Sumit Banik, Andreas Crivellin, Luca Naterop, Peter Stoffer
We compute the two-loop renormalization-group equations for the baryon-number-violating dimension-six operators in the SMEFT. This includes all three gauge interactions, the Yukawa, and Higgs self-interaction contributions. In addition, we present the one-loop matching of the S1 scalar leptoquark on the SMEFT, which can generate the Wilson coefficients of all four gauge-invariant baryon-number-violating SMEFT operators. Using this example, we demonstrate the cancellation of scheme and matching-scale dependences. Together with the known two-loop renormalization-group evolution below the electroweak scale in the LEFT, as well as the one-loop matching of SMEFT onto LEFT, our results enable consistent next-to-leading-log analyses of nucleon decays, provided that the relevant matrix elements are known at next-to-leading-order accuracy.
{"title":"Two-loop anomalous dimensions for baryon-number-violating operators in SMEFT","authors":"Sumit Banik, Andreas Crivellin, Luca Naterop, Peter Stoffer","doi":"10.1007/JHEP02(2026)017","DOIUrl":"10.1007/JHEP02(2026)017","url":null,"abstract":"<p>We compute the two-loop renormalization-group equations for the baryon-number-violating dimension-six operators in the SMEFT. This includes all three gauge interactions, the Yukawa, and Higgs self-interaction contributions. In addition, we present the one-loop matching of the <i>S</i><sub>1</sub> scalar leptoquark on the SMEFT, which can generate the Wilson coefficients of all four gauge-invariant baryon-number-violating SMEFT operators. Using this example, we demonstrate the cancellation of scheme and matching-scale dependences. Together with the known two-loop renormalization-group evolution below the electroweak scale in the LEFT, as well as the one-loop matching of SMEFT onto LEFT, our results enable consistent next-to-leading-log analyses of nucleon decays, provided that the relevant matrix elements are known at next-to-leading-order accuracy.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)017.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We extend the work of [1] to the case in which final-state jets, produced in association with a Higgs or vector boson, are defined using the kt algorithm. We thereby compute the full distribution of the invariant mass squared of the leading, highest-pt jet, including both clustering and non-global logarithms, up to four-loops in perturbation theory. Our results are derived within the eikonal approximation under the assumption of strong ordering in the momenta of the final-state partons, and are consequently valid up to single-logarithmic accuracy. The final semi-analytical expressions retain the complete dependence on both colour and the jet radius. The broad features of kt clustering observed in e+e− processes persist in hadronic collisions, together with novel characteristics that are absent in the e+e− environment.
{"title":"Jet-mass in V/H+jet up to four-loops with kt clustering","authors":"Kamel Khelifa-Kerfa, Mohamed Benghanem","doi":"10.1007/JHEP02(2026)009","DOIUrl":"10.1007/JHEP02(2026)009","url":null,"abstract":"<p>We extend the work of [1] to the case in which final-state jets, produced in association with a Higgs or vector boson, are defined using the <i>k</i><sub><i>t</i></sub> algorithm. We thereby compute the full distribution of the invariant mass squared of the leading, highest-<i>p</i><sub><i>t</i></sub> jet, including both clustering and non-global logarithms, up to four-loops in perturbation theory. Our results are derived within the eikonal approximation under the assumption of strong ordering in the momenta of the final-state partons, and are consequently valid up to single-logarithmic accuracy. The final semi-analytical expressions retain the complete dependence on both colour and the jet radius. The broad features of <i>k</i><sub><i>t</i></sub> clustering observed in <i>e</i><sup>+</sup><i>e</i><sup>−</sup> processes persist in hadronic collisions, together with novel characteristics that are absent in the <i>e</i><sup>+</sup><i>e</i><sup>−</sup> environment.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)009.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We presented a complete calculation of the one-loop fermionic correction to the effective coupling between axion-like particles (ALPs) and photons within a constant, homogeneous magnetic field of arbitrary strength. This interaction, responsible for the Primakoff effect, is central to detecting axion-like particles in astrophysical settings and terrestrial experiments like helioscopes and haloscopes. Accurately predicting the interaction rate requires accounting for quantum corrections. Our work tackles this by employing magnetically field-dressed fermion propagators derived using Schwinger’s proper time method and a systematic Lorentz decomposition using the Ritus basis. We evaluate the triangle loop diagram exactly, and compare it to approximations on field strength under specific assumptions.
{"title":"Effective ALP-photon coupling in external magnetic fields","authors":"O. Semin","doi":"10.1007/JHEP02(2026)012","DOIUrl":"10.1007/JHEP02(2026)012","url":null,"abstract":"<p>We presented a complete calculation of the one-loop fermionic correction to the effective coupling between axion-like particles (ALPs) and photons within a constant, homogeneous magnetic field of arbitrary strength. This interaction, responsible for the Primakoff effect, is central to detecting axion-like particles in astrophysical settings and terrestrial experiments like helioscopes and haloscopes. Accurately predicting the interaction rate requires accounting for quantum corrections. Our work tackles this by employing magnetically field-dressed fermion propagators derived using Schwinger’s proper time method and a systematic Lorentz decomposition using the Ritus basis. We evaluate the triangle loop diagram exactly, and compare it to approximations on field strength under specific assumptions.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)012.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We develop a general framework for electromagnetic potential-charge contributions to the first law of black hole mechanics, applicable to dynamical first-order perturbations of stationary black objects with possibly non-compact bifurcate Killing horizons. Working in the covariant phase space formalism, we derive both comparison and physical process versions of the first law. We consider generic diffeomorphism-invariant theories of gravity in D spacetime dimensions, containing non-minimally coupled abelian p-form gauge fields. The pullback of the gauge field to the horizon is allowed to diverge while its field strength remains smooth, yielding gauge-invariant electric potential-charge pairs in the first law. We further extend the construction to include magnetic charges by developing a bundle-covariant, gauge-invariant prescription that fixes the Jacobson-Kang-Myers ambiguity in the improved Noether charge. Electric and magnetic charges are, respectively, associated with non-trivial (D − p − 1)- and (p + 1)-cycles of the horizon cross-section, whose homology classes determine the number of independent potential-charge pairs through the Betti numbers bD−p−1 and bp+1. Further, the dynamical gravitational entropy entering the first law is identified with the gauge-invariant part of the improved Noether charge, giving a gauge-invariant extension of the recent proposal by Hollands, Wald and Zhang [1]. We illustrate our framework with dyonic AdS black holes, dipole black rings, and charged black branes.
{"title":"Dynamical entropy of charged black objects","authors":"Manus R. Visser, Zihan Yan","doi":"10.1007/JHEP02(2026)003","DOIUrl":"10.1007/JHEP02(2026)003","url":null,"abstract":"<p>We develop a general framework for electromagnetic potential-charge contributions to the first law of black hole mechanics, applicable to dynamical first-order perturbations of stationary black objects with possibly non-compact bifurcate Killing horizons. Working in the covariant phase space formalism, we derive both comparison and physical process versions of the first law. We consider generic diffeomorphism-invariant theories of gravity in <i>D</i> spacetime dimensions, containing non-minimally coupled abelian <i>p</i>-form gauge fields. The pullback of the gauge field to the horizon is allowed to diverge while its field strength remains smooth, yielding gauge-invariant electric potential-charge pairs in the first law. We further extend the construction to include magnetic charges by developing a bundle-covariant, gauge-invariant prescription that fixes the Jacobson-Kang-Myers ambiguity in the improved Noether charge. Electric and magnetic charges are, respectively, associated with non-trivial (<i>D</i> − <i>p</i> − 1)- and (<i>p</i> + 1)-cycles of the horizon cross-section, whose homology classes determine the number of independent potential-charge pairs through the Betti numbers <i>b</i><sub><i>D−p−</i>1</sub> and <i>b</i><sub><i>p</i>+1</sub>. Further, the dynamical gravitational entropy entering the first law is identified with the gauge-invariant part of the improved Noether charge, giving a gauge-invariant extension of the recent proposal by Hollands, Wald and Zhang [1]. We illustrate our framework with dyonic AdS black holes, dipole black rings, and charged black branes.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)003.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We develop a fully covariant, analytic framework for Josephson phenomena in static curved spacetimes and specialize it to the Schwarzschild exterior. The formulation rests on two invariant elements: the gauge-invariant condensate momentum that governs phase dynamics and the conserved current whose hypersurface flux encodes transport for an observer at infinity. Using the timelike Killing field to relate proper and asymptotic quantities, we derive a redshifted AC Josephson law in which the asymptotic phase-evolution rate is proportional to the difference of redshifted voltage drops, i.e. to ( {V}_i^{infty}equiv {alpha}_i{V}_i^{textrm{proper}} ); equivalently, it depends on ( {alpha}_i{V}_i^{textrm{proper}} ) for local control. Under RF drive specified at infinity, the Shapiro-step loci are invariant (expressed in asymptotic voltages) while propagation phases set any apparent lobe translation. For DC transport, a short-junction solution on a static slice yields the proper current-phase relation; mapping to asymptotic observables gives a single-power redshift scaling of critical currents, ( {I}_{c,infty}propto alpha {I}_c^{textrm{proper}} ), whereas power scales as P∞ ∝ α2Pproper. In a “vertical” dc-SQUID with junctions at different radii, gravity does not shift the DC interference pattern at linear order; it produces a small envelope deformation and an amplitude rescaling. Gravity does not alter the local Josephson microphysics; it reshapes the clocks and energy accounting that define measurements at infinity. The resulting predictions are gauge- and coordinate-invariant, operationally stated in terms an experimenter can control (proper vs. asymptotic bias), and remain analytic from the weak-field regime to the near-horizon limit.
{"title":"Josephson’s effect in the Schwarzschild background","authors":"Reggie C. Pantig, Ali Övgün","doi":"10.1007/JHEP02(2026)006","DOIUrl":"10.1007/JHEP02(2026)006","url":null,"abstract":"<p>We develop a fully covariant, analytic framework for Josephson phenomena in static curved spacetimes and specialize it to the Schwarzschild exterior. The formulation rests on two invariant elements: the gauge-invariant condensate momentum that governs phase dynamics and the conserved current whose hypersurface flux encodes transport for an observer at infinity. Using the timelike Killing field to relate proper and asymptotic quantities, we derive a redshifted AC Josephson law in which the asymptotic phase-evolution rate is proportional to the difference of redshifted voltage drops, i.e. to <span>( {V}_i^{infty}equiv {alpha}_i{V}_i^{textrm{proper}} )</span>; equivalently, it depends on <span>( {alpha}_i{V}_i^{textrm{proper}} )</span> for local control. Under RF drive specified at infinity, the Shapiro-step loci are invariant (expressed in asymptotic voltages) while propagation phases set any apparent lobe translation. For DC transport, a short-junction solution on a static slice yields the proper current-phase relation; mapping to asymptotic observables gives a single-power redshift scaling of critical currents, <span>( {I}_{c,infty}propto alpha {I}_c^{textrm{proper}} )</span>, whereas power scales as <i>P</i><sub><i>∞</i></sub> ∝ <i>α</i><sup>2</sup><i>P</i><sub>proper</sub>. In a “vertical” dc-SQUID with junctions at different radii, gravity does not shift the DC interference pattern at linear order; it produces a small envelope deformation and an amplitude rescaling. Gravity does not alter the local Josephson microphysics; it reshapes the clocks and energy accounting that define measurements at infinity. The resulting predictions are gauge- and coordinate-invariant, operationally stated in terms an experimenter can control (proper vs. asymptotic bias), and remain analytic from the weak-field regime to the near-horizon limit.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)006.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We employ a novel approach, based on homological mirror symmetry for Landau-Ginzburg models, to demonstrate the non-existence of crepant resolutions for certain weighted homogeneous Gorenstein compound Du Val singularities. Physically, this implies that such singularities cannot serve as holographic backgrounds for four-dimensional (mathcal{N}=1) superconformal quiver gauge theories realized on the worldvolume of a large number of D3-branes placed at the singular locus. This is confirmed by enumerating all consistent quiver gauge theories.
{"title":"On holographic duals of certain isolated weighted homogeneous Gorenstein cDV singularities","authors":"Yuanyuan Fang, Zekai Yu","doi":"10.1007/JHEP01(2026)163","DOIUrl":"10.1007/JHEP01(2026)163","url":null,"abstract":"<p>We employ a novel approach, based on homological mirror symmetry for Landau-Ginzburg models, to demonstrate the non-existence of crepant resolutions for certain weighted homogeneous Gorenstein compound Du Val singularities. Physically, this implies that such singularities cannot serve as holographic backgrounds for four-dimensional <span>(mathcal{N}=1)</span> superconformal quiver gauge theories realized on the worldvolume of a large number of D3-branes placed at the singular locus. This is confirmed by enumerating all consistent quiver gauge theories.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)163.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Some of the simplest models for the origin of neutrino mass involve right-handed neutrinos (RHNs), which could be either Dirac or Majorana particles — a distinction that has profound implications for lepton number conservation and the fundamental nature of neutrinos. We investigate the potential of the FASER experiment to distinguish between these two possibilities using signatures predicted by the Standard Model Neutrino Effective Field Theory (SMNEFT), where RHNs interact with Standard Model particles through higher-dimensional operators. We focus on RHNs produced via B, D, K, and π meson decays at the Large Hadron Collider and their subsequent three-body decays within the FASER detector. The kinematic and angular distributions of the decay products in the RHN rest frame differ significantly for Dirac and Majorana RHNs, and these differences manifest as distinct spatial distributions of electron-positron pairs at FASER. Using Monte Carlo simulations and a statistical analysis, we demonstrate that these spatial observables provide a robust experimental probe for determining the Dirac or Majorana nature of RHNs. For select production and decay operator combinations and RHN masses around 0.1 GeV, FASER can achieve discrimination at the 3σ level.
{"title":"Distinguishing between Dirac and Majorana neutrinos at FASER","authors":"ShivaSankar K.A., Alakabha Datta, Danny Marfatia","doi":"10.1007/JHEP01(2026)164","DOIUrl":"10.1007/JHEP01(2026)164","url":null,"abstract":"<p>Some of the simplest models for the origin of neutrino mass involve right-handed neutrinos (RHNs), which could be either Dirac or Majorana particles — a distinction that has profound implications for lepton number conservation and the fundamental nature of neutrinos. We investigate the potential of the FASER experiment to distinguish between these two possibilities using signatures predicted by the Standard Model Neutrino Effective Field Theory (SMNEFT), where RHNs interact with Standard Model particles through higher-dimensional operators. We focus on RHNs produced via <i>B</i>, <i>D</i>, <i>K</i>, and <i>π</i> meson decays at the Large Hadron Collider and their subsequent three-body decays within the FASER detector. The kinematic and angular distributions of the decay products in the RHN rest frame differ significantly for Dirac and Majorana RHNs, and these differences manifest as distinct spatial distributions of electron-positron pairs at FASER. Using Monte Carlo simulations and a statistical analysis, we demonstrate that these spatial observables provide a robust experimental probe for determining the Dirac or Majorana nature of RHNs. For select production and decay operator combinations and RHN masses around 0.1 GeV, FASER can achieve discrimination at the 3<i>σ</i> level.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)164.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The LHCb collaboration, R. Aaij, A. S. W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, A. A. Adefisoye, B. Adeva, M. Adinolfi, P. Adlarson, C. Agapopoulou, C. A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, M. Akthar, P. Albicocco, J. Albrecht, R. Aleksiejunas, F. Alessio, P. Alvarez Cartelle, R. Amalric, S. Amato, J. L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, P. Andreola, M. Andreotti, S. Andres Estrada, A. Anelli, D. Ao, C. Arata, F. Archilli, Z. Areg, M. Argenton, S. Arguedas Cuendis, L. Arnone, A. Artamonov, M. Artuso, E. Aslanides, R. Ataíde Da Silva, M. Atzeni, B. Audurier, J. A. Authier, D. Bacher, I. Bachiller Perea, S. Bachmann, M. Bachmayer, J. J. Back, P. Baladron Rodriguez, V. Balagura, A. Balboni, W. Baldini, Z. Baldwin, L. Balzani, H. Bao, J. Baptista de Souza Leite, C. Barbero Pretel, M. Barbetti, I. R. Barbosa, R. J. Barlow, M. Barnyakov, S. Barsuk, W. Barter, J. Bartz, S. Bashir, B. Batsukh, P. B. Battista, A. Bay, A. Beck, M. Becker, F. Bedeschi, I. B. Bediaga, N. A. Behling, S. Belin, A. Bellavista, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. Bernet, S. Bernet Andres, A. Bertolin, C. Betancourt, F. Betti, J. Bex, Ia. Bezshyiko, O. Bezshyyko, J. Bhom, M. S. Bieker, N. V. Biesuz, A. Biolchini, M. Birch, F. C. R. Bishop, A. Bitadze, A. Bizzeti, T. Blake, F. Blanc, J. E. Blank, S. Blusk, V. Bocharnikov, J. A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Bohare, A. Boldyrev, C. S. Bolognani, R. Bolzonella, R. B. Bonacci, N. Bondar, A. Bordelius, F. Borgato, S. Borghi, M. Borsato, J. T. Borsuk, E. Bottalico, S. A. Bouchiba, M. Bovill, T. J. V. Bowcock, A. Boyer, C. Bozzi, J. D. Brandenburg, A. Brea Rodriguez, N. Breer, J. Brodzicka, A. Brossa Gonzalo, J. Brown, D. Brundu, E. Buchanan, M. Burgos Marcos, A. T. Burke, C. Burr, C. Buti, J. S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, Y. Cai, A. Caillet, R. Calabrese, S. Calderon Ramirez, L. Calefice, M. Calvi, M. Calvo Gomez, P. Camargo Magalhaes, J. I. Cambon Bouzas, P. Campana, D. H. Campora Perez, A. F. Campoverde Quezada, S. Capelli, M. Caporale, L. Capriotti, R. Caravaca-Mora, A. Carbone, L. Carcedo Salgado, R. Cardinale, A. Cardini, I. Carli, P. Carniti, L. Carus, A. Casais Vidal, R. Caspary, G. Casse, M. Cattaneo, G. Cavallero, V. Cavallini, S. Celani, I. Celestino, S. Cesare, A. J. Chadwick, I. Chahrour, H. Chang, M. Charles, Ph. Charpentier, E. Chatzianagnostou, R. Cheaib, M. Chefdeville, C. Chen, J. Chen, S. Chen, Z. Chen, M. Cherif, A. Chernov, S. Chernyshenko, X. Chiotopoulos, V. Chobanova, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, X. Cid Vidal, G. Ciezarek, P. Cifra, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, C. Cocha Toapaxi, V. Coco, J. Cogan, E. Cogneras, L. Cojocariu, S. Collaviti, P. Collins, T. Colombo, M. Colonna, A. Comerma-Montells, L. Congedo, J. Connaughton, A. Contu, N. Cooke, G. Cordova, C. Coronel, I. Corredoira, A. Correia, G. Corti, J. Cottee Meldrum, B. Couturier, D. C. Craik, M. Cruz Torres, E. Curras Rivera, R. Currie, C. L. Da Silva, S. Dadabaev, L. Dai, X. Dai, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, J. Daniel, P. d’Argent, G. Darze, A. Davidson, J. E. Davies, O. De Aguiar Francisco, C. De Angelis, F. De Benedetti, J. de Boer, K. De Bruyn, S. De Capua, M. De Cian, U. De Freitas Carneiro Da Graca, S. De Keijzer, E. De Lucia, J. M. De Miranda, L. De Paula, M. De Serio, P. De Simone, F. De Vellis, J. A. de Vries, F. Debernardis, D. Decamp, V. Dedu, S. Dekkers, L. Del Buono, B. Delaney, H.-P. Dembinski, J. Deng, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, P. Di Nezza, I. Diachkov, S. Didenko, S. Ding, Y. Ding, L. Dittmann, V. Dobishuk, A. D. Docheva, A. Doheny, C. Dong, A. M. Donohoe, F. Dordei, A. C. dos Reis, A. D. Dowling, L. Dreyfus, W. Duan, P. Duda, L. Dufour, V. Duk, P. Durante, M. M. Duras, J. M. Durham, O. D. Durmus, A. Dziurda, A. Dzyuba, S. Easo, E. Eckstein, U. Egede, A. Egorychev, V. Egorychev, S. Eisenhardt, E. Ejopu, L. Eklund, M. Elashri, J. Ellbracht, S. Ely, A. Ene, J. Eschle, S. Esen, T. Evans, F. Fabiano, S. Faghih, L. N. Falcao, B. Fang, R. Fantechi, L. Fantini, M. Faria, K. Farmer, D. Fazzini, L. Felkowski, M. Feng, M. Feo, A. Fernandez Casani, M. Fernandez Gomez, A. D. Fernez, F. Ferrari, F. Ferreira Rodrigues, S. Ferreres Sole, M. Ferrillo, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, M. Firlej, K. L. Fischer, D. S. Fitzgerald, C. Fitzpatrick, T. Fiutowski, F. Fleuret, A. Fomin, M. Fontana, L. F. Foreman, R. Forty, D. Foulds-Holt, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D. A. Friday, J. Fu, Q. Führing, T. Fulghesu, G. Galati, M. D. Galati, A. Gallas Torreira, D. Galli, S. Gambetta, M. Gandelman, P. Gandini, B. Ganie, H. Gao, R. Gao, T. Q. Gao, Y. Gao, Y. Gao, Y. Gao, L. M. Garcia Martin, P. Garcia Moreno, J. García Pardiñas, P. Gardner, K. G. Garg, L. Garrido, C. Gaspar, A. Gavrikov, L. L. Gerken, E. Gersabeck, M. Gersabeck, T. Gershon, S. Ghizzo, Z. Ghorbanimoghaddam, F. I. Giasemis, V. Gibson, H. K. Giemza, A. L. Gilman, M. Giovannetti, A. Gioventù, L. Girardey, M. A. Giza, F. C. Glaser, V. V. Gligorov, C. Göbel, L. Golinka-Bezshyyko, E. Golobardes, D. Golubkov, A. Golutvin, S. Gomez Fernandez, W. Gomulka, I. Gonçales Vaz, F. Goncalves Abrantes, M. Goncerz, G. Gong, J. A. Gooding, I. V. Gorelov, C. Gotti, E. Govorkova, J. P. Grabowski, L. A. Granado Cardoso, E. Graugés, E. Graverini, L. Grazette, G. Graziani, A. T. Grecu, L. M. Greeven, N. A. Grieser, L. Grillo, S. Gromov, C. Gu, M. Guarise, L. Guerry, V. Guliaeva, P. A. Günther, A.-K. Guseinov, E. Gushchin, Y. Guz, T. Gys, K. Habermann, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, S. Haken, G. Hallett, P. M. Hamilton, J. Hammerich, Q. Han, X. Han, S. Hansmann-Menzemer, L. Hao, N. Harnew, T. H. Harris, M. Hartmann, S. Hashmi, J. He, A. Hedes, F. Hemmer, C. Henderson, R. Henderson, R. D. L. Henderson, A. M. Hennequin, K. Hennessy, L. Henry, J. Herd, P. Herrero Gascon, J. Heuel, A. Heyn, A. Hicheur, G. Hijano Mendizabal, J. Horswill, R. Hou, Y. Hou, D. C. Houston, N. Howarth, J. Hu, W. Hu, X. Hu, W. Hulsbergen, R. J. Hunter, M. Hushchyn, D. Hutchcroft, M. Idzik, D. Ilin, P. Ilten, A. Iniukhin, A. Iohner, A. Ishteev, K. Ivshin, H. Jage, S. J. Jaimes Elles, S. Jakobsen, E. Jans, B. K. Jashal, A. Jawahery, C. Jayaweera, V. Jevtic, Z. Jia, E. Jiang, X. Jiang, Y. Jiang, Y. J. Jiang, E. Jimenez Moya, N. Jindal, M. John, A. John Rubesh Rajan, D. Johnson, C. R. Jones, S. Joshi, B. Jost, J. Juan Castella, N. Jurik, I. Juszczak, D. Kaminaris, S. Kandybei, M. Kane, Y. Kang, C. Kar, M. Karacson, A. Kauniskangas, J. W. Kautz, M. K. Kazanecki, F. Keizer, M. Kenzie, T. Ketel, B. Khanji, A. Kharisova, S. Kholodenko, G. Khreich, T. Kirn, V. S. Kirsebom, O. Kitouni, S. Klaver, N. Kleijne, D. K. Klekots, K. Klimaszewski, M. R. Kmiec, T. Knospe, R. Kolb, S. Koliiev, L. Kolk, A. Konoplyannikov, P. Kopciewicz, P. Koppenburg, A. Korchin, M. Korolev, I. Kostiuk, O. Kot, S. Kotriakhova, E. Kowalczyk, A. Kozachuk, P. Kravchenko, L. Kravchuk, O. Kravcov, M. Kreps, P. Krokovny, W. Krupa, W. Krzemien, O. Kshyvanskyi, S. Kubis, M. Kucharczyk, V. Kudryavtsev, E. Kulikova, A. Kupsc, V. Kushnir, B. Kutsenko, J. Kvapil, I. Kyryllin, D. Lacarrere, P. Laguarta Gonzalez, A. Lai, A. Lampis, D. Lancierini, C. Landesa Gomez, J. J. Lane, G. Lanfranchi, C. Langenbruch, J. Langer, O. Lantwin, T. Latham, F. Lazzari, C. Lazzeroni, R. Le Gac, H. Lee, R. Lefèvre, A. Leflat, S. Legotin, M. Lehuraux, E. Lemos Cid, O. Leroy, T. Lesiak, E. D. Lesser, B. Leverington, A. Li, C. Li, C. Li, H. Li, J. Li, K. Li, L. Li, M. Li, P. Li, P.-R. Li, Q. Li, T. Li, T. Li, Y. Li, Y. Li, Y. Li, Z. Lian, Q. Liang, X. Liang, Z. Liang, S. Libralon, A. L. Lightbody, C. Lin, T. Lin, R. Lindner, H. Linton, R. Litvinov, D. Liu, F. L. Liu, G. Liu, K. Liu, S. Liu, W. Liu, Y. Liu, Y. Liu, Y. L. Liu, G. Loachamin Ordonez, A. Lobo Salvia, A. Loi, T. Long, F. C. L. Lopes, J. H. Lopes, A. Lopez Huertas, C. Lopez Iribarnegaray, S. López Soliño, Q. Lu, C. Lucarelli, D. Lucchesi, M. Lucio Martinez, Y. Luo, A. Lupato, E. Luppi, K. Lynch, X.-R. Lyu, G. M. Ma, H. Ma, S. Maccolini, F. Machefert, F. Maciuc, B. Mack, I. Mackay, L. M. Mackey, L. R. Madhan Mohan, M. J. Madurai, D. Magdalinski, D. Maisuzenko, J. J. Malczewski, S. Malde, L. Malentacca, A. Malinin, T. Maltsev, G. Manca, G. Mancinelli, C. Mancuso, R. Manera Escalero, F. M. Manganella, D. Manuzzi, D. Marangotto, J. F. Marchand, R. Marchevski, U. Marconi, E. Mariani, S. Mariani, C. Marin Benito, J. Marks, A. M. Marshall, L. Martel, G. Martelli, G. Martellotti, L. Martinazzoli, M. Martinelli, D. Martinez Gomez, D. Martinez Santos, F. Martinez Vidal, A. Martorell i Granollers, A. Massafferri, R. Matev, A. Mathad, V. Matiunin, C. Matteuzzi, K. R. Mattioli, A. Mauri, E. Maurice, J. Mauricio, P. Mayencourt, J. Mazorra de Cos, M. Mazurek, M. McCann, T. H. McGrath, N. T. McHugh, A. McNab, R. McNulty, B. Meadows, G. Meier, D. Melnychuk, D. Mendoza Granada, P. Menendez Valdes Perez, F. M. Meng, M. Merk, A. Merli, L. Meyer Garcia, D. Miao, H. Miao, M. Mikhasenko, D. A. Milanes, A. Minotti, E. Minucci, T. Miralles, B. Mitreska, D. S. Mitzel, R. Mocanu, A. Modak, L. Moeser, R. D. Moise, E. F. Molina Cardenas, T. Mombächer, M. Monk, S. Monteil, A. Morcillo Gomez, G. Morello, M. J. Morello, M. P. Morgenthaler, A. Moro, J. Moron, W. Morren, A. B. Morris, A. G. Morris, R. Mountain, H. Mu, Z. M. Mu, E. Muhammad, F. Muheim, M. Mulder, K. Müller, F. Muñoz-Rojas, R. Murta, V. Mytrochenko, P. Naik, T. Nakada, R. Nandakumar, T. Nanut, I. Nasteva, M. Needham, E. Nekrasova, N. Neri, S. Neubert, N. Neufeld, P. Neustroev, J. Nicolini, D. Nicotra, E. M. Niel, N. Nikitin, L. Nisi, Q. Niu, P. Nogarolli, P. Nogga, C. Normand, J. Novoa Fernandez, G. Nowak, C. Nunez, H. N. Nur, A. Oblakowska-Mucha, V. Obraztsov, T. Oeser, A. Okhotnikov, O. Okhrimenko, R. Oldeman, F. Oliva, E. Olivart Pino, M. Olocco, C. J. G. Onderwater, R. H. O’Neil, J. S. Ordonez Soto, D. Osthues, J. M. Otalora Goicochea, P. Owen, A. Oyanguren, O. Ozcelik, F. Paciolla, A. Padee, K. O. Padeken, B. Pagare, T. Pajero, A. Palano, L. Palini, M. Palutan, C. Pan, X. Pan, S. Panebianco, G. Panshin, L. Paolucci, A. Papanestis, M. Pappagallo, L. L. Pappalardo, C. Pappenheimer, C. Parkes, D. Parmar, B. Passalacqua, G. Passaleva, D. Passaro, A. Pastore, M. Patel, J. Patoc, C. Patrignani, A. Paul, C. J. Pawley, A. Pellegrino, J. Peng, X. Peng, M. Pepe Altarelli, S. Perazzini, D. Pereima, H. Pereira Da Costa, M. Pereira Martinez, A. Pereiro Castro, C. Perez, P. Perret, A. Perrevoort, A. Perro, M. J. Peters, K. Petridis, A. Petrolini, S. Pezzulo, J. P. Pfaller, H. Pham, L. Pica, M. Piccini, L. Piccolo, B. Pietrzyk, G. Pietrzyk, R. N. Pilato, D. Pinci, F. Pisani, M. Pizzichemi, V. M. Placinta, M. Plo Casasus, T. Poeschl, F. Polci, M. Poli Lener, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, S. Ponce, D. Popov, S. Poslavskii, K. Prasanth, C. Prouve, D. Provenzano, V. Pugatch, G. Punzi, J. R. Pybus, S. Qasim, Q. Q. Qian, W. Qian, N. Qin, S. Qu, R. Quagliani, R. I. Rabadan Trejo, R. Racz, J. H. Rademacker, M. Rama, M. Ramírez García, V. Ramos De Oliveira, M. Ramos Pernas, M. S. Rangel, F. Ratnikov, G. Raven, M. Rebollo De Miguel, F. Redi, J. Reich, F. Reiss, Z. Ren, P. K. Resmi, M. Ribalda Galvez, R. Ribatti, G. Ricart, D. Riccardi, S. Ricciardi, K. Richardson, M. Richardson-Slipper, K. Rinnert, P. Robbe, G. Robertson, E. Rodrigues, A. Rodriguez Alvarez, E. Rodriguez Fernandez, J. A. Rodriguez Lopez, E. Rodriguez Rodriguez, J. Roensch, A. Rogachev, A. Rogovskiy, D. L. Rolf, P. Roloff, V. Romanovskiy, A. Romero Vidal, G. Romolini, F. Ronchetti, T. Rong, M. Rotondo, S. R. Roy, M. S. Rudolph, M. Ruiz Diaz, R. A. Ruiz Fernandez, J. Ruiz Vidal, J. J. Saavedra-Arias, J. J. Saborido Silva, S. E. R. Sacha Emile R., N. Sagidova, D. Sahoo, N. Sahoo, B. Saitta, M. Salomoni, I. Sanderswood, R. Santacesaria, C. Santamarina Rios, M. Santimaria, L. Santoro, E. Santovetti, A. Saputi, D. Saranin, A. Sarnatskiy, G. Sarpis, M. Sarpis, C. Satriano, A. Satta, M. Saur, D. Savrina, H. Sazak, F. Sborzacchi, A. Scarabotto, S. Schael, S. Scherl, M. Schiller, H. Schindler, M. Schmelling, B. Schmidt, N. Schmidt, S. Schmitt, H. Schmitz, O. Schneider, A. Schopper, N. Schulte, M. H. Schune, G. Schwering, B. Sciascia, A. Sciuccati, G. Scriven, I. Segal, S. Sellam, A. Semennikov, T. Senger, M. Senghi Soares, A. Sergi, N. Serra, L. Sestini, A. Seuthe, B. Sevilla Sanjuan, Y. Shang, D. M. Shangase, M. Shapkin, R. S. Sharma, I. Shchemerov, L. Shchutska, T. Shears, L. Shekhtman, Z. Shen, S. Sheng, V. Shevchenko, B. Shi, Q. Shi, W. S. Shi, Y. Shimizu, E. Shmanin, R. Shorkin, J. D. Shupperd, R. Silva Coutinho, G. Simi, S. Simone, M. Singha, N. Skidmore, T. Skwarnicki, M. W. Slater, E. Smith, K. Smith, M. Smith, L. Soares Lavra, M. D. Sokoloff, F. J. P. Soler, A. Solomin, A. Solovev, K. Solovieva, N. S. Sommerfeld, R. Song, Y. Song, Y. Song, Y. S. Song, F. L. Souza De Almeida, B. Souza De Paula, K. M. Sowa, E. Spadaro Norella, E. Spedicato, J. G. Speer, P. Spradlin, V. Sriskaran, F. Stagni, M. Stahl, S. Stahl, S. Stanislaus, M. Stefaniak, E. N. Stein, O. Steinkamp, H. Stevens, D. Strekalina, Y. Su, F. Suljik, J. Sun, J. Sun, L. Sun, D. Sundfeld, W. Sutcliffe, V. Svintozelskyi, P. N. Swallow, K. Swientek, F. Swystun, A. Szabelski, T. Szumlak, Y. Tan, Y. Tang, Y. T. Tang, M. D. Tat, J. A. Teijeiro Jimenez, A. Terentev, F. Terzuoli, F. Teubert, E. Thomas, D. J. D. Thompson, A. R. Thomson-Strong, H. Tilquin, V. Tisserand, S. T’Jampens, M. Tobin, T. T. Todorov, L. Tomassetti, G. Tonani, X. Tong, T. Tork, D. Torres Machado, L. Toscano, D. Y. Tou, C. Trippl, G. Tuci, N. Tuning, L. H. Uecker, A. Ukleja, D. J. Unverzagt, A. Upadhyay, B. Urbach, A. Usachov, A. Ustyuzhanin, U. Uwer, V. Vagnoni, V. Valcarce Cadenas, G. Valenti, N. Valls Canudas, J. van Eldik, H. Van Hecke, E. van Herwijnen, C. B. Van Hulse, R. Van Laak, M. van Veghel, G. Vasquez, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. Velilla Serna, J. J. Velthuis, M. Veltri, A. Venkateswaran, M. Verdoglia, M. Vesterinen, W. Vetens, D. Vico Benet, P. Vidrier Villalba, M. Vieites Diaz, X. Vilasis-Cardona, E. Vilella Figueras, A. Villa, P. Vincent, B. Vivacqua, F. C. Volle, D. vom Bruch, N. Voropaev, K. Vos, C. Vrahas, J. Wagner, J. Walsh, E. J. Walton, G. Wan, A. Wang, B. Wang, C. Wang, G. Wang, H. Wang, J. Wang, J. Wang, J. Wang, J. Wang, M. Wang, N. W. Wang, R. Wang, X. Wang, X. Wang, X. W. Wang, Y. Wang, Y. Wang, Y. H. Wang, Z. Wang, Z. Wang, J. A. Ward, M. Waterlaat, N. K. Watson, D. Websdale, Y. Wei, Z. Weida, J. Wendel, B. D. C. Westhenry, C. White, M. Whitehead, E. Whiter, A. R. Wiederhold, D. Wiedner, M. A. Wiegertjes, C. Wild, G. Wilkinson, M. K. Wilkinson, M. Williams, M. J. Williams, M. R. J. Williams, R. Williams, S. Williams, Z. Williams, F. F. Wilson, M. Winn, W. Wislicki, M. Witek, L. Witola, T. Wolf, E. Wood, G. Wormser, S. A. Wotton, H. Wu, J. Wu, X. Wu, Y. Wu, Z. Wu, K. Wyllie, S. Xian, Z. Xiang, Y. Xie, T. X. Xing, A. Xu, L. Xu, L. Xu, M. Xu, Z. Xu, Z. Xu, Z. Xu, K. Yang, X. Yang, Y. Yang, Z. Yang, V. Yeroshenko, H. Yeung, H. Yin, X. Yin, C. Y. Yu, J. Yu, X. Yuan, Y. Yuan, E. Zaffaroni, J. A. Zamora Saa, M. Zavertyaev, M. Zdybal, F. Zenesini, C. Zeng, M. Zeng, C. Zhang, D. Zhang, J. Zhang, L. Zhang, R. Zhang, S. Zhang, S. Zhang, Y. Zhang, Y. Z. Zhang, Z. Zhang, Y. Zhao, A. Zhelezov, S. Z. Zheng, X. Z. Zheng, Y. Zheng, T. Zhou, X. Zhou, Y. Zhou, V. Zhovkovska, L. Z. Zhu, X. Zhu, X. Zhu, Y. Zhu, V. Zhukov, J. Zhuo, Q. Zou, D. Zuliani, G. Zunica
This paper describes a measurement of the ( {Lambda}_b^0to J/psi Lambda ) branching fraction using data collected with the LHCb experiment in proton-proton collisions from 2016 to 2018. The dataset corresponds to an integrated luminosity of 5.4 fb−1. The branching fraction is determined relative to that of ( {B}^0to J/psi {K}_{textrm{S}}^0 ) decays,
yielding ( mathcal{B}left({Lambda}_b^0to J/psi Lambda right)=left(3.34pm 0.02pm 0.10pm 0.08pm 0.28right)times {10}^{-4} ), where the first uncertainty is statistical, the second systematic, the third due to external inputs on branching fractions and the fourth due to the ratio of ( {Lambda}_b^0 ) baryon and B0 meson hadronisation fractions. In addition, the isospin asymmetry between the rates of ( {B}^0to J/psi {K}_{textrm{S}}^0 ) and B+→ J/ψK+ decays is measured to be
where the first uncertainty is statistical and the second systematic.
We construct fully gauge-invariant kinetic terms for open and closed string field theories on a target space with boundary. This is realized by promoting the gauge parameters at the boundary to extra dynamical modes describing boundary degrees of freedom. Having a gauge-invariant classical action, we also construct the corresponding BV master action and show that the master equation is obeyed thanks to a peculiar nilpotent structure of the BV kinetic operator. From this general construction we explicitly derive free actions for massless and massive modes of open and closed strings propagating on a target with a boundary, including linear-dilaton backgrounds.
{"title":"Gauge-invariant action for free string field theory with boundary","authors":"Carlo Maccaferri, Alberto Ruffino, Jakub Vošmera","doi":"10.1007/JHEP01(2026)161","DOIUrl":"10.1007/JHEP01(2026)161","url":null,"abstract":"<p>We construct fully gauge-invariant kinetic terms for open and closed string field theories on a target space with boundary. This is realized by promoting the gauge parameters at the boundary to extra dynamical modes describing boundary degrees of freedom. Having a gauge-invariant classical action, we also construct the corresponding BV master action and show that the master equation is obeyed thanks to a peculiar nilpotent structure of the BV kinetic operator. From this general construction we explicitly derive free actions for massless and massive modes of open and closed strings propagating on a target with a boundary, including linear-dilaton backgrounds.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)161.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We explore a class of realistic supersymmetric hybrid inflation models with a predicted scalar spectral index ns ≈ 0.97 − 0.978, which is in good agreement with the recent Atacama Cosmology Telescope (ACT) measurement. The waterfall field responsible for the gauge symmetry breaking in this scenario experiences some e-foldings during the inflationary epoch. The scalar perturbations associated with the waterfall field during this phase induce a stochastic gravitational wave spectrum that will be tested in the ongoing Pulsar Timing Array (PTA) measurements and in future experiments. In an SU(5) setting an observable number density of the superheavy GUT monopole linked to the waterfall field can be realized.
{"title":"Waterfall phase in supersymmetric hybrid inflation","authors":"Ahmad Moursy, Qaisar Shafi","doi":"10.1007/JHEP01(2026)162","DOIUrl":"10.1007/JHEP01(2026)162","url":null,"abstract":"<p>We explore a class of realistic supersymmetric hybrid inflation models with a predicted scalar spectral index <i>n</i><sub><i>s</i></sub> ≈ 0<i>.</i>97 − 0<i>.</i>978, which is in good agreement with the recent Atacama Cosmology Telescope (ACT) measurement. The waterfall field responsible for the gauge symmetry breaking in this scenario experiences some <i>e</i>-foldings during the inflationary epoch. The scalar perturbations associated with the waterfall field during this phase induce a stochastic gravitational wave spectrum that will be tested in the ongoing Pulsar Timing Array (PTA) measurements and in future experiments. In an SU(5) setting an observable number density of the superheavy GUT monopole linked to the waterfall field can be realized.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)162.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}