首页 > 最新文献

Journal of High Energy Physics最新文献

英文 中文
Schwinger vs Coleman: Magnetic charge renormalization 施文格与科尔曼磁荷重正化
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)075
Joshua Newey, John Terning, Christopher B. Verhaaren

The kinetic mixing of two U(1) gauge theories can result in a massless photon that has perturbative couplings to both electric and magnetic charges. This framework can be used to perturbatively calculate in a quantum field theory with both kinds of charge. Here we reexamine the running of the magnetic charge, where the calculations of Schwinger and Coleman sharply disagree. We calculate the running of both electric and magnetic couplings and show that the disagreement between Schwinger and Coleman is due to an incomplete summation of topological terms in the perturbation series. We present a momentum space prescription for calculating the loop corrections in which the topological terms can be systematically separated for resummation. Somewhat in the spirit of modern amplitude methods we avoid using a vector potential and use the field strength itself, thereby trading gauge redundancy for the geometric redundancy of Stokes surfaces. The resulting running of the couplings demonstrates that Dirac charge quantization is independent of renormalization scale, as Coleman predicted. As a simple application we also bound the parameter space of magnetically charged states through the experimental measurement of the running of electromagnetic coupling.

两个U(1)规理论的动力学混合会产生一个无质量光子,它与电荷和磁荷都有微扰耦合。这个框架可以用来在量子场论中对两种电荷进行微扰计算。在这里,我们重新研究了磁荷的运行,施文格和科尔曼在这方面的计算存在着尖锐的分歧。我们计算了电耦合和磁耦合的运行,并证明施温格和科尔曼之间的分歧是由于扰动序列中拓扑项求和不完全造成的。我们提出了计算环路修正的动量空间处方,其中拓扑项可以系统地分离出来进行求和。本着现代振幅方法的精神,我们避免使用矢量势,而是使用场强本身,从而以斯托克斯面的几何冗余换取量规冗余。由此得出的耦合运行结果表明,正如科尔曼所预言的那样,狄拉克电荷量子化与重正化尺度无关。作为一个简单的应用,我们还通过对电磁耦合运行的实验测量来约束磁荷态的参数空间。
{"title":"Schwinger vs Coleman: Magnetic charge renormalization","authors":"Joshua Newey,&nbsp;John Terning,&nbsp;Christopher B. Verhaaren","doi":"10.1007/JHEP11(2024)075","DOIUrl":"10.1007/JHEP11(2024)075","url":null,"abstract":"<p>The kinetic mixing of two U(1) gauge theories can result in a massless photon that has perturbative couplings to both electric and magnetic charges. This framework can be used to perturbatively calculate in a quantum field theory with both kinds of charge. Here we reexamine the running of the magnetic charge, where the calculations of Schwinger and Coleman sharply disagree. We calculate the running of both electric and magnetic couplings and show that the disagreement between Schwinger and Coleman is due to an incomplete summation of topological terms in the perturbation series. We present a momentum space prescription for calculating the loop corrections in which the topological terms can be systematically separated for resummation. Somewhat in the spirit of modern amplitude methods we avoid using a vector potential and use the field strength itself, thereby trading gauge redundancy for the geometric redundancy of Stokes surfaces. The resulting running of the couplings demonstrates that Dirac charge quantization is independent of renormalization scale, as Coleman predicted. As a simple application we also bound the parameter space of magnetically charged states through the experimental measurement of the running of electromagnetic coupling.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)075.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of resummation on retarded Green’s function and greybody factor in AdS black holes 重和对 AdS 黑洞中迟滞格林函数和灰体因子的影响
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)070
Julián Barragán Amado, Shankhadeep Chakrabortty, Arpit Maurya

We investigate the retarded Green’s function and the greybody factor in asymptotically AdS black holes. Using the connection coefficients of the Heun equation, expressed in terms of the Nekrasov-Shatashvili (NS) free energy of an SU(2) supersymmetric gauge theory with four fundamental hypermultiplets, we derive asymptotic expansions for both the retarded Green’s function and the greybody factor in the small horizon limit. Furthermore, we compute the corrections to these asymptotic expansions resulting from the resummation procedure of the instanton part of the NS function.

我们研究了渐近 AdS 黑洞中的迟滞格林函数和灰体因子。我们利用Heun方程的连接系数(以具有四个基本超多重子的SU(2)超对称规理论的Nekrasov-Shatashvili(NS)自由能表示),推导出小视界极限下的迟滞格林函数和灰体因子的渐近展开。此外,我们还计算了NS函数瞬子部分的重和过程对这些渐近展开的修正。
{"title":"The effect of resummation on retarded Green’s function and greybody factor in AdS black holes","authors":"Julián Barragán Amado,&nbsp;Shankhadeep Chakrabortty,&nbsp;Arpit Maurya","doi":"10.1007/JHEP11(2024)070","DOIUrl":"10.1007/JHEP11(2024)070","url":null,"abstract":"<p>We investigate the retarded Green’s function and the greybody factor in asymptotically AdS black holes. Using the connection coefficients of the Heun equation, expressed in terms of the Nekrasov-Shatashvili (NS) free energy of an SU(2) supersymmetric gauge theory with four fundamental hypermultiplets, we derive asymptotic expansions for both the retarded Green’s function and the greybody factor in the small horizon limit. Furthermore, we compute the corrections to these asymptotic expansions resulting from the resummation procedure of the instanton part of the NS function.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)070.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SModelS v3: going beyond ( mathcal{Z} )2 topologies SModelS v3:超越 ( mathcal{Z} )2 拓扑
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)074
Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Timothée Pascal, Camila Ramos, Yoxara Villamizar, Wolfgang Waltenberger

SModelS is a public tool for fast reinterpretation of LHC searches for new physics based on a large database of simplified model results. While previous versions were limited to models with a ( {mathcal{Z}}_2 )-type symmetry, such as R-parity conserving supersymmetry, version 3 can now handle arbitrary signal topologies. To this end, the tool was fully restructured and now relies on a graph-based description of simplified model topologies. In this work, we present the main conceptual changes and novel features of SModelS v3, together with the inclusion of new experimental searches for resonant production of spin-1 and spin-0 mediators with decays to quarks or to dark matter. Applying these results to a model containing two mediators, we discuss the interplay of resonance and missing energy searches, and the model’s coverage by the currently available simplified model results.

SModelS是一个公共工具,用于在简化模型结果大型数据库的基础上快速重新解释大型强子对撞机对新物理的搜索。以前的版本仅限于具有 ( {mathcal{Z}}_2 )型对称性的模型,如R-奇偶守恒超对称,而现在的第3版可以处理任意信号拓扑。为此,我们对该工具进行了全面重组,现在它依赖于基于图的简化模型拓扑描述。在这项工作中,我们介绍了 SModelS v3 在概念上的主要变化和新功能,并加入了对自旋-1 和自旋-0 介质与夸克或暗物质衰变共振产生的新实验搜索。我们将这些结果应用于一个包含两个介质的模型,讨论了共振和缺失能量搜索的相互作用,以及目前可用的简化模型结果对该模型的覆盖。
{"title":"SModelS v3: going beyond ( mathcal{Z} )2 topologies","authors":"Mohammad Mahdi Altakach,&nbsp;Sabine Kraml,&nbsp;Andre Lessa,&nbsp;Sahana Narasimha,&nbsp;Timothée Pascal,&nbsp;Camila Ramos,&nbsp;Yoxara Villamizar,&nbsp;Wolfgang Waltenberger","doi":"10.1007/JHEP11(2024)074","DOIUrl":"10.1007/JHEP11(2024)074","url":null,"abstract":"<p>SM<span>odel</span>S is a public tool for fast reinterpretation of LHC searches for new physics based on a large database of simplified model results. While previous versions were limited to models with a <span>( {mathcal{Z}}_2 )</span>-type symmetry, such as R-parity conserving supersymmetry, version 3 can now handle arbitrary signal topologies. To this end, the tool was fully restructured and now relies on a graph-based description of simplified model topologies. In this work, we present the main conceptual changes and novel features of SM<span>odel</span>S v3, together with the inclusion of new experimental searches for resonant production of spin-1 and spin-0 mediators with decays to quarks or to dark matter. Applying these results to a model containing two mediators, we discuss the interplay of resonance and missing energy searches, and the model’s coverage by the currently available simplified model results.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)074.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hawking radiation of nonrelativistic scalars: applications to pion and axion production 非相对论标量的霍金辐射:先锋和轴子产生的应用
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)071
Hao-Ran Cui, Yuhsin Tsai, Tao Xu

In studying secondary gamma-ray emissions from Primordial Black Holes (PBHs), the production of scalar particles like pions and axion-like particles (ALPs) via Hawking radiation is crucial. While previous analyses assumed relativistic production, asteroid-mass PBHs, relevant to upcoming experiments like AMEGO-X, likely produce pions and ALPs non-relativistically when their masses exceed 10 MeV. To account for mass dependence in Hawking radiation, we revisit the greybody factors for massive scalars from Schwarzschild black holes, revealing significant mass corrections to particle production rates compared to the projected AMEGO-X sensitivity. We highlight the importance of considering non-relativistic π0 production in interpreting PBH gamma-ray signals, essential for determining PBH properties. Additionally, we comment on the potential suppression of pion production due to form factor effects when producing extended objects via Hawking radiation. We also provide an example code for calculating the Hawking radiation spectrum of massive scalar particles .

在研究原始黑洞(PBHs)的次级伽马射线辐射时,通过霍金辐射产生的标量粒子(如小离子和类轴子粒子(ALPs))至关重要。以前的分析假定产生相对论粒子,而与即将进行的 AMEGO-X 等实验相关的小行星质量的原始黑洞,当其质量超过 10 MeV 时,很可能产生非相对论的 pions 和 ALPs。为了解释霍金辐射的质量依赖性,我们重新审视了来自施瓦兹柴尔德黑洞的大质量标量的灰度因子,发现与预计的AMEGO-X灵敏度相比,粒子产生率有显著的质量修正。我们强调了在解释黑洞伽马射线信号时考虑非相对论π0产生的重要性,这对确定黑洞性质至关重要。此外,我们还评论了在通过霍金辐射产生扩展天体时,由于形式因子效应对先驱产生的潜在抑制。我们还提供了一个计算大质量标量粒子霍金辐射谱的示例代码。
{"title":"Hawking radiation of nonrelativistic scalars: applications to pion and axion production","authors":"Hao-Ran Cui,&nbsp;Yuhsin Tsai,&nbsp;Tao Xu","doi":"10.1007/JHEP11(2024)071","DOIUrl":"10.1007/JHEP11(2024)071","url":null,"abstract":"<p>In studying secondary gamma-ray emissions from Primordial Black Holes (PBHs), the production of scalar particles like pions and axion-like particles (ALPs) via Hawking radiation is crucial. While previous analyses assumed relativistic production, asteroid-mass PBHs, relevant to upcoming experiments like AMEGO-X, likely produce pions and ALPs non-relativistically when their masses exceed 10 MeV. To account for mass dependence in Hawking radiation, we revisit the greybody factors for massive scalars from Schwarzschild black holes, revealing significant mass corrections to particle production rates compared to the projected AMEGO-X sensitivity. We highlight the importance of considering non-relativistic <i>π</i><sup>0</sup> production in interpreting PBH gamma-ray signals, essential for determining PBH properties. Additionally, we comment on the potential suppression of pion production due to form factor effects when producing extended objects via Hawking radiation. We also provide an example code for calculating the Hawking radiation spectrum of massive scalar particles <img>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)071.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bubble velocities and oscillon precursors in first-order phase transitions 一阶相变中的气泡速度和振荡前兆
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)064
Dalila Pîrvu, Matthew C. Johnson, Sergey Sibiryakov

Metastable ‘false’ vacuum states are an important feature of the Standard Model of particle physics and many theories beyond it. Describing the dynamics of a phase transition out of a false vacuum via the nucleation of bubbles is essential for understanding the cosmology of vacuum decay and the full spectrum of observables. In this paper, we study vacuum decay by numerically evolving ensembles of field theories in 1+1 dimensions from a metastable state. We demonstrate that for an initial Bose-Einstein distribution of fluctuations, bubbles form with a Gaussian spread of center-of-mass velocities and that bubble nucleation events are preceded by an oscillon — a long-lived, time-dependent, pseudo-stable configuration of the field. Defining an effective temperature from the long-wavelength amplitude of fluctuations in the ensemble of simulations, we find good agreement between theoretical finite temperature predictions and empirical measurements of the decay rate, velocity distribution and critical bubble solution. We comment on the generalization of our results and the implications for cosmological observables.

可蜕变的 "假 "真空态是粒子物理学标准模型及其之外许多理论的一个重要特征。描述通过气泡成核走出假真空的相变动力学,对于理解真空衰变的宇宙学和全部观测指标至关重要。在本文中,我们通过数值演化 1+1 维的场论集合来研究真空衰变。我们证明,对于波动的初始玻色-爱因斯坦分布,气泡的形成与质量中心速度的高斯分布有关,而且气泡成核事件之前会出现振荡子--一种长寿命、随时间变化的伪稳定场构型。根据模拟集合中波动的长波振幅来定义有效温度,我们发现理论有限温度预测与衰变率、速度分布和临界气泡溶液的经验测量之间存在良好的一致性。我们评论了我们结果的概括性以及对宇宙学观测指标的影响。
{"title":"Bubble velocities and oscillon precursors in first-order phase transitions","authors":"Dalila Pîrvu,&nbsp;Matthew C. Johnson,&nbsp;Sergey Sibiryakov","doi":"10.1007/JHEP11(2024)064","DOIUrl":"10.1007/JHEP11(2024)064","url":null,"abstract":"<p>Metastable ‘false’ vacuum states are an important feature of the Standard Model of particle physics and many theories beyond it. Describing the dynamics of a phase transition out of a false vacuum via the nucleation of bubbles is essential for understanding the cosmology of vacuum decay and the full spectrum of observables. In this paper, we study vacuum decay by numerically evolving ensembles of field theories in 1+1 dimensions from a metastable state. We demonstrate that for an initial Bose-Einstein distribution of fluctuations, bubbles form with a Gaussian spread of center-of-mass velocities and that bubble nucleation events are preceded by an oscillon — a long-lived, time-dependent, pseudo-stable configuration of the field. Defining an effective temperature from the long-wavelength amplitude of fluctuations in the ensemble of simulations, we find good agreement between theoretical finite temperature predictions and empirical measurements of the decay rate, velocity distribution and critical bubble solution. We comment on the generalization of our results and the implications for cosmological observables.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)064.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Final-state rescattering mechanism of charmed baryon decays 粲重子衰变的终态再散射机制
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-12 DOI: 10.1007/JHEP11(2024)072
Cai-Ping Jia, Hua-Yu Jiang, Jian-Peng Wang, Fu-Sheng Yu

The dynamical studies on the non-leptonic weak decays of charmed baryons are always challenging, due to the large non-perturbative contributions at the charm scale. In this work, we develop the final-state rescattering mechanism to study the two-body non-leptonic decays of charmed baryons. The final-state interaction is a physical picture of long-distance effects. Instead of using the Cutkosky rule to calculate the hadronic triangle diagrams which can only provide the imaginary part of decay amplitudes, we point out that the loop integral is more appropriate, as both the real parts and the imaginary parts of amplitudes can be calculated completely. In this way, it can be obtained for the non-trivial strong phases which are essential to calculate CP violations. With the physical picture of long-distance effects and the reasonable method of calculations, it is amazingly achieved that all the nine existing experimental data of branching fractions for the ( {Lambda}_c^{+} ) decays into an octet light baryon and a vector meson can be explained by only one parameter of the model. Besides, the decay asymmetries and CP violations are not sensitive to the model parameter, since the dependence on the parameter is mainly cancelled in the ratios, so that the theoretical uncertainties on these observables are lowered down.

由于粲尺度上存在大量非微扰贡献,对粲重子的非轻子弱衰变进行动力学研究一直是一项挑战。在这项工作中,我们发展了终态再散射机制来研究粲重子的双体非轻子衰变。终态相互作用是远距离效应的物理图景。库特科斯基(Cutkosky)法则只能提供衰变振幅的虚部,而我们指出,环积分更合适,因为振幅的实部和虚部都可以完全计算出来。通过这种方法,我们可以得到非三维的强相位,这对于计算 CP 违背是至关重要的。有了远距离效应的物理图景和合理的计算方法,就可以惊人地发现,现有的所有九个关于( {Lambda}_c^{+} )衰变为一个八重轻重子和一个矢量介子的分支分数的实验数据,都可以只用模型的一个参数来解释。此外,衰变不对称性和CP违反对模型参数并不敏感,因为参数的依赖主要在比值上被抵消了,从而降低了这些观测指标的理论不确定性。
{"title":"Final-state rescattering mechanism of charmed baryon decays","authors":"Cai-Ping Jia,&nbsp;Hua-Yu Jiang,&nbsp;Jian-Peng Wang,&nbsp;Fu-Sheng Yu","doi":"10.1007/JHEP11(2024)072","DOIUrl":"10.1007/JHEP11(2024)072","url":null,"abstract":"<p>The dynamical studies on the non-leptonic weak decays of charmed baryons are always challenging, due to the large non-perturbative contributions at the charm scale. In this work, we develop the final-state rescattering mechanism to study the two-body non-leptonic decays of charmed baryons. The final-state interaction is a physical picture of long-distance effects. Instead of using the Cutkosky rule to calculate the hadronic triangle diagrams which can only provide the imaginary part of decay amplitudes, we point out that the loop integral is more appropriate, as both the real parts and the imaginary parts of amplitudes can be calculated completely. In this way, it can be obtained for the non-trivial strong phases which are essential to calculate CP violations. With the physical picture of long-distance effects and the reasonable method of calculations, it is amazingly achieved that all the nine existing experimental data of branching fractions for the <span>( {Lambda}_c^{+} )</span> decays into an octet light baryon and a vector meson can be explained by only one parameter of the model. Besides, the decay asymmetries and CP violations are not sensitive to the model parameter, since the dependence on the parameter is mainly cancelled in the ratios, so that the theoretical uncertainties on these observables are lowered down.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)072.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Freudenthal duality in conformal field theory 共形场论中的弗赖登塔尔对偶性
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1007/JHEP11(2024)057
Arghya Chattopadhyay, Taniya Mandal, Alessio Marrani

Rotational Freudenthal duality (RFD) relates two extremal Kerr-Newman (KN) black holes (BHs) with different angular momenta and electric-magnetic charges, but with the same Bekenstein-Hawking entropy. Through the Kerr/CFT correspondence (and its KN extension), a four-dimensional, asymptotically flat extremal KN BH is endowed with a dual thermal, two-dimensional conformal field theory (CFT) such that the Cardy entropy of the CFT is the same as the Bekenstein-Hawking entropy of the KN BH itself. Using this connection, we study the effect of the RFD on the thermal CFT dual to the KN extremal (or doubly-extremal) BH. We find that the RFD maps two different thermal, two-dimensional CFTs with different temperatures and central charges, but with the same asymptotic density of states, thereby matching the Cardy entropy. We also discuss the action of the RFD on doubly-extremal rotating BHs, finding a spurious branch in the non-rotating limit, and determining that for this class of BH solutions the image of the RFD necessarily over-rotates.

旋转弗赖登塔尔对偶(RFD)将两个具有不同角矩和电磁荷但具有相同贝肯斯坦-霍金熵的极值克尔-纽曼(KN)黑洞(BH)联系在一起。通过克尔/共形场论对应关系(及其 KN 扩展),一个四维渐近平坦极值 KN 黑洞被赋予了一个双热二维共形场论(CFT),使得 CFT 的卡迪熵与 KN 黑洞本身的贝肯斯坦-霍金熵相同。利用这种联系,我们研究了 RFD 对 KN 极端(或双极端)BH 的热 CFT 对偶的影响。我们发现,RFD映射了两个不同温度和中心电荷的二维热CFT,但具有相同的渐近态密度,从而与卡迪熵相匹配。我们还讨论了 RFD 对双极值旋转 BH 的作用,发现了非旋转极限中的一个虚假分支,并确定对于这类 BH 解决方案,RFD 的图像必然会过度旋转。
{"title":"Freudenthal duality in conformal field theory","authors":"Arghya Chattopadhyay,&nbsp;Taniya Mandal,&nbsp;Alessio Marrani","doi":"10.1007/JHEP11(2024)057","DOIUrl":"10.1007/JHEP11(2024)057","url":null,"abstract":"<p>Rotational Freudenthal duality (RFD) relates two extremal Kerr-Newman (KN) black holes (BHs) with different angular momenta and electric-magnetic charges, but with the same Bekenstein-Hawking entropy. Through the Kerr/CFT correspondence (and its KN extension), a four-dimensional, asymptotically flat extremal KN BH is endowed with a dual thermal, two-dimensional conformal field theory (CFT) such that the Cardy entropy of the CFT is the same as the Bekenstein-Hawking entropy of the KN BH itself. Using this connection, we study the effect of the RFD on the thermal CFT dual to the KN extremal (or doubly-extremal) BH. We find that the RFD maps two different thermal, two-dimensional CFTs with different temperatures and central charges, but with the same asymptotic density of states, thereby matching the Cardy entropy. We also discuss the action of the RFD on doubly-extremal rotating BHs, finding a spurious branch in the non-rotating limit, and determining that for this class of BH solutions the image of the RFD necessarily over-rotates.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)057.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of Born cross sections of ( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 ) and search for charmonium(-like) states at ( sqrt{s} ) = 3.51–4.95 GeV Measurement of Born cross sections of ( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 ) and search for charmonium(-like) states at ( sqrt{s} ) = 3.51-4.95 GeV
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1007/JHEP11(2024)062
The BESIII collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. Y. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, L. Ge, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, J. H. Jeong, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, L. Lavezzi, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, L. J. Li, L. K. Li, Lei Li, M. H. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, S. X. Li, T. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Liang Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, C. F. Qiao, X. K. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, Q. Q. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, Q. T. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, B. L. Wang, Bo Wang, D. Y. Wang, F. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, Ziyi Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, X. H. Wu, Y. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, S. Y. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. F. Yang, Y. X. Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, J. H. Yin, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, L. P. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu

Using e+e collision data collected by the BESIII detector at BEPCII corresponding to an integrated luminosity of 30 fb1, we measure Born cross sections and effective form factors for the process ( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 ) at forty-five center-of-mass energies between 3.51 and 4.95 GeV. The dressed cross section is fitted, assuming a power-law function plus a charmonium(-like) state, i.e., ψ(3770), ψ(4040), ψ(4160), ψ(4230), ψ(4360), ψ(4415) or ψ(4660). No significant charmonium(-like) state decaying into ( {Xi}^0{overline{Xi}}^0 ) is observed. Upper limits at the 90% confidence level on the product of the branching fraction and the electronic partial width are provided for each decay. In addition, ratios of the Born cross sections and the effective form factors for ( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 ) and ( {e}^{+}{e}^{-}to {Xi}^{-}{overline{Xi}}^{+} ) are also presented to test isospin symmetry and the vector meson dominance model.

利用BEPCII的BESIII探测器收集到的相当于30 fb-1综合光度的e+e-对撞数据,我们测量了在3.51到4.95 GeV之间的45个质心能量下过程( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}^0 )的天生截面和有效形式因子。对掺杂截面进行了拟合,假定幂律函数加上粲(类)态,即ψ(3770)、ψ(4040)、ψ(4160)、ψ(4230)、ψ(4360)、ψ(4415)或ψ(4660)。没有观测到衰变为( {Xi}^0{overline{Xi}}^0 )的重要粲态。提供了每种衰变的分支分数与电子部分宽度乘积的 90% 置信度上限。此外,还给出了 ( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 ) 和 ( {e}^{+}{e}^{-}to {Xi}^{-}{overline{Xi}}^{+} ) 的博恩截面比和有效形式因子,以检验等空间对称性和矢量介子主导模型。
{"title":"Measurement of Born cross sections of ( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 ) and search for charmonium(-like) states at ( sqrt{s} ) = 3.51–4.95 GeV","authors":"The BESIII collaboration,&nbsp;M. Ablikim,&nbsp;M. N. Achasov,&nbsp;P. Adlarson,&nbsp;O. Afedulidis,&nbsp;X. C. Ai,&nbsp;R. Aliberti,&nbsp;A. Amoroso,&nbsp;Y. Bai,&nbsp;O. Bakina,&nbsp;I. Balossino,&nbsp;Y. Ban,&nbsp;H.-R. Bao,&nbsp;V. Batozskaya,&nbsp;K. Begzsuren,&nbsp;N. Berger,&nbsp;M. Berlowski,&nbsp;M. Bertani,&nbsp;D. Bettoni,&nbsp;F. Bianchi,&nbsp;E. Bianco,&nbsp;A. Bortone,&nbsp;I. Boyko,&nbsp;R. A. Briere,&nbsp;A. Brueggemann,&nbsp;H. Cai,&nbsp;X. Cai,&nbsp;A. Calcaterra,&nbsp;G. F. Cao,&nbsp;N. Cao,&nbsp;S. A. Cetin,&nbsp;X. Y. Chai,&nbsp;J. F. Chang,&nbsp;G. R. Che,&nbsp;Y. Z. Che,&nbsp;G. Chelkov,&nbsp;C. Chen,&nbsp;C. H. Chen,&nbsp;Chao Chen,&nbsp;G. Chen,&nbsp;H. S. Chen,&nbsp;H. Y. Chen,&nbsp;M. L. Chen,&nbsp;S. J. Chen,&nbsp;S. L. Chen,&nbsp;S. M. Chen,&nbsp;T. Chen,&nbsp;X. R. Chen,&nbsp;X. T. Chen,&nbsp;Y. B. Chen,&nbsp;Y. Q. Chen,&nbsp;Z. J. Chen,&nbsp;Z. Y. Chen,&nbsp;S. K. Choi,&nbsp;G. Cibinetto,&nbsp;F. Cossio,&nbsp;J. J. Cui,&nbsp;H. L. Dai,&nbsp;J. P. Dai,&nbsp;A. Dbeyssi,&nbsp;R. E. de Boer,&nbsp;D. Dedovich,&nbsp;C. Q. Deng,&nbsp;Z. Y. Deng,&nbsp;A. Denig,&nbsp;I. Denysenko,&nbsp;M. Destefanis,&nbsp;F. De Mori,&nbsp;B. Ding,&nbsp;X. X. Ding,&nbsp;Y. Ding,&nbsp;Y. Ding,&nbsp;J. Dong,&nbsp;L. Y. Dong,&nbsp;M. Y. Dong,&nbsp;X. Dong,&nbsp;M. C. Du,&nbsp;S. X. Du,&nbsp;Y. Y. Duan,&nbsp;Z. H. Duan,&nbsp;P. Egorov,&nbsp;Y. H. Fan,&nbsp;J. Fang,&nbsp;J. Fang,&nbsp;S. S. Fang,&nbsp;W. X. Fang,&nbsp;Y. Fang,&nbsp;Y. Q. Fang,&nbsp;R. Farinelli,&nbsp;L. Fava,&nbsp;F. Feldbauer,&nbsp;G. Felici,&nbsp;C. Q. Feng,&nbsp;J. H. Feng,&nbsp;Y. T. Feng,&nbsp;M. Fritsch,&nbsp;C. D. Fu,&nbsp;J. L. Fu,&nbsp;Y. W. Fu,&nbsp;H. Gao,&nbsp;X. B. Gao,&nbsp;Y. N. Gao,&nbsp;Yang Gao,&nbsp;S. Garbolino,&nbsp;I. Garzia,&nbsp;L. Ge,&nbsp;P. T. Ge,&nbsp;Z. W. Ge,&nbsp;C. Geng,&nbsp;E. M. Gersabeck,&nbsp;A. Gilman,&nbsp;K. Goetzen,&nbsp;L. Gong,&nbsp;W. X. Gong,&nbsp;W. Gradl,&nbsp;S. Gramigna,&nbsp;M. Greco,&nbsp;M. H. Gu,&nbsp;Y. T. Gu,&nbsp;C. Y. Guan,&nbsp;A. Q. Guo,&nbsp;L. B. Guo,&nbsp;M. J. Guo,&nbsp;R. P. Guo,&nbsp;Y. P. Guo,&nbsp;A. Guskov,&nbsp;J. Gutierrez,&nbsp;K. L. Han,&nbsp;T. T. Han,&nbsp;F. Hanisch,&nbsp;X. Q. Hao,&nbsp;F. A. Harris,&nbsp;K. K. He,&nbsp;K. L. He,&nbsp;F. H. Heinsius,&nbsp;C. H. Heinz,&nbsp;Y. K. Heng,&nbsp;C. Herold,&nbsp;T. Holtmann,&nbsp;P. C. Hong,&nbsp;G. Y. Hou,&nbsp;X. T. Hou,&nbsp;Y. R. Hou,&nbsp;Z. L. Hou,&nbsp;B. Y. Hu,&nbsp;H. M. Hu,&nbsp;J. F. Hu,&nbsp;Q. P. Hu,&nbsp;S. L. Hu,&nbsp;T. Hu,&nbsp;Y. Hu,&nbsp;G. S. Huang,&nbsp;K. X. Huang,&nbsp;L. Q. Huang,&nbsp;X. T. Huang,&nbsp;Y. P. Huang,&nbsp;Y. S. Huang,&nbsp;T. Hussain,&nbsp;F. Hölzken,&nbsp;N. Hüsken,&nbsp;N. in der Wiesche,&nbsp;J. Jackson,&nbsp;S. Janchiv,&nbsp;J. H. Jeong,&nbsp;Q. Ji,&nbsp;Q. P. Ji,&nbsp;W. Ji,&nbsp;X. B. Ji,&nbsp;X. L. Ji,&nbsp;Y. Y. Ji,&nbsp;X. Q. Jia,&nbsp;Z. K. Jia,&nbsp;D. Jiang,&nbsp;H. B. Jiang,&nbsp;P. C. Jiang,&nbsp;S. S. Jiang,&nbsp;T. J. Jiang,&nbsp;X. S. Jiang,&nbsp;Y. Jiang,&nbsp;J. B. Jiao,&nbsp;J. K. Jiao,&nbsp;Z. Jiao,&nbsp;S. Jin,&nbsp;Y. Jin,&nbsp;M. Q. Jing,&nbsp;X. M. Jing,&nbsp;T. Johansson,&nbsp;S. Kabana,&nbsp;N. Kalantar-Nayestanaki,&nbsp;X. L. Kang,&nbsp;X. S. Kang,&nbsp;M. Kavatsyuk,&nbsp;B. C. Ke,&nbsp;V. Khachatryan,&nbsp;A. Khoukaz,&nbsp;R. Kiuchi,&nbsp;O. B. Kolcu,&nbsp;B. Kopf,&nbsp;M. Kuessner,&nbsp;X. Kui,&nbsp;N. Kumar,&nbsp;A. Kupsc,&nbsp;W. Kühn,&nbsp;L. Lavezzi,&nbsp;T. T. Lei,&nbsp;Z. H. Lei,&nbsp;M. Lellmann,&nbsp;T. Lenz,&nbsp;C. Li,&nbsp;C. Li,&nbsp;C. H. Li,&nbsp;Cheng Li,&nbsp;D. M. Li,&nbsp;F. Li,&nbsp;G. Li,&nbsp;H. B. Li,&nbsp;H. J. Li,&nbsp;H. N. Li,&nbsp;Hui Li,&nbsp;J. R. Li,&nbsp;J. S. Li,&nbsp;K. Li,&nbsp;K. L. Li,&nbsp;L. J. Li,&nbsp;L. K. Li,&nbsp;Lei Li,&nbsp;M. H. Li,&nbsp;P. R. Li,&nbsp;Q. M. Li,&nbsp;Q. X. Li,&nbsp;R. Li,&nbsp;S. X. Li,&nbsp;T. Li,&nbsp;W. D. Li,&nbsp;W. G. Li,&nbsp;X. Li,&nbsp;X. H. Li,&nbsp;X. L. Li,&nbsp;X. Y. Li,&nbsp;X. Z. Li,&nbsp;Y. G. Li,&nbsp;Z. J. Li,&nbsp;Z. Y. Li,&nbsp;C. Liang,&nbsp;H. Liang,&nbsp;H. Liang,&nbsp;Y. F. Liang,&nbsp;Y. T. Liang,&nbsp;G. R. Liao,&nbsp;Y. P. Liao,&nbsp;J. Libby,&nbsp;A. Limphirat,&nbsp;C. C. Lin,&nbsp;C. X. Lin,&nbsp;D. X. Lin,&nbsp;T. Lin,&nbsp;B. J. Liu,&nbsp;B. X. Liu,&nbsp;C. Liu,&nbsp;C. X. Liu,&nbsp;F. Liu,&nbsp;F. H. Liu,&nbsp;Feng Liu,&nbsp;G. M. Liu,&nbsp;H. Liu,&nbsp;H. B. Liu,&nbsp;H. H. Liu,&nbsp;H. M. Liu,&nbsp;Huihui Liu,&nbsp;J. B. Liu,&nbsp;J. Y. Liu,&nbsp;K. Liu,&nbsp;K. Y. Liu,&nbsp;Ke Liu,&nbsp;L. Liu,&nbsp;Liang Liu,&nbsp;L. C. Liu,&nbsp;Lu Liu,&nbsp;M. H. Liu,&nbsp;P. L. Liu,&nbsp;Q. Liu,&nbsp;S. B. Liu,&nbsp;T. Liu,&nbsp;W. K. Liu,&nbsp;W. M. Liu,&nbsp;X. Liu,&nbsp;X. Liu,&nbsp;Y. Liu,&nbsp;Y. Liu,&nbsp;Y. B. Liu,&nbsp;Z. A. Liu,&nbsp;Z. D. Liu,&nbsp;Z. Q. Liu,&nbsp;X. C. Lou,&nbsp;F. X. Lu,&nbsp;H. J. Lu,&nbsp;J. G. Lu,&nbsp;X. L. Lu,&nbsp;Y. Lu,&nbsp;Y. P. Lu,&nbsp;Z. H. Lu,&nbsp;C. L. Luo,&nbsp;J. R. Luo,&nbsp;M. X. Luo,&nbsp;T. Luo,&nbsp;X. L. Luo,&nbsp;X. R. Lyu,&nbsp;Y. F. Lyu,&nbsp;F. C. Ma,&nbsp;H. Ma,&nbsp;H. L. Ma,&nbsp;J. L. Ma,&nbsp;L. L. Ma,&nbsp;L. R. Ma,&nbsp;M. M. Ma,&nbsp;Q. M. Ma,&nbsp;R. Q. Ma,&nbsp;T. Ma,&nbsp;X. T. Ma,&nbsp;X. Y. Ma,&nbsp;Y. M. Ma,&nbsp;F. E. Maas,&nbsp;I. MacKay,&nbsp;M. Maggiora,&nbsp;S. Malde,&nbsp;Y. J. Mao,&nbsp;Z. P. Mao,&nbsp;S. Marcello,&nbsp;Z. X. Meng,&nbsp;J. G. Messchendorp,&nbsp;G. Mezzadri,&nbsp;H. Miao,&nbsp;T. J. Min,&nbsp;R. E. Mitchell,&nbsp;X. H. Mo,&nbsp;B. Moses,&nbsp;N. Yu. Muchnoi,&nbsp;J. Muskalla,&nbsp;Y. Nefedov,&nbsp;F. Nerling,&nbsp;L. S. Nie,&nbsp;I. B. Nikolaev,&nbsp;Z. Ning,&nbsp;S. Nisar,&nbsp;Q. L. Niu,&nbsp;W. D. Niu,&nbsp;Y. Niu,&nbsp;S. L. Olsen,&nbsp;S. L. Olsen,&nbsp;Q. Ouyang,&nbsp;S. Pacetti,&nbsp;X. Pan,&nbsp;Y. Pan,&nbsp;A. Pathak,&nbsp;Y. P. Pei,&nbsp;M. Pelizaeus,&nbsp;H. P. Peng,&nbsp;Y. Y. Peng,&nbsp;K. Peters,&nbsp;J. L. Ping,&nbsp;R. G. Ping,&nbsp;S. Plura,&nbsp;V. Prasad,&nbsp;F. Z. Qi,&nbsp;H. Qi,&nbsp;H. R. Qi,&nbsp;M. Qi,&nbsp;T. Y. Qi,&nbsp;S. Qian,&nbsp;W. B. Qian,&nbsp;C. F. Qiao,&nbsp;X. K. Qiao,&nbsp;J. J. Qin,&nbsp;L. Q. Qin,&nbsp;L. Y. Qin,&nbsp;X. P. Qin,&nbsp;X. S. Qin,&nbsp;Z. H. Qin,&nbsp;J. F. Qiu,&nbsp;Z. H. Qu,&nbsp;C. F. Redmer,&nbsp;K. J. Ren,&nbsp;A. Rivetti,&nbsp;M. Rolo,&nbsp;G. Rong,&nbsp;Ch. Rosner,&nbsp;M. Q. Ruan,&nbsp;S. N. Ruan,&nbsp;N. Salone,&nbsp;A. Sarantsev,&nbsp;Y. Schelhaas,&nbsp;K. Schoenning,&nbsp;M. Scodeggio,&nbsp;K. Y. Shan,&nbsp;W. Shan,&nbsp;X. Y. Shan,&nbsp;Z. J. Shang,&nbsp;J. F. Shangguan,&nbsp;L. G. Shao,&nbsp;M. Shao,&nbsp;C. P. Shen,&nbsp;H. F. Shen,&nbsp;W. H. Shen,&nbsp;X. Y. Shen,&nbsp;B. A. Shi,&nbsp;H. Shi,&nbsp;J. L. Shi,&nbsp;J. Y. Shi,&nbsp;Q. Q. Shi,&nbsp;S. Y. Shi,&nbsp;X. Shi,&nbsp;J. J. Song,&nbsp;T. Z. Song,&nbsp;W. M. Song,&nbsp;Y. J. Song,&nbsp;Y. X. Song,&nbsp;S. Sosio,&nbsp;S. Spataro,&nbsp;F. Stieler,&nbsp;S. S Su,&nbsp;Y. J. Su,&nbsp;G. B. Sun,&nbsp;G. X. Sun,&nbsp;H. Sun,&nbsp;H. K. Sun,&nbsp;J. F. Sun,&nbsp;K. Sun,&nbsp;L. Sun,&nbsp;S. S. Sun,&nbsp;T. Sun,&nbsp;W. Y. Sun,&nbsp;Y. Sun,&nbsp;Y. J. Sun,&nbsp;Y. Z. Sun,&nbsp;Z. Q. Sun,&nbsp;Z. T. Sun,&nbsp;C. J. Tang,&nbsp;G. Y. Tang,&nbsp;J. Tang,&nbsp;M. Tang,&nbsp;Y. A. Tang,&nbsp;L. Y. Tao,&nbsp;Q. T. Tao,&nbsp;M. Tat,&nbsp;J. X. Teng,&nbsp;V. Thoren,&nbsp;W. H. Tian,&nbsp;Y. Tian,&nbsp;Z. F. Tian,&nbsp;I. Uman,&nbsp;Y. Wan,&nbsp;S. J. Wang,&nbsp;B. Wang,&nbsp;B. L. Wang,&nbsp;Bo Wang,&nbsp;D. Y. Wang,&nbsp;F. Wang,&nbsp;H. J. Wang,&nbsp;J. J. Wang,&nbsp;J. P. Wang,&nbsp;K. Wang,&nbsp;L. L. Wang,&nbsp;M. Wang,&nbsp;N. Y. Wang,&nbsp;S. Wang,&nbsp;S. Wang,&nbsp;T. Wang,&nbsp;T. J. Wang,&nbsp;W. Wang,&nbsp;W. Wang,&nbsp;W. P. Wang,&nbsp;X. Wang,&nbsp;X. F. Wang,&nbsp;X. J. Wang,&nbsp;X. L. Wang,&nbsp;X. N. Wang,&nbsp;Y. Wang,&nbsp;Y. D. Wang,&nbsp;Y. F. Wang,&nbsp;Y. H. Wang,&nbsp;Y. L. Wang,&nbsp;Y. N. Wang,&nbsp;Y. Q. Wang,&nbsp;Yaqian Wang,&nbsp;Yi Wang,&nbsp;Z. Wang,&nbsp;Z. L. Wang,&nbsp;Z. Y. Wang,&nbsp;Ziyi Wang,&nbsp;D. H. Wei,&nbsp;F. Weidner,&nbsp;S. P. Wen,&nbsp;Y. R. Wen,&nbsp;U. Wiedner,&nbsp;G. Wilkinson,&nbsp;M. Wolke,&nbsp;L. Wollenberg,&nbsp;C. Wu,&nbsp;J. F. Wu,&nbsp;L. H. Wu,&nbsp;L. J. Wu,&nbsp;X. Wu,&nbsp;X. H. Wu,&nbsp;Y. Wu,&nbsp;Y. H. Wu,&nbsp;Y. J. Wu,&nbsp;Z. Wu,&nbsp;L. Xia,&nbsp;X. M. Xian,&nbsp;B. H. Xiang,&nbsp;T. Xiang,&nbsp;D. Xiao,&nbsp;G. Y. Xiao,&nbsp;S. Y. Xiao,&nbsp;Y. L. Xiao,&nbsp;Z. J. Xiao,&nbsp;C. Xie,&nbsp;X. H. Xie,&nbsp;Y. Xie,&nbsp;Y. G. Xie,&nbsp;Y. H. Xie,&nbsp;Z. P. Xie,&nbsp;T. Y. Xing,&nbsp;C. F. Xu,&nbsp;C. J. Xu,&nbsp;G. F. Xu,&nbsp;H. Y. Xu,&nbsp;M. Xu,&nbsp;Q. J. Xu,&nbsp;Q. N. Xu,&nbsp;W. Xu,&nbsp;W. L. Xu,&nbsp;X. P. Xu,&nbsp;Y. Xu,&nbsp;Y. C. Xu,&nbsp;Z. S. Xu,&nbsp;F. Yan,&nbsp;L. Yan,&nbsp;W. B. Yan,&nbsp;W. C. Yan,&nbsp;X. Q. Yan,&nbsp;H. J. Yang,&nbsp;H. L. Yang,&nbsp;H. X. Yang,&nbsp;J. H. Yang,&nbsp;T. Yang,&nbsp;Y. Yang,&nbsp;Y. F. Yang,&nbsp;Y. F. Yang,&nbsp;Y. X. Yang,&nbsp;Z. W. Yang,&nbsp;Z. P. Yao,&nbsp;M. Ye,&nbsp;M. H. Ye,&nbsp;J. H. Yin,&nbsp;Junhao Yin,&nbsp;Z. Y. You,&nbsp;B. X. Yu,&nbsp;C. X. Yu,&nbsp;G. Yu,&nbsp;J. S. Yu,&nbsp;M. C. Yu,&nbsp;T. Yu,&nbsp;X. D. Yu,&nbsp;Y. C. Yu,&nbsp;C. Z. Yuan,&nbsp;J. Yuan,&nbsp;J. Yuan,&nbsp;L. Yuan,&nbsp;S. C. Yuan,&nbsp;Y. Yuan,&nbsp;Z. Y. Yuan,&nbsp;C. X. Yue,&nbsp;A. A. Zafar,&nbsp;F. R. Zeng,&nbsp;S. H. Zeng,&nbsp;X. Zeng,&nbsp;Y. Zeng,&nbsp;Y. J. Zeng,&nbsp;Y. J. Zeng,&nbsp;X. Y. Zhai,&nbsp;Y. C. Zhai,&nbsp;Y. H. Zhan,&nbsp;A. Q. Zhang,&nbsp;B. L. Zhang,&nbsp;B. X. Zhang,&nbsp;D. H. Zhang,&nbsp;G. Y. Zhang,&nbsp;H. Zhang,&nbsp;H. Zhang,&nbsp;H. C. Zhang,&nbsp;H. H. Zhang,&nbsp;H. H. Zhang,&nbsp;H. Q. Zhang,&nbsp;H. R. Zhang,&nbsp;H. Y. Zhang,&nbsp;J. Zhang,&nbsp;J. Zhang,&nbsp;J. J. Zhang,&nbsp;J. L. Zhang,&nbsp;J. Q. Zhang,&nbsp;J. S. Zhang,&nbsp;J. W. Zhang,&nbsp;J. X. Zhang,&nbsp;J. Y. Zhang,&nbsp;J. Z. Zhang,&nbsp;Jianyu Zhang,&nbsp;L. M. Zhang,&nbsp;Lei Zhang,&nbsp;P. Zhang,&nbsp;Q. Y. Zhang,&nbsp;R. Y. Zhang,&nbsp;S. H. Zhang,&nbsp;Shulei Zhang,&nbsp;X. M. Zhang,&nbsp;X. Y Zhang,&nbsp;X. Y. Zhang,&nbsp;Y. Zhang,&nbsp;Y. Zhang,&nbsp;Y. T. Zhang,&nbsp;Y. H. Zhang,&nbsp;Y. M. Zhang,&nbsp;Yan Zhang,&nbsp;Z. D. Zhang,&nbsp;Z. H. Zhang,&nbsp;Z. L. Zhang,&nbsp;Z. Y. Zhang,&nbsp;Z. Y. Zhang,&nbsp;Z. Z. Zhang,&nbsp;G. Zhao,&nbsp;J. Y. Zhao,&nbsp;J. Z. Zhao,&nbsp;L. Zhao,&nbsp;Lei Zhao,&nbsp;M. G. Zhao,&nbsp;N. Zhao,&nbsp;R. P. Zhao,&nbsp;S. J. Zhao,&nbsp;Y. B. Zhao,&nbsp;Y. X. Zhao,&nbsp;Z. G. Zhao,&nbsp;A. Zhemchugov,&nbsp;B. Zheng,&nbsp;B. M. Zheng,&nbsp;J. P. Zheng,&nbsp;W. J. Zheng,&nbsp;Y. H. Zheng,&nbsp;B. Zhong,&nbsp;X. Zhong,&nbsp;H. Zhou,&nbsp;J. Y. Zhou,&nbsp;L. P. Zhou,&nbsp;S. Zhou,&nbsp;X. Zhou,&nbsp;X. K. Zhou,&nbsp;X. R. Zhou,&nbsp;X. Y. Zhou,&nbsp;Y. Z. Zhou,&nbsp;Z. C. Zhou,&nbsp;A. N. Zhu,&nbsp;J. Zhu,&nbsp;K. Zhu,&nbsp;K. J. Zhu,&nbsp;K. S. Zhu,&nbsp;L. Zhu,&nbsp;L. X. Zhu,&nbsp;S. H. Zhu,&nbsp;T. J. Zhu,&nbsp;W. D. Zhu,&nbsp;Y. C. Zhu,&nbsp;Z. A. Zhu,&nbsp;J. H. Zou,&nbsp;J. Zu","doi":"10.1007/JHEP11(2024)062","DOIUrl":"10.1007/JHEP11(2024)062","url":null,"abstract":"<p>Using <i>e</i><sup>+</sup><i>e</i><sup><i>−</i></sup> collision data collected by the BESIII detector at BEPCII corresponding to an integrated luminosity of 30 fb<sup><i>−</i>1</sup>, we measure Born cross sections and effective form factors for the process <span>( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 )</span> at forty-five center-of-mass energies between 3.51 and 4.95 GeV. The dressed cross section is fitted, assuming a power-law function plus a charmonium(-like) state, i.e., <i>ψ</i>(3770), <i>ψ</i>(4040), <i>ψ</i>(4160), <i>ψ</i>(4230), <i>ψ</i>(4360), <i>ψ</i>(4415) or <i>ψ</i>(4660). No significant charmonium(-like) state decaying into <span>( {Xi}^0{overline{Xi}}^0 )</span> is observed. Upper limits at the 90% confidence level on the product of the branching fraction and the electronic partial width are provided for each decay. In addition, ratios of the Born cross sections and the effective form factors for <span>( {e}^{+}{e}^{-}to {Xi}^0{overline{Xi}}^0 )</span> and <span>( {e}^{+}{e}^{-}to {Xi}^{-}{overline{Xi}}^{+} )</span> are also presented to test isospin symmetry and the vector meson dominance model.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)062.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stringy forces in the black hole interior 黑洞内部的弦力
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1007/JHEP11(2024)063
Yoav Zigdon

Effective field theories break down inside large black holes on macroscopic scales when tidal forces are string-sized. If r0 is the horizon radius and α′ is the square of the string scale, the 4D Schwarzschild interior is strongly curved at (r0α)1/3. Infalling massless probes that reach this scale stretch and become excited strings. I generalize this picture for a wide class of black hole solutions in string theory. For the black hole dual to the large-N BFSS model in a thermal state, and denoting P the Planck length, tidal forces are stringy at ( {r}_0{left(frac{r_0}{N^{1/3}{ell}_P}right)}^{3/11} ), which is greater than the scale where string perturbation theory breaks down for sufficiently large r0/ℓP. For 4D Kerr, there is a range of spin parameters for which the inner horizon is to the future of the scale of stringy curvature. These results specify the portion of black hole interior solutions where effective field theory can be used; beyond these scales, one must resort to other methods.

当潮汐力达到弦尺度时,大型黑洞内部的有效场理论就会在宏观尺度上崩溃。如果r0是视界半径,α′是弦尺度的平方,那么4D施瓦兹柴尔德内部在(r0α′)1/3处是强弯曲的。到达这一尺度的无量纲探测器会拉伸并成为受激弦。我将这幅图景概括为弦理论中的一大类黑洞解。对于热态下与大N BFSS模型对偶的黑洞,将ℓP表示普朗克长度,潮汐力在( {r}_0{left(frac{r_0}{N^{1/3}{ell}_P}}right)}^{3/11}) 时是弦的。),它大于足够大的 r0/ℓP 时弦微扰理论崩溃的尺度。对于四维克尔,存在一个自旋参数范围,在这个范围内,内视界是弦曲率尺度的未来。这些结果指明了可以使用有效场论的黑洞内部解的部分;超出这些尺度,就必须使用其他方法了。
{"title":"Stringy forces in the black hole interior","authors":"Yoav Zigdon","doi":"10.1007/JHEP11(2024)063","DOIUrl":"10.1007/JHEP11(2024)063","url":null,"abstract":"<p>Effective field theories break down inside large black holes on macroscopic scales when tidal forces are string-sized. If <i>r</i><sub>0</sub> is the horizon radius and <i>α</i>′ is the square of the string scale, the 4D Schwarzschild interior is strongly curved at (<i>r</i><sub>0</sub><i>α</i><sup>′</sup>)<sup>1/3</sup>. Infalling massless probes that reach this scale stretch and become excited strings. I generalize this picture for a wide class of black hole solutions in string theory. For the black hole dual to the large-<i>N</i> BFSS model in a thermal state, and denoting <i>ℓ</i><sub><i>P</i></sub> the Planck length, tidal forces are stringy at <span>( {r}_0{left(frac{r_0}{N^{1/3}{ell}_P}right)}^{3/11} )</span>, which is greater than the scale where string perturbation theory breaks down for sufficiently large <i>r</i><sub>0</sub><i>/ℓ</i><sub><i>P</i></sub>. For 4D Kerr, there is a range of spin parameters for which the inner horizon is to the future of the scale of stringy curvature. These results specify the portion of black hole interior solutions where effective field theory can be used; beyond these scales, one must resort to other methods.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)063.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing the understanding of energy-energy correlators in heavy-ion collisions 推进对重离子碰撞中能量相关器的理解
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1007/JHEP11(2024)060
João Barata, Paul Caucal, Alba Soto-Ontoso, Robert Szafron

We investigate the collinear limit of the energy-energy correlator (EEC) in a heavy-ion context. First, we revisit the leading-logarithmic (LL) resummation of this observable in vacuum following a diagrammatic approach. We argue that this route allows to naturally incorporate medium-induced effects into the all-orders structure systematically. As an example, we show how the phase-space constraints imposed by the static medium on vacuum-like emissions can be incorporated into the LL result by modifying the anomalous dimensions. On the fixed-order side, we calculate the ( mathcal{O} )(αs) expansion of the in-medium EEC for a γ( qoverline{q} ) splitting with arbitrary kinematics including, for the first time, subleading colour corrections. When comparing this result to previously used approximations in the literature, we find up to ( mathcal{O} )(1) deviations in the regime of interest for jet quenching signatures. Energy loss effects are also quantified and further suppress the EEC at large angles. These semi-analytic studies are complemented with a phenomenological study using the jet quenching Monte Carlo JetMed. Finally, we argue that the imprint of medium-induced effects in energy-energy correlators can be enhanced by using an alternative definition that takes as input Lund primary declusterings instead of particles.

我们研究了重离子背景下能能相关器(EEC)的碰撞极限。首先,我们采用图解法重温了真空中这一观测指标的前导对数(LL)求和。我们认为,这种方法可以自然地将介质诱导效应系统地纳入全阶结构。例如,我们展示了如何通过修改反常维度,将静态介质对类真空发射施加的相空间约束纳入 LL 结果。将这一结果与之前文献中使用的近似值进行比较时,我们发现在射流淬火特征所关注的机制中存在高达 ( mathcal{O} )(1)的偏差。能量损失效应也得到了量化,并进一步抑制了大角度下的 EEC。这些半分析研究与使用射流淬火蒙特卡洛 JetMed 的现象学研究相辅相成。最后,我们认为可以通过使用另一种定义来增强能能相关器中介质诱导效应的印记,这种定义将伦德初级解簇而不是粒子作为输入。
{"title":"Advancing the understanding of energy-energy correlators in heavy-ion collisions","authors":"João Barata,&nbsp;Paul Caucal,&nbsp;Alba Soto-Ontoso,&nbsp;Robert Szafron","doi":"10.1007/JHEP11(2024)060","DOIUrl":"10.1007/JHEP11(2024)060","url":null,"abstract":"<p>We investigate the collinear limit of the energy-energy correlator (EEC) in a heavy-ion context. First, we revisit the leading-logarithmic (LL) resummation of this observable in vacuum following a <i>diagrammatic</i> approach. We argue that this route allows to naturally incorporate medium-induced effects into the all-orders structure systematically. As an example, we show how the phase-space constraints imposed by the static medium on vacuum-like emissions can be incorporated into the LL result by modifying the anomalous dimensions. On the fixed-order side, we calculate the <span>( mathcal{O} )</span>(<i>α</i><sub><i>s</i></sub>) expansion of the in-medium EEC for a <i>γ</i> → <span>( qoverline{q} )</span> splitting with arbitrary kinematics including, for the first time, subleading colour corrections. When comparing this result to previously used approximations in the literature, we find up to <span>( mathcal{O} )</span>(1) deviations in the regime of interest for jet quenching signatures. Energy loss effects are also quantified and further suppress the EEC at large angles. These semi-analytic studies are complemented with a phenomenological study using the jet quenching Monte Carlo JetMed. Finally, we argue that the imprint of medium-induced effects in energy-energy correlators can be enhanced by using an alternative definition that takes as input Lund primary declusterings instead of particles.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)060.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of High Energy Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1