominant decay channel contributing to its total decay width, which can be used to measure the bottom quark Yukawa coupling and mass. This decay width has been computed up to <span>( mathcal{O}left({alpha}_s^4right) )</span> for the process induced by the bottom quark Yukawa coupling, assuming massless final states, and the corresponding corrections beyond <span>( mathcal{O}left({alpha}_s^2right) )</span> are found to be less than 0<i>.</i>2%. We present an analytical result for the decay into massive bottom quarks at <span>( mathcal{O}left({alpha}_s^3right) )</span> that includes the contribution from the top quark Yukawa coupling induced process. We have made use of the optical theorem, canonical differential equations and the regular basis in the calculation and expressed the result in terms of multiple polylogarithms and elliptic functions. We propose a systematic and unified procedure to derive the <i>ϵ</i>-factorized differential equation for the three-loop kite integral family, which includes the three-loop banana integrals as a sub-sector. We find that the <span>( mathcal{O}left({alpha}_s^3right) )</span> corrections increase the decay width, relative to the result up to <span>( mathcal{O}left({alpha}_s^2right) )</span>, by 1% due to the large logarithms <span>( {log}^ileft({m}_H^2/{m}_b^2right) )</span> with 1 ≤ <i>i</i> ≤ 4 in the small bottom quark mass limit. The coefficient of the double logarithm is proportional to <i>C</i><sub><i>A</i></sub> – <i>C</i><sub><i>F</i></sub>, which is the typical color structure in the resummation of soft quark contributions at subleading power.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)163.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Ramón Balaguer, Valentina Bevilacqua, Giuseppe Dibitetto, Jose J. Fernández-Melgarejo, Giuseppe Sudano
We consider massive type IIA compactifications down to 4 dimensions in presence of O6 planes and D6 branes parallel to them, in order to preserve half-maximal supersymmetry in 4D. The dynamics of open strings living on the spacetime filling branes is taken into account, in the gauged supergravity description, by adding extra vector multiplets and embedding tensor components. The scalar potential gets new terms that can be matched with contributions coming from dimensional reduction of the non-Abelian DBI and WZ brane actions. In this setting, we analyze the vacuum structure of the theory and find novel AdS4 vacua, both supersymmetric and non-supersymmetric ones. Furthermore, we address their perturbative stability by computing their mass spectra. Some of the vacua are found to be perturbatively stable, despite their being non-supersymmetric. We conclude by discussing the reliability of our setup in terms of higher-derivative corrections.
{"title":"Massive IIA flux compactifications with dynamical open strings","authors":"Juan Ramón Balaguer, Valentina Bevilacqua, Giuseppe Dibitetto, Jose J. Fernández-Melgarejo, Giuseppe Sudano","doi":"10.1007/JHEP03(2025)159","DOIUrl":"10.1007/JHEP03(2025)159","url":null,"abstract":"<p>We consider massive type IIA compactifications down to 4 dimensions in presence of O6 planes and D6 branes parallel to them, in order to preserve half-maximal supersymmetry in 4D. The dynamics of open strings living on the spacetime filling branes is taken into account, in the gauged supergravity description, by adding extra vector multiplets and embedding tensor components. The scalar potential gets new terms that can be matched with contributions coming from dimensional reduction of the non-Abelian DBI and WZ brane actions. In this setting, we analyze the vacuum structure of the theory and find novel AdS<sub>4</sub> vacua, both supersymmetric and non-supersymmetric ones. Furthermore, we address their perturbative stability by computing their mass spectra. Some of the vacua are found to be perturbatively stable, despite their being non-supersymmetric. We conclude by discussing the reliability of our setup in terms of higher-derivative corrections.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)159.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabrizio Canfora, David Dudal, Thomas Oosthuyse, Luigi Rosa, Sebbe Stouten
Recently, dynamical edge modes (DEM) in Maxwell theory have been constructed using a specific local boundary condition on the horizon. We discuss how to enforce this boundary condition on an infinite parallel plate in the QED vacuum by introducing Lagrange multiplier fields into the action. We carefully introduce appropriate boundary ghosts to maintain BRST invariance. Explicit correspondence of this BRST extended theory with the original DEM formulation is discussed, both directly, and through the correspondence between edge modes and Wilson lines attached to the boundary surface. We then use functional methods to calculate the Casimir energy for the first time with DEM boundary conditions imposed on two infinite parallel plates, both in generalized Coulomb and linear covariant gauge. Depending on the gauge, different fields are contributing, but, after correctly implementing the BRST symmetry, we retrieve the exact same Casimir energy as for two perfectly conducting parallel plates.
最近,麦克斯韦理论中的动力学边缘模式(DEM)是利用地平线上的特定局部边界条件构建的。我们讨论了如何通过在作用中引入拉格朗日乘数场,在 QED 真空中的无限平行板上实施这一边界条件。我们仔细引入了适当的边界幽灵,以保持 BRST 不变性。我们讨论了这一 BRST 扩展理论与原始 DEM 公式的明确对应关系,既包括直接对应关系,也包括通过边缘模与连接到边界表面的威尔逊线之间的对应关系。然后,我们首次使用函数方法计算了施加在两个无限平行板上的 DEM 边界条件下的卡西米尔能,包括广义库仑量规和线性协变量规。根据不同的量规,会产生不同的场,但在正确实现 BRST 对称性后,我们得到了与两个完全导电平行板完全相同的卡西米尔能。
{"title":"Dynamical edge modes in Maxwell theory from a BRST perspective, with an application to the Casimir energy","authors":"Fabrizio Canfora, David Dudal, Thomas Oosthuyse, Luigi Rosa, Sebbe Stouten","doi":"10.1007/JHEP03(2025)161","DOIUrl":"10.1007/JHEP03(2025)161","url":null,"abstract":"<p>Recently, dynamical edge modes (DEM) in Maxwell theory have been constructed using a specific local boundary condition on the horizon. We discuss how to enforce this boundary condition on an infinite parallel plate in the QED vacuum by introducing Lagrange multiplier fields into the action. We carefully introduce appropriate boundary ghosts to maintain BRST invariance. Explicit correspondence of this BRST extended theory with the original DEM formulation is discussed, both directly, and through the correspondence between edge modes and Wilson lines attached to the boundary surface. We then use functional methods to calculate the Casimir energy for the first time with DEM boundary conditions imposed on two infinite parallel plates, both in generalized Coulomb and linear covariant gauge. Depending on the gauge, different fields are contributing, but, after correctly implementing the BRST symmetry, we retrieve the exact same Casimir energy as for two perfectly conducting parallel plates.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)161.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In many scenarios of interest, a quantum system interacts with an unknown environment, necessitating the use of open quantum system methods to capture dissipative effects and environmental noise. With the long-term goal of developing a perturbative theory for open quantum gravity, we take an important step by studying Abelian gauge theories within the Schwinger-Keldysh formalism. We begin with a pedagogical review of general results for open free theories, setting the stage for our primary focus: constructing the most general open effective field theory for electromagnetism in a medium. We assume locality in time and space, but allow for an arbitrary finite number of derivatives. Crucially, we demonstrate that the two copies of the gauge group associated with the two branches of the Schwinger-Keldysh contour are not broken but are instead deformed by dissipative effects. We provide a thorough discussion of gauge fixing, define covariant gauges, and calculate the photon propagators, proving that they yield gauge-invariant results. A notable result is the discovery that gauge invariance is accompanied by non-trivial constraints on noise fluctuations. We derive these constraints through three independent methods, highlighting their fundamental significance for the consistent formulation of open quantum gauge theories.
{"title":"An Open Effective Field Theory for light in a medium","authors":"Santiago Agüí Salcedo, Thomas Colas, Enrico Pajer","doi":"10.1007/JHEP03(2025)138","DOIUrl":"10.1007/JHEP03(2025)138","url":null,"abstract":"<p>In many scenarios of interest, a quantum system interacts with an unknown environment, necessitating the use of open quantum system methods to capture dissipative effects and environmental noise. With the long-term goal of developing a perturbative theory for open quantum gravity, we take an important step by studying Abelian gauge theories within the Schwinger-Keldysh formalism. We begin with a pedagogical review of general results for open free theories, setting the stage for our primary focus: constructing the most general open effective field theory for electromagnetism in a medium. We assume locality in time and space, but allow for an arbitrary finite number of derivatives. Crucially, we demonstrate that the two copies of the gauge group associated with the two branches of the Schwinger-Keldysh contour are not broken but are instead deformed by dissipative effects. We provide a thorough discussion of gauge fixing, define covariant gauges, and calculate the photon propagators, proving that they yield gauge-invariant results. A notable result is the discovery that gauge invariance is accompanied by non-trivial constraints on noise fluctuations. We derive these constraints through three independent methods, highlighting their fundamental significance for the consistent formulation of open quantum gauge theories.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)138.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The LHCb collaboration, R. Aaij, A. S. W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, A. A. Adefisoye, B. Adeva, M. Adinolfi, P. Adlarson, C. Agapopoulou, C. A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, P. Albicocco, J. Albrecht, F. Alessio, M. Alexander, Z. Aliouche, P. Alvarez Cartelle, R. Amalric, S. Amato, J. L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, A. Andreianov, P. Andreola, M. Andreotti, D. Andreou, A. Anelli, D. Ao, F. Archilli, M. Argenton, S. Arguedas Cuendis, A. Artamonov, M. Artuso, E. Aslanides, R. Ataíde Da Silva, M. Atzeni, B. Audurier, D. Bacher, I. Bachiller Perea, S. Bachmann, M. Bachmayer, J. J. Back, P. Baladron Rodriguez, V. Balagura, W. Baldini, L. Balzani, H. Bao, J. Baptista de Souza Leite, C. Barbero Pretel, M. Barbetti, I. R. Barbosa, R. J. Barlow, M. Barnyakov, S. Barsuk, W. Barter, M. Bartolini, J. Bartz, J. M. Basels, S. Bashir, G. Bassi, B. Batsukh, P. B. Battista, A. Bay, A. Beck, M. Becker, F. Bedeschi, I. B. Bediaga, N. A. Behling, S. Belin, V. Bellee, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. Bernet, S. Bernet Andres, A. Bertolin, C. Betancourt, F. Betti, J. Bex, Ia. Bezshyiko, J. Bhom, M. S. Bieker, N. V. Biesuz, P. Billoir, A. Biolchini, M. Birch, F. C. R. Bishop, A. Bitadze, A. Bizzeti, T. Blake, F. Blanc, J. E. Blank, S. Blusk, V. Bocharnikov, J. A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Bohare, A. Boldyrev, C. S. Bolognani, R. Bolzonella, N. Bondar, A. Bordelius, F. Borgato, S. Borghi, M. Borsato, J. T. Borsuk, S. A. Bouchiba, M. Bovill, T. J. V. Bowcock, A. Boyer, C. Bozzi, A. Brea Rodriguez, N. Breer, J. Brodzicka, A. Brossa Gonzalo, J. Brown, D. Brundu, E. Buchanan, A. Buonaura, L. Buonincontri, A. T. Burke, C. Burr, J. S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, A. C. Caillet, R. Calabrese, S. Calderon Ramirez, L. Calefice, S. Cali, M. Calvi, M. Calvo Gomez, P. Camargo Magalhaes, J. I. Cambon Bouzas, P. Campana, D. H. Campora Perez, A. F. Campoverde Quezada, S. Capelli, L. Capriotti, R. Caravaca-Mora, A. Carbone, L. Carcedo Salgado, R. Cardinale, A. Cardini, P. Carniti, L. Carus, A. Casais Vidal, R. Caspary, G. Casse, J. Castro Godinez, M. Cattaneo, G. Cavallero, V. Cavallini, S. Celani, D. Cervenkov, S. Cesare, A. J. Chadwick, I. Chahrour, M. Charles, Ph. Charpentier, E. Chatzianagnostou, M. Chefdeville, C. Chen, S. Chen, Z. Chen, A. Chernov, S. Chernyshenko, X. Chiotopoulos, V. Chobanova, S. Cholak, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, X. Cid Vidal, G. Ciezarek, P. Cifra, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, C. Cocha Toapaxi, V. Coco, J. Cogan, E. Cogneras, L. Cojocariu, P. Collins, T. Colombo, M. Colonna, A. Comerma-Montells, L. Congedo, A. Contu, N. Cooke, I. Corredoira, A. Correia, G. Corti, J. J. Cottee Meldrum, B. Couturier, D. C. Craik, M. Cruz Torres, E. Curras Rivera, R. Currie, C. L. Da Silva, S. Dadabaev, L. Dai, X. Dai, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, J. Daniel, A. Danilina, P. d’Argent, A. Davidson, J. E. Davies, A. Davis, O. De Aguiar Francisco, C. De Angelis, F. De Benedetti, J. de Boer, K. De Bruyn, S. De Capua, M. De Cian, U. De Freitas Carneiro Da Graca, E. De Lucia, J. M. De Miranda, L. De Paula, M. De Serio, P. De Simone, F. De Vellis, J. A. de Vries, F. Debernardis, D. Decamp, V. Dedu, S. Dekkers, L. Del Buono, B. Delaney, H.-P. Dembinski, J. Deng, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, P. Di Nezza, I. Diachkov, S. Didenko, S. Ding, L. Dittmann, V. Dobishuk, A. D. Docheva, C. Dong, A. M. Donohoe, F. Dordei, A. C. dos Reis, A. D. Dowling, W. Duan, P. Duda, M. W. Dudek, L. Dufour, V. Duk, P. Durante, M. M. Duras, J. M. Durham, O. D. Durmus, A. Dziurda, A. Dzyuba, S. Easo, E. Eckstein, U. Egede, A. Egorychev, V. Egorychev, S. Eisenhardt, E. Ejopu, L. Eklund, M. Elashri, J. Ellbracht, S. Ely, A. Ene, E. Epple, J. Eschle, S. Esen, T. Evans, F. Fabiano, L. N. Falcao, Y. Fan, B. Fang, L. Fantini, M. Faria, K. Farmer, D. Fazzini, L. Felkowski, M. Feng, M. Feo, A. Fernandez Casani, M. Fernandez Gomez, A. D. Fernez, F. Ferrari, F. Ferreira Rodrigues, M. Ferrillo, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, K. L. Fischer, D. S. Fitzgerald, C. Fitzpatrick, F. Fleuret, M. Fontana, L. F. Foreman, R. Forty, D. Foulds-Holt, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D. A. Friday, J. Fu, Q. Führing, Y. Fujii, T. Fulghesu, E. Gabriel, G. Galati, M. D. Galati, A. Gallas Torreira, D. Galli, S. Gambetta, M. Gandelman, P. Gandini, B. Ganie, H. Gao, R. Gao, T. Q. Gao, Y. Gao, Y. Gao, Y. Gao, M. Garau, L. M. Garcia Martin, P. Garcia Moreno, J. García Pardiñas, K. G. Garg, L. Garrido, C. Gaspar, R. E. Geertsema, L. L. Gerken, E. Gersabeck, M. Gersabeck, T. Gershon, S. Ghizzo, Z. Ghorbanimoghaddam, L. Giambastiani, F. I. Giasemis, V. Gibson, H. K. Giemza, A. L. Gilman, M. Giovannetti, A. Gioventù, L. Girardey, P. Gironella Gironell, C. Giugliano, M. A. Giza, E. L. Gkougkousis, F. C. Glaser, V. V. Gligorov, C. Göbel, E. Golobardes, D. Golubkov, A. Golutvin, A. Gomes, S. Gomez Fernandez, F. Goncalves Abrantes, M. Goncerz, G. Gong, J. A. Gooding, I. V. Gorelov, C. Gotti, J. P. Grabowski, L. A. Granado Cardoso, E. Graugés, E. Graverini, L. Grazette, G. Graziani, A. T. Grecu, L. M. Greeven, N. A. Grieser, L. Grillo, S. Gromov, C. Gu, M. Guarise, L. Guerry, M. Guittiere, V. Guliaeva, P. A. Günther, A.-K. Guseinov, E. Gushchin, Y. Guz, T. Gys, K. Habermann, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, J. Haimberger, M. Hajheidari, G. Hallett, M. M. Halvorsen, P. M. Hamilton, J. Hammerich, Q. Han, X. Han, S. Hansmann-Menzemer, L. Hao, N. Harnew, M. Hartmann, S. Hashmi, J. He, K. Heinicke, F. Hemmer, C. Henderson, R. D. L. Henderson, A. M. Hennequin, K. Hennessy, L. Henry, J. Herd, P. Herrero Gascon, J. Heuel, A. Hicheur, G. Hijano Mendizabal, D. Hill, S. E. Hollitt, J. Horswill, R. Hou, Y. Hou, N. Howarth, J. Hu, J. Hu, W. Hu, X. Hu, W. Huang, W. Hulsbergen, R. J. Hunter, M. Hushchyn, D. Hutchcroft, D. Ilin, P. Ilten, A. Inglessi, A. Iniukhin, A. Ishteev, K. Ivshin, R. Jacobsson, H. Jage, S. J. Jaimes Elles, S. Jakobsen, E. Jans, B. K. Jashal, A. Jawahery, V. Jevtic, E. Jiang, X. Jiang, Y. Jiang, Y. J. Jiang, M. John, A. John Rubesh Rajan, D. Johnson, C. R. Jones, T. P. Jones, S. Joshi, B. Jost, J. Juan Castella, N. Jurik, I. Juszczak, D. Kaminaris, S. Kandybei, M. Kane, Y. Kang, C. Kar, M. Karacson, D. Karpenkov, A. Kauniskangas, J. W. Kautz, M. K. Kazanecki, F. Keizer, M. Kenzie, T. Ketel, B. Khanji, A. Kharisova, S. Kholodenko, G. Khreich, T. Kirn, V. S. Kirsebom, O. Kitouni, S. Klaver, N. Kleijne, K. Klimaszewski, M. R. Kmiec, S. Koliiev, L. Kolk, A. Konoplyannikov, P. Kopciewicz, P. Koppenburg, M. Korolev, I. Kostiuk, O. Kot, S. Kotriakhova, A. Kozachuk, P. Kravchenko, L. Kravchuk, M. Kreps, P. Krokovny, W. Krupa, W. Krzemien, O. Kshyvanskyi, J. Kubat, S. Kubis, M. Kucharczyk, V. Kudryavtsev, E. Kulikova, A. Kupsc, B. K. Kutsenko, D. Lacarrere, P. Laguarta Gonzalez, A. Lai, A. Lampis, D. Lancierini, C. Landesa Gomez, J. J. Lane, R. Lane, G. Lanfranchi, C. Langenbruch, J. Langer, O. Lantwin, T. Latham, F. Lazzari, C. Lazzeroni, R. Le Gac, H. Lee, R. Lefèvre, A. Leflat, S. Legotin, M. Lehuraux, E. Lemos Cid, O. Leroy, T. Lesiak, E. D. Lesser, B. Leverington, A. Li, C. Li, H. Li, K. Li, L. Li, P. Li, P.-R. Li, Q. Li, S. Li, T. Li, T. Li, Y. Li, Y. Li, Z. Lian, X. Liang, S. Libralon, C. Lin, T. Lin, R. Lindner, V. Lisovskyi, R. Litvinov, F. L. Liu, G. Liu, K. Liu, S. Liu, W. Liu, Y. Liu, Y. Liu, Y. L. Liu, A. Lobo Salvia, A. Loi, J. Lomba Castro, T. Long, J. H. Lopes, A. Lopez Huertas, S. López Soliño, Q. Lu, C. Lucarelli, D. Lucchesi, M. Lucio Martinez, V. Lukashenko, Y. Luo, A. Lupato, E. Luppi, K. Lynch, X.-R. Lyu, G. M. Ma, R. Ma, S. Maccolini, F. Machefert, F. Maciuc, B. Mack, I. Mackay, L. M. Mackey, L. R. Madhan Mohan, M. J. Madurai, A. Maevskiy, D. Magdalinski, D. Maisuzenko, M. W. Majewski, J. J. Malczewski, S. Malde, L. Malentacca, A. Malinin, T. Maltsev, G. Manca, G. Mancinelli, C. Mancuso, R. Manera Escalero, D. Manuzzi, D. Marangotto, J. F. Marchand, R. Marchevski, U. Marconi, E. Mariani, S. Mariani, C. Marin Benito, J. Marks, A. M. Marshall, L. Martel, G. Martelli, G. Martellotti, L. Martinazzoli, M. Martinelli, D. Martinez Santos, F. Martinez Vidal, A. Massafferri, R. Matev, A. Mathad, V. Matiunin, C. Matteuzzi, K. R. Mattioli, A. Mauri, E. Maurice, J. Mauricio, P. Mayencourt, J. Mazorra de Cos, M. Mazurek, M. McCann, L. Mcconnell, T. H. McGrath, N. T. McHugh, A. McNab, R. McNulty, B. Meadows, G. Meier, D. Melnychuk, F. M. Meng, M. Merk, A. Merli, L. Meyer Garcia, D. Miao, H. Miao, M. Mikhasenko, D. A. Milanes, A. Minotti, E. Minucci, T. Miralles, B. Mitreska, D. S. Mitzel, A. Modak, R. A. Mohammed, R. D. Moise, S. Mokhnenko, E. F. Molina Cardenas, T. Mombächer, M. Monk, S. Monteil, A. Morcillo Gomez, G. Morello, M. J. Morello, M. P. Morgenthaler, A. B. Morris, A. G. Morris, R. Mountain, H. Mu, Z. M. Mu, E. Muhammad, F. Muheim, M. Mulder, K. Müller, F. Muñoz-Rojas, R. Murta, P. Naik, T. Nakada, R. Nandakumar, T. Nanut, I. Nasteva, M. Needham, N. Neri, S. Neubert, N. Neufeld, P. Neustroev, J. Nicolini, D. Nicotra, E. M. Niel, N. Nikitin, Q. Niu, P. Nogarolli, P. Nogga, N. S. Nolte, C. Normand, J. Novoa Fernandez, G. Nowak, C. Nunez, H. N. Nur, A. Oblakowska-Mucha, V. Obraztsov, T. Oeser, S. Okamura, A. Okhotnikov, O. Okhrimenko, R. Oldeman, F. Oliva, M. Olocco, C. J. G. Onderwater, R. H. O’Neil, D. Osthues, J. M. Otalora Goicochea, P. Owen, A. Oyanguren, O. Ozcelik, F. Paciolla, A. Padee, K. O. Padeken, B. Pagare, P. R. Pais, T. Pajero, A. Palano, M. Palutan, G. Panshin, L. Paolucci, A. Papanestis, M. Pappagallo, L. L. Pappalardo, C. Pappenheimer, C. Parkes, B. Passalacqua, G. Passaleva, D. Passaro, A. Pastore, M. Patel, J. Patoc, C. Patrignani, A. Paul, C. J. Pawley, A. Pellegrino, J. Peng, M. Pepe Altarelli, S. Perazzini, D. Pereima, H. Pereira Da Costa, A. Pereiro Castro, P. Perret, A. Perro, K. Petridis, A. Petrolini, J. P. Pfaller, H. Pham, L. Pica, M. Piccini, B. Pietrzyk, G. Pietrzyk, D. Pinci, F. Pisani, M. Pizzichemi, V. Placinta, M. Plo Casasus, T. Poeschl, F. Polci, M. Poli Lener, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, S. Ponce, D. Popov, S. Poslavskii, K. Prasanth, C. Prouve, D. Provenzano, V. Pugatch, G. Punzi, S. Qasim, Q. Q. Qian, W. Qian, N. Qin, S. Qu, R. Quagliani, R. I. Rabadan Trejo, J. H. Rademacker, M. Rama, M. Ramírez García, V. Ramos De Oliveira, M. Ramos Pernas, M. S. Rangel, F. Ratnikov, G. Raven, M. Rebollo De Miguel, F. Redi, J. Reich, F. Reiss, Z. Ren, P. K. Resmi, R. Ribatti, G. R. Ricart, D. Riccardi, S. Ricciardi, K. Richardson, M. Richardson-Slipper, K. Rinnert, P. Robbe, G. Robertson, E. Rodrigues, E. Rodriguez Fernandez, J. A. Rodriguez Lopez, E. Rodriguez Rodriguez, J. Roensch, A. Rogachev, A. Rogovskiy, D. L. Rolf, P. Roloff, V. Romanovskiy, M. Romero Lamas, A. Romero Vidal, G. Romolini, F. Ronchetti, T. Rong, M. Rotondo, S. R. Roy, M. S. Rudolph, M. Ruiz Diaz, R. A. Ruiz Fernandez, J. Ruiz Vidal, A. Ryzhikov, J. Ryzka, J. J. Saavedra-Arias, J. J. Saborido Silva, R. Sadek, N. Sagidova, D. Sahoo, N. Sahoo, B. Saitta, M. Salomoni, C. Sanchez Gras, I. Sanderswood, R. Santacesaria, C. Santamarina Rios, M. Santimaria, L. Santoro, E. Santovetti, A. Saputi, D. Saranin, A. Sarnatskiy, G. Sarpis, M. Sarpis, C. Satriano, A. Satta, M. Saur, D. Savrina, H. Sazak, F. Sborzacchi, L. G. Scantlebury Smead, A. Scarabotto, S. Schael, S. Scherl, M. Schiller, H. Schindler, M. Schmelling, B. Schmidt, S. Schmitt, H. Schmitz, O. Schneider, A. Schopper, N. Schulte, S. Schulte, M. H. Schune, R. Schwemmer, G. Schwering, B. Sciascia, A. Sciuccati, S. Sellam, A. Semennikov, T. Senger, M. Senghi Soares, A. Sergi, N. Serra, L. Sestini, A. Seuthe, Y. Shang, D. M. Shangase, M. Shapkin, R. S. Sharma, I. Shchemerov, L. Shchutska, T. Shears, L. Shekhtman, Z. Shen, S. Sheng, V. Shevchenko, B. Shi, Q. Shi, Y. Shimizu, E. Shmanin, R. Shorkin, J. D. Shupperd, R. Silva Coutinho, G. Simi, S. Simone, N. Skidmore, T. Skwarnicki, M. W. Slater, J. C. Smallwood, E. Smith, K. Smith, M. Smith, A. Snoch, L. Soares Lavra, M. D. Sokoloff, F. J. P. Soler, A. Solomin, A. Solovev, I. Solovyev, R. Song, Y. Song, Y. Song, Y. S. Song, F. L. Souza De Almeida, B. Souza De Paula, E. Spadaro Norella, E. Spedicato, J. G. Speer, E. Spiridenkov, P. Spradlin, V. Sriskaran, F. Stagni, M. Stahl, S. Stahl, S. Stanislaus, E. N. Stein, O. Steinkamp, O. Stenyakin, H. Stevens, D. Strekalina, Y. Su, F. Suljik, J. Sun, L. Sun, Y. Sun, D. Sundfeld, W. Sutcliffe, P. N. Swallow, F. Swystun, A. Szabelski, T. Szumlak, Y. Tan, M. D. Tat, A. Terentev, F. Terzuoli, F. Teubert, E. Thomas, D. J. D. Thompson, H. Tilquin, V. Tisserand, S. T’Jampens, M. Tobin, L. Tomassetti, G. Tonani, X. Tong, D. Torres Machado, L. Toscano, D. Y. Tou, C. Trippl, G. Tuci, N. Tuning, L. H. Uecker, A. Ukleja, D. J. Unverzagt, E. Ursov, A. Usachov, A. Ustyuzhanin, U. Uwer, V. Vagnoni, V. Valcarce Cadenas, G. Valenti, N. Valls Canudas, H. Van Hecke, E. van Herwijnen, C. B. Van Hulse, R. Van Laak, M. van Veghel, G. Vasquez, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. J. Velthuis, M. Veltri, A. Venkateswaran, M. Veronesi, M. Vesterinen, D. Vico Benet, P. Vidrier Villalba, M. Vieites Diaz, X. Vilasis-Cardona, E. Vilella Figueras, A. Villa, P. Vincent, F. C. Volle, D. vom Bruch, N. Voropaev, K. Vos, G. Vouters, C. Vrahas, J. Wagner, J. Walsh, E. J. Walton, G. Wan, C. Wang, G. Wang, H. Wang, J. Wang, J. Wang, J. Wang, J. Wang, M. Wang, N. W. Wang, R. Wang, X. Wang, X. Wang, X. W. Wang, Y. Wang, Y. W. Wang, Z. Wang, Z. Wang, Z. Wang, J. A. Ward, M. Waterlaat, N. K. Watson, D. Websdale, Y. Wei, J. Wendel, B. D. C. Westhenry, C. White, M. Whitehead, E. Whiter, A. R. Wiederhold, D. Wiedner, G. Wilkinson, M. K. Wilkinson, M. Williams, M. R. J. Williams, R. Williams, Z. Williams, F. F. Wilson, W. Wislicki, M. Witek, L. Witola, G. Wormser, S. A. Wotton, H. Wu, J. Wu, Y. Wu, Z. Wu, K. Wyllie, S. Xian, Z. Xiang, Y. Xie, A. Xu, J. Xu, L. Xu, L. Xu, M. Xu, Z. Xu, Z. Xu, Z. Xu, D. Yang, K. Yang, S. Yang, X. Yang, Y. Yang, Z. Yang, Z. Yang, V. Yeroshenko, H. Yeung, H. Yin, X. Yin, C. Y. Yu, J. Yu, X. Yuan, Y. Yuan, E. Zaffaroni, M. Zavertyaev, M. Zdybal, F. Zenesini, C. Zeng, M. Zeng, C. Zhang, D. Zhang, J. Zhang, L. Zhang, S. Zhang, S. Zhang, Y. Zhang, Y. Z. Zhang, Y. Zhao, A. Zharkova, A. Zhelezov, S. Z. Zheng, X. Z. Zheng, Y. Zheng, T. Zhou, X. Zhou, Y. Zhou, V. Zhovkovska, L. Z. Zhu, X. Zhu, X. Zhu, V. Zhukov, J. Zhuo, Q. Zou, D. Zuliani, G. Zunica
A measurement of the CP-violating parameters in ( {B}_s^0boldsymbol{to}{D}_s^{mp }{K}^{pm} ) decays is reported, based on the analysis of proton-proton collision data collected by the LHCb experiment corresponding to an integrated luminosity of 6 fb−1 at a centre-of-mass energy of 13 TeV. The measured parameters are obtained with a decay-time dependent analysis yielding Cf = 0.791 ± 0.061 ± 0.022, ( {A}_f^{Delta Gamma} ) = −0.051 ± 0.134 ± 0.058, ( {A}_{overline{f}}^{Delta Gamma} ) = −0.303 ± 0.125 ± 0.055, Sf = −0.571 ± 0.084 ± 0.023 and ( {S}_{overline{f}} ) = −0.503 ± 0.084 ± 0.025, where the first uncertainty is statistical and the second systematic. This corresponds to CP violation in the interference between mixing and decay of about 8.6 σ. Together with the value of the ( {B}_s^0 ) mixing phase −2βs, these parameters are used to obtain a measurement of the CKM angle γ equal to (74 ± 12)° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This result is combined with the previous LHCb measurement in this channel using 3 fb−1 resulting in a determination of ( gamma ={left({81}_{-11}^{+12}right)}^{circ } ).
Defects in conformal field theories are interesting objects to study from both formal and applied points of view. In this paper, we construct conformal defects in free scalar field CFTs in diverse dimensions. After discussing the possible quadratic defects, we explore interacting setups. These are realized by coupling the bulk free scalar to lower-dimensional theories, including the unitary family of minimal models ( mathcal{M}left(m,m+1right) ). Another example involves coupling to a two-dimensional free scalar field, from which we construct surface defects for the bulk dimensions three and five. Additionally, we consider monodromy defects associated with a global U(1) flavour symmetry. In these theories, we study both self-defect interactions and couplings to Minimal Models, finding new IR defect fixed points. For all our examples, we provide results for correlation functions, such as those involving the bulk stress tensor and the displacement operator, and for the defect central charges.
{"title":"Exploring defects with degrees of freedom in free scalar CFTs","authors":"Vladimir Bashmakov, Jacopo Sisti","doi":"10.1007/JHEP03(2025)147","DOIUrl":"10.1007/JHEP03(2025)147","url":null,"abstract":"<p>Defects in conformal field theories are interesting objects to study from both formal and applied points of view. In this paper, we construct conformal defects in free scalar field CFTs in diverse dimensions. After discussing the possible quadratic defects, we explore interacting setups. These are realized by coupling the bulk free scalar to lower-dimensional theories, including the unitary family of minimal models <span>( mathcal{M}left(m,m+1right) )</span>. Another example involves coupling to a two-dimensional free scalar field, from which we construct surface defects for the bulk dimensions three and five. Additionally, we consider monodromy defects associated with a global U(1) flavour symmetry. In these theories, we study both self-defect interactions and couplings to Minimal Models, finding new IR defect fixed points. For all our examples, we provide results for correlation functions, such as those involving the bulk stress tensor and the displacement operator, and for the defect central charges.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)147.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Effective string theory describes the physics of long confining strings in theories, like Yang-Mills theory, where the mass gap ( {M}_{textrm{gap}}^2 ) is of the same order as the string tension T. In 2 + 1 dimensions, there is a class of confining theories, including massive QED3 as first analyzed by Polyakov, for which ( {M}_{textrm{gap}}^2 ) ≪ T. These theories are weakly coupled at low energies of order Mgap, and may be analyzed perturbatively. In this paper, we analyze the physics of strings in such theories, focusing on QED3, at energies of order Mgap (but still well below ( sqrt{T} )). We argue that the width of the string in these theories should be of order 1/Mgap independently of its length, as long as the string is not exponentially long. We also compute at leading order in perturbation theory the ground state energy of a confining string on a circle, and the scattering of Nambu-Goldstone bosons on the string worldsheet.
{"title":"Effective strings in QED3","authors":"Ofer Aharony, Netanel Barel, Tal Sheaffer","doi":"10.1007/JHEP03(2025)143","DOIUrl":"10.1007/JHEP03(2025)143","url":null,"abstract":"<p>Effective string theory describes the physics of long confining strings in theories, like Yang-Mills theory, where the mass gap <span>( {M}_{textrm{gap}}^2 )</span> is of the same order as the string tension <i>T</i>. In 2 + 1 dimensions, there is a class of confining theories, including massive QED<sub>3</sub> as first analyzed by Polyakov, for which <span>( {M}_{textrm{gap}}^2 )</span> ≪ <i>T</i>. These theories are weakly coupled at low energies of order <i>M</i><sub>gap</sub>, and may be analyzed perturbatively. In this paper, we analyze the physics of strings in such theories, focusing on QED<sub>3</sub>, at energies of order <i>M</i><sub>gap</sub> (but still well below <span>( sqrt{T} )</span>). We argue that the width of the string in these theories should be of order 1/<i>M</i><sub>gap</sub> independently of its length, as long as the string is not exponentially long. We also compute at leading order in perturbation theory the ground state energy of a confining string on a circle, and the scattering of Nambu-Goldstone bosons on the string worldsheet.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)143.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Akhond, Guillermo Arias-Tamargo, Federico Carta, Julius F. Grimminger, Amihay Hanany
We study Higgs branches of field theories with 8 supercharges in 5 and 6 dimensions, focusing on theories realised on 5-brane webs in Type IIB with an O7+ plane, or a D6-D8-NS5 brane system in Type IIA in the presence of an O8+ plane. We find magnetic quivers for the Higgs branches of these theories. The main consequence of the presence of the orientifold is that it renders the magnetic quiver to be non-simply-laced. We propose a contribution of the O7+ to the usual stable intersection number of 5-branes from tropical geometry, and show that it is consistent with Fayet-Iliopoulos deformations of magnetic quivers which represent mass deformations of 5d SQFTs. From the magnetic quivers, we compute phase diagrams and highest weight generating functions for the Higgs branches, enabling us to identify the global form of the flavour symmetry for several families of 5d SQFTs; among them Bhardwaj’s rank-1 theory. For 6d theories realised on a −4 curve, we observe the appearance of an additional D4 slice on top of the phase diagram as one goes to the tensionless limit.
{"title":"On brane systems with O+ planes — 5d and 6d SCFTs","authors":"Mohammad Akhond, Guillermo Arias-Tamargo, Federico Carta, Julius F. Grimminger, Amihay Hanany","doi":"10.1007/JHEP03(2025)137","DOIUrl":"10.1007/JHEP03(2025)137","url":null,"abstract":"<p>We study Higgs branches of field theories with 8 supercharges in 5 and 6 dimensions, focusing on theories realised on 5-brane webs in Type IIB with an O7<sup>+</sup> plane, or a D6-D8-NS5 brane system in Type IIA in the presence of an O8<sup>+</sup> plane. We find magnetic quivers for the Higgs branches of these theories. The main consequence of the presence of the orientifold is that it renders the magnetic quiver to be non-simply-laced. We propose a contribution of the O7<sup>+</sup> to the usual stable intersection number of 5-branes from tropical geometry, and show that it is consistent with Fayet-Iliopoulos deformations of magnetic quivers which represent mass deformations of 5d SQFTs. From the magnetic quivers, we compute phase diagrams and highest weight generating functions for the Higgs branches, enabling us to identify the global form of the flavour symmetry for several families of 5d SQFTs; among them Bhardwaj’s rank-1 theory. For 6d theories realised on a <i>−</i>4 curve, we observe the appearance of an additional <i>D</i><sub>4</sub> slice on top of the phase diagram as one goes to the tensionless limit.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)137.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We compute the photon self-energy to three loops in Quantum Electrodynamics. The method of differential equations for Feynman integrals and a complete ϵ-factorization of the former allow us to obtain fully analytical results in terms of iterated integrals involving integration kernels related to a K3 geometry. We argue that our basis has the right properties to be a natural generalization of a canonical basis beyond the polylogarithmic case and we show that many of the kernels appearing in the differential equations, cancel out in the final result to finite order in ϵ. We further provide generalized series expansions that cover the whole kinematic space so that our results for the self-energy may be easily evaluated numerically for all values of the momentum squared. From the local solution at p2 = 0, we extract the photon wave function renormalization constant in the on-shell scheme to three loops and confirm its agreement with previously obtained results.
{"title":"On the photon self-energy to three loops in QED","authors":"Felix Forner, Christoph Nega, Lorenzo Tancredi","doi":"10.1007/JHEP03(2025)148","DOIUrl":"10.1007/JHEP03(2025)148","url":null,"abstract":"<p>We compute the photon self-energy to three loops in Quantum Electrodynamics. The method of differential equations for Feynman integrals and a complete <i>ϵ</i>-factorization of the former allow us to obtain fully analytical results in terms of iterated integrals involving integration kernels related to a K3 geometry. We argue that our basis has the right properties to be a natural generalization of a canonical basis beyond the polylogarithmic case and we show that many of the kernels appearing in the differential equations, cancel out in the final result to finite order in <i>ϵ</i>. We further provide generalized series expansions that cover the whole kinematic space so that our results for the self-energy may be easily evaluated numerically for all values of the momentum squared. From the local solution at <i>p</i><sup>2</sup> = 0, we extract the photon wave function renormalization constant in the on-shell scheme to three loops and confirm its agreement with previously obtained results.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)148.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}