首页 > 最新文献

Journal of High Energy Physics最新文献

英文 中文
Two-loop anomalous dimensions for baryon-number-violating operators in SMEFT SMEFT中重子数违反算子的双环异常维数
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-02-02 DOI: 10.1007/JHEP02(2026)017
Sumit Banik, Andreas Crivellin, Luca Naterop, Peter Stoffer

We compute the two-loop renormalization-group equations for the baryon-number-violating dimension-six operators in the SMEFT. This includes all three gauge interactions, the Yukawa, and Higgs self-interaction contributions. In addition, we present the one-loop matching of the S1 scalar leptoquark on the SMEFT, which can generate the Wilson coefficients of all four gauge-invariant baryon-number-violating SMEFT operators. Using this example, we demonstrate the cancellation of scheme and matching-scale dependences. Together with the known two-loop renormalization-group evolution below the electroweak scale in the LEFT, as well as the one-loop matching of SMEFT onto LEFT, our results enable consistent next-to-leading-log analyses of nucleon decays, provided that the relevant matrix elements are known at next-to-leading-order accuracy.

我们计算了SMEFT中违反重子数的六维算子的双环重整化群方程。这包括所有三种规范相互作用,汤川相互作用和希格斯自相互作用的贡献。此外,我们提出了S1标量轻夸克在SMEFT上的单环匹配,它可以产生所有四个违反量规不变重子数的SMEFT算子的Wilson系数。通过这个例子,我们演示了方案依赖和匹配规模依赖的消除。再加上已知的左电弱尺度下的双环重整化群演化,以及SMEFT到左的单环匹配,我们的研究结果能够实现核子衰变的一致的次超前对数分析,前提是相关矩阵元素在次超前精度上已知。
{"title":"Two-loop anomalous dimensions for baryon-number-violating operators in SMEFT","authors":"Sumit Banik,&nbsp;Andreas Crivellin,&nbsp;Luca Naterop,&nbsp;Peter Stoffer","doi":"10.1007/JHEP02(2026)017","DOIUrl":"10.1007/JHEP02(2026)017","url":null,"abstract":"<p>We compute the two-loop renormalization-group equations for the baryon-number-violating dimension-six operators in the SMEFT. This includes all three gauge interactions, the Yukawa, and Higgs self-interaction contributions. In addition, we present the one-loop matching of the <i>S</i><sub>1</sub> scalar leptoquark on the SMEFT, which can generate the Wilson coefficients of all four gauge-invariant baryon-number-violating SMEFT operators. Using this example, we demonstrate the cancellation of scheme and matching-scale dependences. Together with the known two-loop renormalization-group evolution below the electroweak scale in the LEFT, as well as the one-loop matching of SMEFT onto LEFT, our results enable consistent next-to-leading-log analyses of nucleon decays, provided that the relevant matrix elements are known at next-to-leading-order accuracy.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)017.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jet-mass in V/H+jet up to four-loops with kt clustering V/H+射流的射流质量高达四环,具有kt聚类
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-02-02 DOI: 10.1007/JHEP02(2026)009
Kamel Khelifa-Kerfa, Mohamed Benghanem

We extend the work of [1] to the case in which final-state jets, produced in association with a Higgs or vector boson, are defined using the kt algorithm. We thereby compute the full distribution of the invariant mass squared of the leading, highest-pt jet, including both clustering and non-global logarithms, up to four-loops in perturbation theory. Our results are derived within the eikonal approximation under the assumption of strong ordering in the momenta of the final-state partons, and are consequently valid up to single-logarithmic accuracy. The final semi-analytical expressions retain the complete dependence on both colour and the jet radius. The broad features of kt clustering observed in e+e processes persist in hadronic collisions, together with novel characteristics that are absent in the e+e environment.

我们将[1]的工作扩展到使用kt算法定义与希格斯粒子或矢量玻色子相关的最终态喷流的情况。因此,我们计算了最高喷流的不变质量平方的完整分布,包括聚类和非全局对数,在微扰理论中可达四环。我们的结果是在最终状态部分的动量强有序的假设下在eikonal近似内推导出来的,因此有效到单对数精度。最后的半解析表达式保留了对颜色和射流半径的完全依赖。在e+e−过程中观察到的kt聚类的广泛特征在强子碰撞中仍然存在,同时还有在e+e−环境中不存在的新特征。
{"title":"Jet-mass in V/H+jet up to four-loops with kt clustering","authors":"Kamel Khelifa-Kerfa,&nbsp;Mohamed Benghanem","doi":"10.1007/JHEP02(2026)009","DOIUrl":"10.1007/JHEP02(2026)009","url":null,"abstract":"<p>We extend the work of [1] to the case in which final-state jets, produced in association with a Higgs or vector boson, are defined using the <i>k</i><sub><i>t</i></sub> algorithm. We thereby compute the full distribution of the invariant mass squared of the leading, highest-<i>p</i><sub><i>t</i></sub> jet, including both clustering and non-global logarithms, up to four-loops in perturbation theory. Our results are derived within the eikonal approximation under the assumption of strong ordering in the momenta of the final-state partons, and are consequently valid up to single-logarithmic accuracy. The final semi-analytical expressions retain the complete dependence on both colour and the jet radius. The broad features of <i>k</i><sub><i>t</i></sub> clustering observed in <i>e</i><sup>+</sup><i>e</i><sup>−</sup> processes persist in hadronic collisions, together with novel characteristics that are absent in the <i>e</i><sup>+</sup><i>e</i><sup>−</sup> environment.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)009.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective ALP-photon coupling in external magnetic fields 外磁场中alp -光子的有效耦合
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-02-02 DOI: 10.1007/JHEP02(2026)012
O. Semin

We presented a complete calculation of the one-loop fermionic correction to the effective coupling between axion-like particles (ALPs) and photons within a constant, homogeneous magnetic field of arbitrary strength. This interaction, responsible for the Primakoff effect, is central to detecting axion-like particles in astrophysical settings and terrestrial experiments like helioscopes and haloscopes. Accurately predicting the interaction rate requires accounting for quantum corrections. Our work tackles this by employing magnetically field-dressed fermion propagators derived using Schwinger’s proper time method and a systematic Lorentz decomposition using the Ritus basis. We evaluate the triangle loop diagram exactly, and compare it to approximations on field strength under specific assumptions.

我们给出了在任意强度的恒定均匀磁场中,类轴子粒子(ALPs)和光子之间有效耦合的单环费米子修正的完整计算。这种相互作用是普里马科夫效应的原因,对于在天体物理环境中探测类轴子粒子和在地球上进行的太阳镜和光镜等实验至关重要。准确预测相互作用速率需要考虑量子修正。我们的工作通过使用施温格固有时方法导出的磁场修饰费米子传播子和使用Ritus基的系统洛伦兹分解来解决这个问题。我们准确地评估了三角形环路图,并将其与特定假设下的场强近似进行了比较。
{"title":"Effective ALP-photon coupling in external magnetic fields","authors":"O. Semin","doi":"10.1007/JHEP02(2026)012","DOIUrl":"10.1007/JHEP02(2026)012","url":null,"abstract":"<p>We presented a complete calculation of the one-loop fermionic correction to the effective coupling between axion-like particles (ALPs) and photons within a constant, homogeneous magnetic field of arbitrary strength. This interaction, responsible for the Primakoff effect, is central to detecting axion-like particles in astrophysical settings and terrestrial experiments like helioscopes and haloscopes. Accurately predicting the interaction rate requires accounting for quantum corrections. Our work tackles this by employing magnetically field-dressed fermion propagators derived using Schwinger’s proper time method and a systematic Lorentz decomposition using the Ritus basis. We evaluate the triangle loop diagram exactly, and compare it to approximations on field strength under specific assumptions.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)012.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical entropy of charged black objects 带电黑色物体的动态熵
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-02-02 DOI: 10.1007/JHEP02(2026)003
Manus R. Visser, Zihan Yan

We develop a general framework for electromagnetic potential-charge contributions to the first law of black hole mechanics, applicable to dynamical first-order perturbations of stationary black objects with possibly non-compact bifurcate Killing horizons. Working in the covariant phase space formalism, we derive both comparison and physical process versions of the first law. We consider generic diffeomorphism-invariant theories of gravity in D spacetime dimensions, containing non-minimally coupled abelian p-form gauge fields. The pullback of the gauge field to the horizon is allowed to diverge while its field strength remains smooth, yielding gauge-invariant electric potential-charge pairs in the first law. We further extend the construction to include magnetic charges by developing a bundle-covariant, gauge-invariant prescription that fixes the Jacobson-Kang-Myers ambiguity in the improved Noether charge. Electric and magnetic charges are, respectively, associated with non-trivial (Dp − 1)- and (p + 1)-cycles of the horizon cross-section, whose homology classes determine the number of independent potential-charge pairs through the Betti numbers bD−p−1 and bp+1. Further, the dynamical gravitational entropy entering the first law is identified with the gauge-invariant part of the improved Noether charge, giving a gauge-invariant extension of the recent proposal by Hollands, Wald and Zhang [1]. We illustrate our framework with dyonic AdS black holes, dipole black rings, and charged black branes.

我们为黑洞力学第一定律的电磁电位电荷贡献建立了一个一般框架,适用于可能具有非紧致分岔杀伤视界的静止黑色物体的动态一阶摄动。在协变相空间形式下,我们推导出第一定律的比较版本和物理过程版本。我们考虑了D时空维度中包含非最小耦合阿贝尔p型规范场的一般微分同态不变引力理论。规范场向视界的回拉允许发散,而其场强保持平滑,产生第一定律中规范不变的电势-电荷对。我们进一步扩展了该结构,通过开发一个束协变,量规不变的处方来修复改进的Noether电荷中的Jacobson-Kang-Myers歧义,从而将磁荷包括在内。电荷和磁荷分别与视界横截面的非平凡(D−p−1)-和(p +1)-环相关联,其同构类通过Betti数bD−p−1和bp+1决定了独立电位电荷对的数量。进一步,将进入第一定律的动态引力熵与改进的Noether电荷的规范不变部分相识别,给出了Hollands, Wald和Zhang[1]最近提出的规范不变扩展。我们用动态AdS黑洞、偶极子黑环和带电黑膜来说明我们的框架。
{"title":"Dynamical entropy of charged black objects","authors":"Manus R. Visser,&nbsp;Zihan Yan","doi":"10.1007/JHEP02(2026)003","DOIUrl":"10.1007/JHEP02(2026)003","url":null,"abstract":"<p>We develop a general framework for electromagnetic potential-charge contributions to the first law of black hole mechanics, applicable to dynamical first-order perturbations of stationary black objects with possibly non-compact bifurcate Killing horizons. Working in the covariant phase space formalism, we derive both comparison and physical process versions of the first law. We consider generic diffeomorphism-invariant theories of gravity in <i>D</i> spacetime dimensions, containing non-minimally coupled abelian <i>p</i>-form gauge fields. The pullback of the gauge field to the horizon is allowed to diverge while its field strength remains smooth, yielding gauge-invariant electric potential-charge pairs in the first law. We further extend the construction to include magnetic charges by developing a bundle-covariant, gauge-invariant prescription that fixes the Jacobson-Kang-Myers ambiguity in the improved Noether charge. Electric and magnetic charges are, respectively, associated with non-trivial (<i>D</i> − <i>p</i> − 1)- and (<i>p</i> + 1)-cycles of the horizon cross-section, whose homology classes determine the number of independent potential-charge pairs through the Betti numbers <i>b</i><sub><i>D−p−</i>1</sub> and <i>b</i><sub><i>p</i>+1</sub>. Further, the dynamical gravitational entropy entering the first law is identified with the gauge-invariant part of the improved Noether charge, giving a gauge-invariant extension of the recent proposal by Hollands, Wald and Zhang [1]. We illustrate our framework with dyonic AdS black holes, dipole black rings, and charged black branes.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)003.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Josephson’s effect in the Schwarzschild background 史瓦西背景中的约瑟夫森效应
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-02-02 DOI: 10.1007/JHEP02(2026)006
Reggie C. Pantig, Ali Övgün

We develop a fully covariant, analytic framework for Josephson phenomena in static curved spacetimes and specialize it to the Schwarzschild exterior. The formulation rests on two invariant elements: the gauge-invariant condensate momentum that governs phase dynamics and the conserved current whose hypersurface flux encodes transport for an observer at infinity. Using the timelike Killing field to relate proper and asymptotic quantities, we derive a redshifted AC Josephson law in which the asymptotic phase-evolution rate is proportional to the difference of redshifted voltage drops, i.e. to ( {V}_i^{infty}equiv {alpha}_i{V}_i^{textrm{proper}} ); equivalently, it depends on ( {alpha}_i{V}_i^{textrm{proper}} ) for local control. Under RF drive specified at infinity, the Shapiro-step loci are invariant (expressed in asymptotic voltages) while propagation phases set any apparent lobe translation. For DC transport, a short-junction solution on a static slice yields the proper current-phase relation; mapping to asymptotic observables gives a single-power redshift scaling of critical currents, ( {I}_{c,infty}propto alpha {I}_c^{textrm{proper}} ), whereas power scales as Pα2Pproper. In a “vertical” dc-SQUID with junctions at different radii, gravity does not shift the DC interference pattern at linear order; it produces a small envelope deformation and an amplitude rescaling. Gravity does not alter the local Josephson microphysics; it reshapes the clocks and energy accounting that define measurements at infinity. The resulting predictions are gauge- and coordinate-invariant, operationally stated in terms an experimenter can control (proper vs. asymptotic bias), and remain analytic from the weak-field regime to the near-horizon limit.

我们开发了静态弯曲时空中约瑟夫森现象的全协变分析框架,并将其专门用于史瓦西外部。该公式依赖于两个不变元素:控制相动力学的规范不变凝聚动量和守恒电流,其超表面通量为无穷远处的观察者编码输运。利用类时Killing场将固有量和渐近量联系起来,我们得到了一个红移交流Josephson定律,其中渐近相演化速率与红移电压降的差成正比,即与( {V}_i^{infty}equiv {alpha}_i{V}_i^{textrm{proper}} )成正比;同样,它依赖于( {alpha}_i{V}_i^{textrm{proper}} )进行本地控制。在指定为无穷远的RF驱动下,夏皮罗步轨迹是不变的(以渐近电压表示),而传播相位设置任何表观瓣平移。对于直流输运,静态片上的短结解得到合适的电流-相位关系;映射到渐近可观测值给出了临界电流的单功率红移标度( {I}_{c,infty}propto alpha {I}_c^{textrm{proper}} ),而功率标度为P∞∝α2Pproper。在具有不同结径的“垂直”DC - squid中,重力不会按线性顺序改变直流干涉图样;它产生一个小的包络变形和振幅重标。重力不会改变局部约瑟夫森微物理;它重塑了定义无穷远测量的时钟和能量计算。由此产生的预测是规范和坐标不变的,以实验者可以控制的方式进行操作陈述(适当与渐近偏差),并且从弱场状态到近视界极限都保持解析性。
{"title":"Josephson’s effect in the Schwarzschild background","authors":"Reggie C. Pantig,&nbsp;Ali Övgün","doi":"10.1007/JHEP02(2026)006","DOIUrl":"10.1007/JHEP02(2026)006","url":null,"abstract":"<p>We develop a fully covariant, analytic framework for Josephson phenomena in static curved spacetimes and specialize it to the Schwarzschild exterior. The formulation rests on two invariant elements: the gauge-invariant condensate momentum that governs phase dynamics and the conserved current whose hypersurface flux encodes transport for an observer at infinity. Using the timelike Killing field to relate proper and asymptotic quantities, we derive a redshifted AC Josephson law in which the asymptotic phase-evolution rate is proportional to the difference of redshifted voltage drops, i.e. to <span>( {V}_i^{infty}equiv {alpha}_i{V}_i^{textrm{proper}} )</span>; equivalently, it depends on <span>( {alpha}_i{V}_i^{textrm{proper}} )</span> for local control. Under RF drive specified at infinity, the Shapiro-step loci are invariant (expressed in asymptotic voltages) while propagation phases set any apparent lobe translation. For DC transport, a short-junction solution on a static slice yields the proper current-phase relation; mapping to asymptotic observables gives a single-power redshift scaling of critical currents, <span>( {I}_{c,infty}propto alpha {I}_c^{textrm{proper}} )</span>, whereas power scales as <i>P</i><sub><i>∞</i></sub> ∝ <i>α</i><sup>2</sup><i>P</i><sub>proper</sub>. In a “vertical” dc-SQUID with junctions at different radii, gravity does not shift the DC interference pattern at linear order; it produces a small envelope deformation and an amplitude rescaling. Gravity does not alter the local Josephson microphysics; it reshapes the clocks and energy accounting that define measurements at infinity. The resulting predictions are gauge- and coordinate-invariant, operationally stated in terms an experimenter can control (proper vs. asymptotic bias), and remain analytic from the weak-field regime to the near-horizon limit.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 2","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2026)006.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146099114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On holographic duals of certain isolated weighted homogeneous Gorenstein cDV singularities 某些孤立加权齐次Gorenstein cDV奇点的全息对偶
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-26 DOI: 10.1007/JHEP01(2026)163
Yuanyuan Fang, Zekai Yu

We employ a novel approach, based on homological mirror symmetry for Landau-Ginzburg models, to demonstrate the non-existence of crepant resolutions for certain weighted homogeneous Gorenstein compound Du Val singularities. Physically, this implies that such singularities cannot serve as holographic backgrounds for four-dimensional (mathcal{N}=1) superconformal quiver gauge theories realized on the worldvolume of a large number of D3-branes placed at the singular locus. This is confirmed by enumerating all consistent quiver gauge theories.

我们采用了一种新颖的方法,基于Landau-Ginzburg模型的同调镜像对称,证明了某些加权均匀Gorenstein化合物Du Val奇点不存在渐变分辨率。在物理上,这意味着这样的奇点不能作为在放置在奇异轨迹上的大量三维膜的世界体积上实现的四维(mathcal{N}=1)超共形颤振规范理论的全息背景。这是通过列举所有一致的颤振规范理论来证实的。
{"title":"On holographic duals of certain isolated weighted homogeneous Gorenstein cDV singularities","authors":"Yuanyuan Fang,&nbsp;Zekai Yu","doi":"10.1007/JHEP01(2026)163","DOIUrl":"10.1007/JHEP01(2026)163","url":null,"abstract":"<p>We employ a novel approach, based on homological mirror symmetry for Landau-Ginzburg models, to demonstrate the non-existence of crepant resolutions for certain weighted homogeneous Gorenstein compound Du Val singularities. Physically, this implies that such singularities cannot serve as holographic backgrounds for four-dimensional <span>(mathcal{N}=1)</span> superconformal quiver gauge theories realized on the worldvolume of a large number of D3-branes placed at the singular locus. This is confirmed by enumerating all consistent quiver gauge theories.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)163.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinguishing between Dirac and Majorana neutrinos at FASER 在FASER中区分狄拉克中微子和马约拉纳中微子
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-26 DOI: 10.1007/JHEP01(2026)164
ShivaSankar K.A., Alakabha Datta, Danny Marfatia

Some of the simplest models for the origin of neutrino mass involve right-handed neutrinos (RHNs), which could be either Dirac or Majorana particles — a distinction that has profound implications for lepton number conservation and the fundamental nature of neutrinos. We investigate the potential of the FASER experiment to distinguish between these two possibilities using signatures predicted by the Standard Model Neutrino Effective Field Theory (SMNEFT), where RHNs interact with Standard Model particles through higher-dimensional operators. We focus on RHNs produced via B, D, K, and π meson decays at the Large Hadron Collider and their subsequent three-body decays within the FASER detector. The kinematic and angular distributions of the decay products in the RHN rest frame differ significantly for Dirac and Majorana RHNs, and these differences manifest as distinct spatial distributions of electron-positron pairs at FASER. Using Monte Carlo simulations and a statistical analysis, we demonstrate that these spatial observables provide a robust experimental probe for determining the Dirac or Majorana nature of RHNs. For select production and decay operator combinations and RHN masses around 0.1 GeV, FASER can achieve discrimination at the 3σ level.

关于中微子质量起源的一些最简单的模型涉及到右手中微子(RHNs),它可能是狄拉克粒子,也可能是马约拉纳粒子——这种区别对轻子数守恒和中微子的基本性质有着深远的影响。我们研究了FASER实验的潜力,利用标准模型中微子有效场论(SMNEFT)预测的特征来区分这两种可能性,其中rhn通过高维算子与标准模型粒子相互作用。我们重点研究了在大型强子对撞机上通过B、D、K和π介子衰变产生的rhn,以及它们随后在FASER探测器上的三体衰变。Dirac RHN和Majorana RHN在静止框架内的衰变产物的运动和角度分布有显著差异,这些差异表现为FASER中电子-正电子对的空间分布不同。利用蒙特卡罗模拟和统计分析,我们证明了这些空间观测值为确定rhn的狄拉克或马约拉纳性质提供了一个强大的实验探针。对于选择的产生和衰变算子组合和0.1 GeV左右的RHN质量,FASER可以实现3σ水平的识别。
{"title":"Distinguishing between Dirac and Majorana neutrinos at FASER","authors":"ShivaSankar K.A.,&nbsp;Alakabha Datta,&nbsp;Danny Marfatia","doi":"10.1007/JHEP01(2026)164","DOIUrl":"10.1007/JHEP01(2026)164","url":null,"abstract":"<p>Some of the simplest models for the origin of neutrino mass involve right-handed neutrinos (RHNs), which could be either Dirac or Majorana particles — a distinction that has profound implications for lepton number conservation and the fundamental nature of neutrinos. We investigate the potential of the FASER experiment to distinguish between these two possibilities using signatures predicted by the Standard Model Neutrino Effective Field Theory (SMNEFT), where RHNs interact with Standard Model particles through higher-dimensional operators. We focus on RHNs produced via <i>B</i>, <i>D</i>, <i>K</i>, and <i>π</i> meson decays at the Large Hadron Collider and their subsequent three-body decays within the FASER detector. The kinematic and angular distributions of the decay products in the RHN rest frame differ significantly for Dirac and Majorana RHNs, and these differences manifest as distinct spatial distributions of electron-positron pairs at FASER. Using Monte Carlo simulations and a statistical analysis, we demonstrate that these spatial observables provide a robust experimental probe for determining the Dirac or Majorana nature of RHNs. For select production and decay operator combinations and RHN masses around 0.1 GeV, FASER can achieve discrimination at the 3<i>σ</i> level.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)164.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of the branching fraction of the ( {Lambda}_b^0to J/psi Lambda ) decay and isospin asymmetry of B → J/ψK decays B→J/ψK衰变的( {Lambda}_b^0to J/psi Lambda )衰变分支分数和同位旋不对称性的测量
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-26 DOI: 10.1007/JHEP01(2026)159
The LHCb collaboration, R. Aaij, A. S. W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, A. A. Adefisoye, B. Adeva, M. Adinolfi, P. Adlarson, C. Agapopoulou, C. A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, M. Akthar, P. Albicocco, J. Albrecht, R. Aleksiejunas, F. Alessio, P. Alvarez Cartelle, R. Amalric, S. Amato, J. L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, P. Andreola, M. Andreotti, S. Andres Estrada, A. Anelli, D. Ao, C. Arata, F. Archilli, Z. Areg, M. Argenton, S. Arguedas Cuendis, L. Arnone, A. Artamonov, M. Artuso, E. Aslanides, R. Ataíde Da Silva, M. Atzeni, B. Audurier, J. A. Authier, D. Bacher, I. Bachiller Perea, S. Bachmann, M. Bachmayer, J. J. Back, P. Baladron Rodriguez, V. Balagura, A. Balboni, W. Baldini, Z. Baldwin, L. Balzani, H. Bao, J. Baptista de Souza Leite, C. Barbero Pretel, M. Barbetti, I. R. Barbosa, R. J. Barlow, M. Barnyakov, S. Barsuk, W. Barter, J. Bartz, S. Bashir, B. Batsukh, P. B. Battista, A. Bay, A. Beck, M. Becker, F. Bedeschi, I. B. Bediaga, N. A. Behling, S. Belin, A. Bellavista, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. Bernet, S. Bernet Andres, A. Bertolin, C. Betancourt, F. Betti, J. Bex, Ia. Bezshyiko, O. Bezshyyko, J. Bhom, M. S. Bieker, N. V. Biesuz, A. Biolchini, M. Birch, F. C. R. Bishop, A. Bitadze, A. Bizzeti, T. Blake, F. Blanc, J. E. Blank, S. Blusk, V. Bocharnikov, J. A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Bohare, A. Boldyrev, C. S. Bolognani, R. Bolzonella, R. B. Bonacci, N. Bondar, A. Bordelius, F. Borgato, S. Borghi, M. Borsato, J. T. Borsuk, E. Bottalico, S. A. Bouchiba, M. Bovill, T. J. V. Bowcock, A. Boyer, C. Bozzi, J. D. Brandenburg, A. Brea Rodriguez, N. Breer, J. Brodzicka, A. Brossa Gonzalo, J. Brown, D. Brundu, E. Buchanan, M. Burgos Marcos, A. T. Burke, C. Burr, C. Buti, J. S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, Y. Cai, A. Caillet, R. Calabrese, S. Calderon Ramirez, L. Calefice, M. Calvi, M. Calvo Gomez, P. Camargo Magalhaes, J. I. Cambon Bouzas, P. Campana, D. H. Campora Perez, A. F. Campoverde Quezada, S. Capelli, M. Caporale, L. Capriotti, R. Caravaca-Mora, A. Carbone, L. Carcedo Salgado, R. Cardinale, A. Cardini, I. Carli, P. Carniti, L. Carus, A. Casais Vidal, R. Caspary, G. Casse, M. Cattaneo, G. Cavallero, V. Cavallini, S. Celani, I. Celestino, S. Cesare, A. J. Chadwick, I. Chahrour, H. Chang, M. Charles, Ph. Charpentier, E. Chatzianagnostou, R. Cheaib, M. Chefdeville, C. Chen, J. Chen, S. Chen, Z. Chen, M. Cherif, A. Chernov, S. Chernyshenko, X. Chiotopoulos, V. Chobanova, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, X. Cid Vidal, G. Ciezarek, P. Cifra, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, C. Cocha Toapaxi, V. Coco, J. Cogan, E. Cogneras, L. Cojocariu, S. Collaviti, P. Collins, T. Colombo, M. Colonna, A. Comerma-Montells, L. Congedo, J. Connaughton, A. Contu, N. Cooke, G. Cordova, C. Coronel, I. Corredoira, A. Correia, G. Corti, J. Cottee Meldrum, B. Couturier, D. C. Craik, M. Cruz Torres, E. Curras Rivera, R. Currie, C. L. Da Silva, S. Dadabaev, L. Dai, X. Dai, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, J. Daniel, P. d’Argent, G. Darze, A. Davidson, J. E. Davies, O. De Aguiar Francisco, C. De Angelis, F. De Benedetti, J. de Boer, K. De Bruyn, S. De Capua, M. De Cian, U. De Freitas Carneiro Da Graca, S. De Keijzer, E. De Lucia, J. M. De Miranda, L. De Paula, M. De Serio, P. De Simone, F. De Vellis, J. A. de Vries, F. Debernardis, D. Decamp, V. Dedu, S. Dekkers, L. Del Buono, B. Delaney, H.-P. Dembinski, J. Deng, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, P. Di Nezza, I. Diachkov, S. Didenko, S. Ding, Y. Ding, L. Dittmann, V. Dobishuk, A. D. Docheva, A. Doheny, C. Dong, A. M. Donohoe, F. Dordei, A. C. dos Reis, A. D. Dowling, L. Dreyfus, W. Duan, P. Duda, L. Dufour, V. Duk, P. Durante, M. M. Duras, J. M. Durham, O. D. Durmus, A. Dziurda, A. Dzyuba, S. Easo, E. Eckstein, U. Egede, A. Egorychev, V. Egorychev, S. Eisenhardt, E. Ejopu, L. Eklund, M. Elashri, J. Ellbracht, S. Ely, A. Ene, J. Eschle, S. Esen, T. Evans, F. Fabiano, S. Faghih, L. N. Falcao, B. Fang, R. Fantechi, L. Fantini, M. Faria, K. Farmer, D. Fazzini, L. Felkowski, M. Feng, M. Feo, A. Fernandez Casani, M. Fernandez Gomez, A. D. Fernez, F. Ferrari, F. Ferreira Rodrigues, S. Ferreres Sole, M. Ferrillo, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, M. Firlej, K. L. Fischer, D. S. Fitzgerald, C. Fitzpatrick, T. Fiutowski, F. Fleuret, A. Fomin, M. Fontana, L. F. Foreman, R. Forty, D. Foulds-Holt, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D. A. Friday, J. Fu, Q. Führing, T. Fulghesu, G. Galati, M. D. Galati, A. Gallas Torreira, D. Galli, S. Gambetta, M. Gandelman, P. Gandini, B. Ganie, H. Gao, R. Gao, T. Q. Gao, Y. Gao, Y. Gao, Y. Gao, L. M. Garcia Martin, P. Garcia Moreno, J. García Pardiñas, P. Gardner, K. G. Garg, L. Garrido, C. Gaspar, A. Gavrikov, L. L. Gerken, E. Gersabeck, M. Gersabeck, T. Gershon, S. Ghizzo, Z. Ghorbanimoghaddam, F. I. Giasemis, V. Gibson, H. K. Giemza, A. L. Gilman, M. Giovannetti, A. Gioventù, L. Girardey, M. A. Giza, F. C. Glaser, V. V. Gligorov, C. Göbel, L. Golinka-Bezshyyko, E. Golobardes, D. Golubkov, A. Golutvin, S. Gomez Fernandez, W. Gomulka, I. Gonçales Vaz, F. Goncalves Abrantes, M. Goncerz, G. Gong, J. A. Gooding, I. V. Gorelov, C. Gotti, E. Govorkova, J. P. Grabowski, L. A. Granado Cardoso, E. Graugés, E. Graverini, L. Grazette, G. Graziani, A. T. Grecu, L. M. Greeven, N. A. Grieser, L. Grillo, S. Gromov, C. Gu, M. Guarise, L. Guerry, V. Guliaeva, P. A. Günther, A.-K. Guseinov, E. Gushchin, Y. Guz, T. Gys, K. Habermann, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, S. Haken, G. Hallett, P. M. Hamilton, J. Hammerich, Q. Han, X. Han, S. Hansmann-Menzemer, L. Hao, N. Harnew, T. H. Harris, M. Hartmann, S. Hashmi, J. He, A. Hedes, F. Hemmer, C. Henderson, R. Henderson, R. D. L. Henderson, A. M. Hennequin, K. Hennessy, L. Henry, J. Herd, P. Herrero Gascon, J. Heuel, A. Heyn, A. Hicheur, G. Hijano Mendizabal, J. Horswill, R. Hou, Y. Hou, D. C. Houston, N. Howarth, J. Hu, W. Hu, X. Hu, W. Hulsbergen, R. J. Hunter, M. Hushchyn, D. Hutchcroft, M. Idzik, D. Ilin, P. Ilten, A. Iniukhin, A. Iohner, A. Ishteev, K. Ivshin, H. Jage, S. J. Jaimes Elles, S. Jakobsen, E. Jans, B. K. Jashal, A. Jawahery, C. Jayaweera, V. Jevtic, Z. Jia, E. Jiang, X. Jiang, Y. Jiang, Y. J. Jiang, E. Jimenez Moya, N. Jindal, M. John, A. John Rubesh Rajan, D. Johnson, C. R. Jones, S. Joshi, B. Jost, J. Juan Castella, N. Jurik, I. Juszczak, D. Kaminaris, S. Kandybei, M. Kane, Y. Kang, C. Kar, M. Karacson, A. Kauniskangas, J. W. Kautz, M. K. Kazanecki, F. Keizer, M. Kenzie, T. Ketel, B. Khanji, A. Kharisova, S. Kholodenko, G. Khreich, T. Kirn, V. S. Kirsebom, O. Kitouni, S. Klaver, N. Kleijne, D. K. Klekots, K. Klimaszewski, M. R. Kmiec, T. Knospe, R. Kolb, S. Koliiev, L. Kolk, A. Konoplyannikov, P. Kopciewicz, P. Koppenburg, A. Korchin, M. Korolev, I. Kostiuk, O. Kot, S. Kotriakhova, E. Kowalczyk, A. Kozachuk, P. Kravchenko, L. Kravchuk, O. Kravcov, M. Kreps, P. Krokovny, W. Krupa, W. Krzemien, O. Kshyvanskyi, S. Kubis, M. Kucharczyk, V. Kudryavtsev, E. Kulikova, A. Kupsc, V. Kushnir, B. Kutsenko, J. Kvapil, I. Kyryllin, D. Lacarrere, P. Laguarta Gonzalez, A. Lai, A. Lampis, D. Lancierini, C. Landesa Gomez, J. J. Lane, G. Lanfranchi, C. Langenbruch, J. Langer, O. Lantwin, T. Latham, F. Lazzari, C. Lazzeroni, R. Le Gac, H. Lee, R. Lefèvre, A. Leflat, S. Legotin, M. Lehuraux, E. Lemos Cid, O. Leroy, T. Lesiak, E. D. Lesser, B. Leverington, A. Li, C. Li, C. Li, H. Li, J. Li, K. Li, L. Li, M. Li, P. Li, P.-R. Li, Q. Li, T. Li, T. Li, Y. Li, Y. Li, Y. Li, Z. Lian, Q. Liang, X. Liang, Z. Liang, S. Libralon, A. L. Lightbody, C. Lin, T. Lin, R. Lindner, H. Linton, R. Litvinov, D. Liu, F. L. Liu, G. Liu, K. Liu, S. Liu, W. Liu, Y. Liu, Y. Liu, Y. L. Liu, G. Loachamin Ordonez, A. Lobo Salvia, A. Loi, T. Long, F. C. L. Lopes, J. H. Lopes, A. Lopez Huertas, C. Lopez Iribarnegaray, S. López Soliño, Q. Lu, C. Lucarelli, D. Lucchesi, M. Lucio Martinez, Y. Luo, A. Lupato, E. Luppi, K. Lynch, X.-R. Lyu, G. M. Ma, H. Ma, S. Maccolini, F. Machefert, F. Maciuc, B. Mack, I. Mackay, L. M. Mackey, L. R. Madhan Mohan, M. J. Madurai, D. Magdalinski, D. Maisuzenko, J. J. Malczewski, S. Malde, L. Malentacca, A. Malinin, T. Maltsev, G. Manca, G. Mancinelli, C. Mancuso, R. Manera Escalero, F. M. Manganella, D. Manuzzi, D. Marangotto, J. F. Marchand, R. Marchevski, U. Marconi, E. Mariani, S. Mariani, C. Marin Benito, J. Marks, A. M. Marshall, L. Martel, G. Martelli, G. Martellotti, L. Martinazzoli, M. Martinelli, D. Martinez Gomez, D. Martinez Santos, F. Martinez Vidal, A. Martorell i Granollers, A. Massafferri, R. Matev, A. Mathad, V. Matiunin, C. Matteuzzi, K. R. Mattioli, A. Mauri, E. Maurice, J. Mauricio, P. Mayencourt, J. Mazorra de Cos, M. Mazurek, M. McCann, T. H. McGrath, N. T. McHugh, A. McNab, R. McNulty, B. Meadows, G. Meier, D. Melnychuk, D. Mendoza Granada, P. Menendez Valdes Perez, F. M. Meng, M. Merk, A. Merli, L. Meyer Garcia, D. Miao, H. Miao, M. Mikhasenko, D. A. Milanes, A. Minotti, E. Minucci, T. Miralles, B. Mitreska, D. S. Mitzel, R. Mocanu, A. Modak, L. Moeser, R. D. Moise, E. F. Molina Cardenas, T. Mombächer, M. Monk, S. Monteil, A. Morcillo Gomez, G. Morello, M. J. Morello, M. P. Morgenthaler, A. Moro, J. Moron, W. Morren, A. B. Morris, A. G. Morris, R. Mountain, H. Mu, Z. M. Mu, E. Muhammad, F. Muheim, M. Mulder, K. Müller, F. Muñoz-Rojas, R. Murta, V. Mytrochenko, P. Naik, T. Nakada, R. Nandakumar, T. Nanut, I. Nasteva, M. Needham, E. Nekrasova, N. Neri, S. Neubert, N. Neufeld, P. Neustroev, J. Nicolini, D. Nicotra, E. M. Niel, N. Nikitin, L. Nisi, Q. Niu, P. Nogarolli, P. Nogga, C. Normand, J. Novoa Fernandez, G. Nowak, C. Nunez, H. N. Nur, A. Oblakowska-Mucha, V. Obraztsov, T. Oeser, A. Okhotnikov, O. Okhrimenko, R. Oldeman, F. Oliva, E. Olivart Pino, M. Olocco, C. J. G. Onderwater, R. H. O’Neil, J. S. Ordonez Soto, D. Osthues, J. M. Otalora Goicochea, P. Owen, A. Oyanguren, O. Ozcelik, F. Paciolla, A. Padee, K. O. Padeken, B. Pagare, T. Pajero, A. Palano, L. Palini, M. Palutan, C. Pan, X. Pan, S. Panebianco, G. Panshin, L. Paolucci, A. Papanestis, M. Pappagallo, L. L. Pappalardo, C. Pappenheimer, C. Parkes, D. Parmar, B. Passalacqua, G. Passaleva, D. Passaro, A. Pastore, M. Patel, J. Patoc, C. Patrignani, A. Paul, C. J. Pawley, A. Pellegrino, J. Peng, X. Peng, M. Pepe Altarelli, S. Perazzini, D. Pereima, H. Pereira Da Costa, M. Pereira Martinez, A. Pereiro Castro, C. Perez, P. Perret, A. Perrevoort, A. Perro, M. J. Peters, K. Petridis, A. Petrolini, S. Pezzulo, J. P. Pfaller, H. Pham, L. Pica, M. Piccini, L. Piccolo, B. Pietrzyk, G. Pietrzyk, R. N. Pilato, D. Pinci, F. Pisani, M. Pizzichemi, V. M. Placinta, M. Plo Casasus, T. Poeschl, F. Polci, M. Poli Lener, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, S. Ponce, D. Popov, S. Poslavskii, K. Prasanth, C. Prouve, D. Provenzano, V. Pugatch, G. Punzi, J. R. Pybus, S. Qasim, Q. Q. Qian, W. Qian, N. Qin, S. Qu, R. Quagliani, R. I. Rabadan Trejo, R. Racz, J. H. Rademacker, M. Rama, M. Ramírez García, V. Ramos De Oliveira, M. Ramos Pernas, M. S. Rangel, F. Ratnikov, G. Raven, M. Rebollo De Miguel, F. Redi, J. Reich, F. Reiss, Z. Ren, P. K. Resmi, M. Ribalda Galvez, R. Ribatti, G. Ricart, D. Riccardi, S. Ricciardi, K. Richardson, M. Richardson-Slipper, K. Rinnert, P. Robbe, G. Robertson, E. Rodrigues, A. Rodriguez Alvarez, E. Rodriguez Fernandez, J. A. Rodriguez Lopez, E. Rodriguez Rodriguez, J. Roensch, A. Rogachev, A. Rogovskiy, D. L. Rolf, P. Roloff, V. Romanovskiy, A. Romero Vidal, G. Romolini, F. Ronchetti, T. Rong, M. Rotondo, S. R. Roy, M. S. Rudolph, M. Ruiz Diaz, R. A. Ruiz Fernandez, J. Ruiz Vidal, J. J. Saavedra-Arias, J. J. Saborido Silva, S. E. R. Sacha Emile R., N. Sagidova, D. Sahoo, N. Sahoo, B. Saitta, M. Salomoni, I. Sanderswood, R. Santacesaria, C. Santamarina Rios, M. Santimaria, L. Santoro, E. Santovetti, A. Saputi, D. Saranin, A. Sarnatskiy, G. Sarpis, M. Sarpis, C. Satriano, A. Satta, M. Saur, D. Savrina, H. Sazak, F. Sborzacchi, A. Scarabotto, S. Schael, S. Scherl, M. Schiller, H. Schindler, M. Schmelling, B. Schmidt, N. Schmidt, S. Schmitt, H. Schmitz, O. Schneider, A. Schopper, N. Schulte, M. H. Schune, G. Schwering, B. Sciascia, A. Sciuccati, G. Scriven, I. Segal, S. Sellam, A. Semennikov, T. Senger, M. Senghi Soares, A. Sergi, N. Serra, L. Sestini, A. Seuthe, B. Sevilla Sanjuan, Y. Shang, D. M. Shangase, M. Shapkin, R. S. Sharma, I. Shchemerov, L. Shchutska, T. Shears, L. Shekhtman, Z. Shen, S. Sheng, V. Shevchenko, B. Shi, Q. Shi, W. S. Shi, Y. Shimizu, E. Shmanin, R. Shorkin, J. D. Shupperd, R. Silva Coutinho, G. Simi, S. Simone, M. Singha, N. Skidmore, T. Skwarnicki, M. W. Slater, E. Smith, K. Smith, M. Smith, L. Soares Lavra, M. D. Sokoloff, F. J. P. Soler, A. Solomin, A. Solovev, K. Solovieva, N. S. Sommerfeld, R. Song, Y. Song, Y. Song, Y. S. Song, F. L. Souza De Almeida, B. Souza De Paula, K. M. Sowa, E. Spadaro Norella, E. Spedicato, J. G. Speer, P. Spradlin, V. Sriskaran, F. Stagni, M. Stahl, S. Stahl, S. Stanislaus, M. Stefaniak, E. N. Stein, O. Steinkamp, H. Stevens, D. Strekalina, Y. Su, F. Suljik, J. Sun, J. Sun, L. Sun, D. Sundfeld, W. Sutcliffe, V. Svintozelskyi, P. N. Swallow, K. Swientek, F. Swystun, A. Szabelski, T. Szumlak, Y. Tan, Y. Tang, Y. T. Tang, M. D. Tat, J. A. Teijeiro Jimenez, A. Terentev, F. Terzuoli, F. Teubert, E. Thomas, D. J. D. Thompson, A. R. Thomson-Strong, H. Tilquin, V. Tisserand, S. T’Jampens, M. Tobin, T. T. Todorov, L. Tomassetti, G. Tonani, X. Tong, T. Tork, D. Torres Machado, L. Toscano, D. Y. Tou, C. Trippl, G. Tuci, N. Tuning, L. H. Uecker, A. Ukleja, D. J. Unverzagt, A. Upadhyay, B. Urbach, A. Usachov, A. Ustyuzhanin, U. Uwer, V. Vagnoni, V. Valcarce Cadenas, G. Valenti, N. Valls Canudas, J. van Eldik, H. Van Hecke, E. van Herwijnen, C. B. Van Hulse, R. Van Laak, M. van Veghel, G. Vasquez, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. Velilla Serna, J. J. Velthuis, M. Veltri, A. Venkateswaran, M. Verdoglia, M. Vesterinen, W. Vetens, D. Vico Benet, P. Vidrier Villalba, M. Vieites Diaz, X. Vilasis-Cardona, E. Vilella Figueras, A. Villa, P. Vincent, B. Vivacqua, F. C. Volle, D. vom Bruch, N. Voropaev, K. Vos, C. Vrahas, J. Wagner, J. Walsh, E. J. Walton, G. Wan, A. Wang, B. Wang, C. Wang, G. Wang, H. Wang, J. Wang, J. Wang, J. Wang, J. Wang, M. Wang, N. W. Wang, R. Wang, X. Wang, X. Wang, X. W. Wang, Y. Wang, Y. Wang, Y. H. Wang, Z. Wang, Z. Wang, J. A. Ward, M. Waterlaat, N. K. Watson, D. Websdale, Y. Wei, Z. Weida, J. Wendel, B. D. C. Westhenry, C. White, M. Whitehead, E. Whiter, A. R. Wiederhold, D. Wiedner, M. A. Wiegertjes, C. Wild, G. Wilkinson, M. K. Wilkinson, M. Williams, M. J. Williams, M. R. J. Williams, R. Williams, S. Williams, Z. Williams, F. F. Wilson, M. Winn, W. Wislicki, M. Witek, L. Witola, T. Wolf, E. Wood, G. Wormser, S. A. Wotton, H. Wu, J. Wu, X. Wu, Y. Wu, Z. Wu, K. Wyllie, S. Xian, Z. Xiang, Y. Xie, T. X. Xing, A. Xu, L. Xu, L. Xu, M. Xu, Z. Xu, Z. Xu, Z. Xu, K. Yang, X. Yang, Y. Yang, Z. Yang, V. Yeroshenko, H. Yeung, H. Yin, X. Yin, C. Y. Yu, J. Yu, X. Yuan, Y. Yuan, E. Zaffaroni, J. A. Zamora Saa, M. Zavertyaev, M. Zdybal, F. Zenesini, C. Zeng, M. Zeng, C. Zhang, D. Zhang, J. Zhang, L. Zhang, R. Zhang, S. Zhang, S. Zhang, Y. Zhang, Y. Z. Zhang, Z. Zhang, Y. Zhao, A. Zhelezov, S. Z. Zheng, X. Z. Zheng, Y. Zheng, T. Zhou, X. Zhou, Y. Zhou, V. Zhovkovska, L. Z. Zhu, X. Zhu, X. Zhu, Y. Zhu, V. Zhukov, J. Zhuo, Q. Zou, D. Zuliani, G. Zunica

This paper describes a measurement of the ( {Lambda}_b^0to J/psi Lambda ) branching fraction using data collected with the LHCb experiment in proton-proton collisions from 2016 to 2018. The dataset corresponds to an integrated luminosity of 5.4 fb1. The branching fraction is determined relative to that of ( {B}^0to J/psi {K}_{textrm{S}}^0 ) decays,

yielding ( mathcal{B}left({Lambda}_b^0to J/psi Lambda right)=left(3.34pm 0.02pm 0.10pm 0.08pm 0.28right)times {10}^{-4} ), where the first uncertainty is statistical, the second systematic, the third due to external inputs on branching fractions and the fourth due to the ratio of ( {Lambda}_b^0 ) baryon and B0 meson hadronisation fractions. In addition, the isospin asymmetry between the rates of ( {B}^0to J/psi {K}_{textrm{S}}^0 ) and B+ → J/ψK+ decays is measured to be

where the first uncertainty is statistical and the second systematic.

本文描述了利用2016年至2018年质子-质子碰撞LHCb实验收集的数据对( {Lambda}_b^0to J/psi Lambda )分支分数的测量。该数据集对应的综合光度为5.4 fb−1。分支分数是相对于( {B}^0to J/psi {K}_{textrm{S}}^0 )衰变确定的,得到( mathcal{B}left({Lambda}_b^0to J/psi Lambda right)=left(3.34pm 0.02pm 0.10pm 0.08pm 0.28right)times {10}^{-4} ),其中第一个不确定性是统计的,第二个不确定性是系统的,第三个不确定性是由于分支分数的外部输入,第四个不确定性是由于( {Lambda}_b^0 )重子和B0介子强子化分数的比例。此外,测量了( {B}^0to J/psi {K}_{textrm{S}}^0 )和B+→J/ψK+衰变速率之间的同位旋不对称性,其中第一不确定性是统计的,第二不确定性是系统的。
{"title":"Measurement of the branching fraction of the ( {Lambda}_b^0to J/psi Lambda ) decay and isospin asymmetry of B → J/ψK decays","authors":"The LHCb collaboration,&nbsp;R. Aaij,&nbsp;A. S. W. Abdelmotteleb,&nbsp;C. Abellan Beteta,&nbsp;F. Abudinén,&nbsp;T. Ackernley,&nbsp;A. A. Adefisoye,&nbsp;B. Adeva,&nbsp;M. Adinolfi,&nbsp;P. Adlarson,&nbsp;C. Agapopoulou,&nbsp;C. A. Aidala,&nbsp;Z. Ajaltouni,&nbsp;S. Akar,&nbsp;K. Akiba,&nbsp;M. Akthar,&nbsp;P. Albicocco,&nbsp;J. Albrecht,&nbsp;R. Aleksiejunas,&nbsp;F. Alessio,&nbsp;P. Alvarez Cartelle,&nbsp;R. Amalric,&nbsp;S. Amato,&nbsp;J. L. Amey,&nbsp;Y. Amhis,&nbsp;L. An,&nbsp;L. Anderlini,&nbsp;M. Andersson,&nbsp;P. Andreola,&nbsp;M. Andreotti,&nbsp;S. Andres Estrada,&nbsp;A. Anelli,&nbsp;D. Ao,&nbsp;C. Arata,&nbsp;F. Archilli,&nbsp;Z. Areg,&nbsp;M. Argenton,&nbsp;S. Arguedas Cuendis,&nbsp;L. Arnone,&nbsp;A. Artamonov,&nbsp;M. Artuso,&nbsp;E. Aslanides,&nbsp;R. Ataíde Da Silva,&nbsp;M. Atzeni,&nbsp;B. Audurier,&nbsp;J. A. Authier,&nbsp;D. Bacher,&nbsp;I. Bachiller Perea,&nbsp;S. Bachmann,&nbsp;M. Bachmayer,&nbsp;J. J. Back,&nbsp;P. Baladron Rodriguez,&nbsp;V. Balagura,&nbsp;A. Balboni,&nbsp;W. Baldini,&nbsp;Z. Baldwin,&nbsp;L. Balzani,&nbsp;H. Bao,&nbsp;J. Baptista de Souza Leite,&nbsp;C. Barbero Pretel,&nbsp;M. Barbetti,&nbsp;I. R. Barbosa,&nbsp;R. J. Barlow,&nbsp;M. Barnyakov,&nbsp;S. Barsuk,&nbsp;W. Barter,&nbsp;J. Bartz,&nbsp;S. Bashir,&nbsp;B. Batsukh,&nbsp;P. B. Battista,&nbsp;A. Bay,&nbsp;A. Beck,&nbsp;M. Becker,&nbsp;F. Bedeschi,&nbsp;I. B. Bediaga,&nbsp;N. A. Behling,&nbsp;S. Belin,&nbsp;A. Bellavista,&nbsp;K. Belous,&nbsp;I. Belov,&nbsp;I. Belyaev,&nbsp;G. Benane,&nbsp;G. Bencivenni,&nbsp;E. Ben-Haim,&nbsp;A. Berezhnoy,&nbsp;R. Bernet,&nbsp;S. Bernet Andres,&nbsp;A. Bertolin,&nbsp;C. Betancourt,&nbsp;F. Betti,&nbsp;J. Bex,&nbsp;Ia. Bezshyiko,&nbsp;O. Bezshyyko,&nbsp;J. Bhom,&nbsp;M. S. Bieker,&nbsp;N. V. Biesuz,&nbsp;A. Biolchini,&nbsp;M. Birch,&nbsp;F. C. R. Bishop,&nbsp;A. Bitadze,&nbsp;A. Bizzeti,&nbsp;T. Blake,&nbsp;F. Blanc,&nbsp;J. E. Blank,&nbsp;S. Blusk,&nbsp;V. Bocharnikov,&nbsp;J. A. Boelhauve,&nbsp;O. Boente Garcia,&nbsp;T. Boettcher,&nbsp;A. Bohare,&nbsp;A. Boldyrev,&nbsp;C. S. Bolognani,&nbsp;R. Bolzonella,&nbsp;R. B. Bonacci,&nbsp;N. Bondar,&nbsp;A. Bordelius,&nbsp;F. Borgato,&nbsp;S. Borghi,&nbsp;M. Borsato,&nbsp;J. T. Borsuk,&nbsp;E. Bottalico,&nbsp;S. A. Bouchiba,&nbsp;M. Bovill,&nbsp;T. J. V. Bowcock,&nbsp;A. Boyer,&nbsp;C. Bozzi,&nbsp;J. D. Brandenburg,&nbsp;A. Brea Rodriguez,&nbsp;N. Breer,&nbsp;J. Brodzicka,&nbsp;A. Brossa Gonzalo,&nbsp;J. Brown,&nbsp;D. Brundu,&nbsp;E. Buchanan,&nbsp;M. Burgos Marcos,&nbsp;A. T. Burke,&nbsp;C. Burr,&nbsp;C. Buti,&nbsp;J. S. Butter,&nbsp;J. Buytaert,&nbsp;W. Byczynski,&nbsp;S. Cadeddu,&nbsp;H. Cai,&nbsp;Y. Cai,&nbsp;A. Caillet,&nbsp;R. Calabrese,&nbsp;S. Calderon Ramirez,&nbsp;L. Calefice,&nbsp;M. Calvi,&nbsp;M. Calvo Gomez,&nbsp;P. Camargo Magalhaes,&nbsp;J. I. Cambon Bouzas,&nbsp;P. Campana,&nbsp;D. H. Campora Perez,&nbsp;A. F. Campoverde Quezada,&nbsp;S. Capelli,&nbsp;M. Caporale,&nbsp;L. Capriotti,&nbsp;R. Caravaca-Mora,&nbsp;A. Carbone,&nbsp;L. Carcedo Salgado,&nbsp;R. Cardinale,&nbsp;A. Cardini,&nbsp;I. Carli,&nbsp;P. Carniti,&nbsp;L. Carus,&nbsp;A. Casais Vidal,&nbsp;R. Caspary,&nbsp;G. Casse,&nbsp;M. Cattaneo,&nbsp;G. Cavallero,&nbsp;V. Cavallini,&nbsp;S. Celani,&nbsp;I. Celestino,&nbsp;S. Cesare,&nbsp;A. J. Chadwick,&nbsp;I. Chahrour,&nbsp;H. Chang,&nbsp;M. Charles,&nbsp;Ph. Charpentier,&nbsp;E. Chatzianagnostou,&nbsp;R. Cheaib,&nbsp;M. Chefdeville,&nbsp;C. Chen,&nbsp;J. Chen,&nbsp;S. Chen,&nbsp;Z. Chen,&nbsp;M. Cherif,&nbsp;A. Chernov,&nbsp;S. Chernyshenko,&nbsp;X. Chiotopoulos,&nbsp;V. Chobanova,&nbsp;M. Chrzaszcz,&nbsp;A. Chubykin,&nbsp;V. Chulikov,&nbsp;P. Ciambrone,&nbsp;X. Cid Vidal,&nbsp;G. Ciezarek,&nbsp;P. Cifra,&nbsp;P. E. L. Clarke,&nbsp;M. Clemencic,&nbsp;H. V. Cliff,&nbsp;J. Closier,&nbsp;C. Cocha Toapaxi,&nbsp;V. Coco,&nbsp;J. Cogan,&nbsp;E. Cogneras,&nbsp;L. Cojocariu,&nbsp;S. Collaviti,&nbsp;P. Collins,&nbsp;T. Colombo,&nbsp;M. Colonna,&nbsp;A. Comerma-Montells,&nbsp;L. Congedo,&nbsp;J. Connaughton,&nbsp;A. Contu,&nbsp;N. Cooke,&nbsp;G. Cordova,&nbsp;C. Coronel,&nbsp;I. Corredoira,&nbsp;A. Correia,&nbsp;G. Corti,&nbsp;J. Cottee Meldrum,&nbsp;B. Couturier,&nbsp;D. C. Craik,&nbsp;M. Cruz Torres,&nbsp;E. Curras Rivera,&nbsp;R. Currie,&nbsp;C. L. Da Silva,&nbsp;S. Dadabaev,&nbsp;L. Dai,&nbsp;X. Dai,&nbsp;E. Dall’Occo,&nbsp;J. Dalseno,&nbsp;C. D’Ambrosio,&nbsp;J. Daniel,&nbsp;P. d’Argent,&nbsp;G. Darze,&nbsp;A. Davidson,&nbsp;J. E. Davies,&nbsp;O. De Aguiar Francisco,&nbsp;C. De Angelis,&nbsp;F. De Benedetti,&nbsp;J. de Boer,&nbsp;K. De Bruyn,&nbsp;S. De Capua,&nbsp;M. De Cian,&nbsp;U. De Freitas Carneiro Da Graca,&nbsp;S. De Keijzer,&nbsp;E. De Lucia,&nbsp;J. M. De Miranda,&nbsp;L. De Paula,&nbsp;M. De Serio,&nbsp;P. De Simone,&nbsp;F. De Vellis,&nbsp;J. A. de Vries,&nbsp;F. Debernardis,&nbsp;D. Decamp,&nbsp;V. Dedu,&nbsp;S. Dekkers,&nbsp;L. Del Buono,&nbsp;B. Delaney,&nbsp;H.-P. Dembinski,&nbsp;J. Deng,&nbsp;V. Denysenko,&nbsp;O. Deschamps,&nbsp;F. Dettori,&nbsp;B. Dey,&nbsp;P. Di Nezza,&nbsp;I. Diachkov,&nbsp;S. Didenko,&nbsp;S. Ding,&nbsp;Y. Ding,&nbsp;L. Dittmann,&nbsp;V. Dobishuk,&nbsp;A. D. Docheva,&nbsp;A. Doheny,&nbsp;C. Dong,&nbsp;A. M. Donohoe,&nbsp;F. Dordei,&nbsp;A. C. dos Reis,&nbsp;A. D. Dowling,&nbsp;L. Dreyfus,&nbsp;W. Duan,&nbsp;P. Duda,&nbsp;L. Dufour,&nbsp;V. Duk,&nbsp;P. Durante,&nbsp;M. M. Duras,&nbsp;J. M. Durham,&nbsp;O. D. Durmus,&nbsp;A. Dziurda,&nbsp;A. Dzyuba,&nbsp;S. Easo,&nbsp;E. Eckstein,&nbsp;U. Egede,&nbsp;A. Egorychev,&nbsp;V. Egorychev,&nbsp;S. Eisenhardt,&nbsp;E. Ejopu,&nbsp;L. Eklund,&nbsp;M. Elashri,&nbsp;J. Ellbracht,&nbsp;S. Ely,&nbsp;A. Ene,&nbsp;J. Eschle,&nbsp;S. Esen,&nbsp;T. Evans,&nbsp;F. Fabiano,&nbsp;S. Faghih,&nbsp;L. N. Falcao,&nbsp;B. Fang,&nbsp;R. Fantechi,&nbsp;L. Fantini,&nbsp;M. Faria,&nbsp;K. Farmer,&nbsp;D. Fazzini,&nbsp;L. Felkowski,&nbsp;M. Feng,&nbsp;M. Feo,&nbsp;A. Fernandez Casani,&nbsp;M. Fernandez Gomez,&nbsp;A. D. Fernez,&nbsp;F. Ferrari,&nbsp;F. Ferreira Rodrigues,&nbsp;S. Ferreres Sole,&nbsp;M. Ferrillo,&nbsp;M. Ferro-Luzzi,&nbsp;S. Filippov,&nbsp;R. A. Fini,&nbsp;M. Fiorini,&nbsp;M. Firlej,&nbsp;K. L. Fischer,&nbsp;D. S. Fitzgerald,&nbsp;C. Fitzpatrick,&nbsp;T. Fiutowski,&nbsp;F. Fleuret,&nbsp;A. Fomin,&nbsp;M. Fontana,&nbsp;L. F. Foreman,&nbsp;R. Forty,&nbsp;D. Foulds-Holt,&nbsp;V. Franco Lima,&nbsp;M. Franco Sevilla,&nbsp;M. Frank,&nbsp;E. Franzoso,&nbsp;G. Frau,&nbsp;C. Frei,&nbsp;D. A. Friday,&nbsp;J. Fu,&nbsp;Q. Führing,&nbsp;T. Fulghesu,&nbsp;G. Galati,&nbsp;M. D. Galati,&nbsp;A. Gallas Torreira,&nbsp;D. Galli,&nbsp;S. Gambetta,&nbsp;M. Gandelman,&nbsp;P. Gandini,&nbsp;B. Ganie,&nbsp;H. Gao,&nbsp;R. Gao,&nbsp;T. Q. Gao,&nbsp;Y. Gao,&nbsp;Y. Gao,&nbsp;Y. Gao,&nbsp;L. M. Garcia Martin,&nbsp;P. Garcia Moreno,&nbsp;J. García Pardiñas,&nbsp;P. Gardner,&nbsp;K. G. Garg,&nbsp;L. Garrido,&nbsp;C. Gaspar,&nbsp;A. Gavrikov,&nbsp;L. L. Gerken,&nbsp;E. Gersabeck,&nbsp;M. Gersabeck,&nbsp;T. Gershon,&nbsp;S. Ghizzo,&nbsp;Z. Ghorbanimoghaddam,&nbsp;F. I. Giasemis,&nbsp;V. Gibson,&nbsp;H. K. Giemza,&nbsp;A. L. Gilman,&nbsp;M. Giovannetti,&nbsp;A. Gioventù,&nbsp;L. Girardey,&nbsp;M. A. Giza,&nbsp;F. C. Glaser,&nbsp;V. V. Gligorov,&nbsp;C. Göbel,&nbsp;L. Golinka-Bezshyyko,&nbsp;E. Golobardes,&nbsp;D. Golubkov,&nbsp;A. Golutvin,&nbsp;S. Gomez Fernandez,&nbsp;W. Gomulka,&nbsp;I. Gonçales Vaz,&nbsp;F. Goncalves Abrantes,&nbsp;M. Goncerz,&nbsp;G. Gong,&nbsp;J. A. Gooding,&nbsp;I. V. Gorelov,&nbsp;C. Gotti,&nbsp;E. Govorkova,&nbsp;J. P. Grabowski,&nbsp;L. A. Granado Cardoso,&nbsp;E. Graugés,&nbsp;E. Graverini,&nbsp;L. Grazette,&nbsp;G. Graziani,&nbsp;A. T. Grecu,&nbsp;L. M. Greeven,&nbsp;N. A. Grieser,&nbsp;L. Grillo,&nbsp;S. Gromov,&nbsp;C. Gu,&nbsp;M. Guarise,&nbsp;L. Guerry,&nbsp;V. Guliaeva,&nbsp;P. A. Günther,&nbsp;A.-K. Guseinov,&nbsp;E. Gushchin,&nbsp;Y. Guz,&nbsp;T. Gys,&nbsp;K. Habermann,&nbsp;T. Hadavizadeh,&nbsp;C. Hadjivasiliou,&nbsp;G. Haefeli,&nbsp;C. Haen,&nbsp;S. Haken,&nbsp;G. Hallett,&nbsp;P. M. Hamilton,&nbsp;J. Hammerich,&nbsp;Q. Han,&nbsp;X. Han,&nbsp;S. Hansmann-Menzemer,&nbsp;L. Hao,&nbsp;N. Harnew,&nbsp;T. H. Harris,&nbsp;M. Hartmann,&nbsp;S. Hashmi,&nbsp;J. He,&nbsp;A. Hedes,&nbsp;F. Hemmer,&nbsp;C. Henderson,&nbsp;R. Henderson,&nbsp;R. D. L. Henderson,&nbsp;A. M. Hennequin,&nbsp;K. Hennessy,&nbsp;L. Henry,&nbsp;J. Herd,&nbsp;P. Herrero Gascon,&nbsp;J. Heuel,&nbsp;A. Heyn,&nbsp;A. Hicheur,&nbsp;G. Hijano Mendizabal,&nbsp;J. Horswill,&nbsp;R. Hou,&nbsp;Y. Hou,&nbsp;D. C. Houston,&nbsp;N. Howarth,&nbsp;J. Hu,&nbsp;W. Hu,&nbsp;X. Hu,&nbsp;W. Hulsbergen,&nbsp;R. J. Hunter,&nbsp;M. Hushchyn,&nbsp;D. Hutchcroft,&nbsp;M. Idzik,&nbsp;D. Ilin,&nbsp;P. Ilten,&nbsp;A. Iniukhin,&nbsp;A. Iohner,&nbsp;A. Ishteev,&nbsp;K. Ivshin,&nbsp;H. Jage,&nbsp;S. J. Jaimes Elles,&nbsp;S. Jakobsen,&nbsp;E. Jans,&nbsp;B. K. Jashal,&nbsp;A. Jawahery,&nbsp;C. Jayaweera,&nbsp;V. Jevtic,&nbsp;Z. Jia,&nbsp;E. Jiang,&nbsp;X. Jiang,&nbsp;Y. Jiang,&nbsp;Y. J. Jiang,&nbsp;E. Jimenez Moya,&nbsp;N. Jindal,&nbsp;M. John,&nbsp;A. John Rubesh Rajan,&nbsp;D. Johnson,&nbsp;C. R. Jones,&nbsp;S. Joshi,&nbsp;B. Jost,&nbsp;J. Juan Castella,&nbsp;N. Jurik,&nbsp;I. Juszczak,&nbsp;D. Kaminaris,&nbsp;S. Kandybei,&nbsp;M. Kane,&nbsp;Y. Kang,&nbsp;C. Kar,&nbsp;M. Karacson,&nbsp;A. Kauniskangas,&nbsp;J. W. Kautz,&nbsp;M. K. Kazanecki,&nbsp;F. Keizer,&nbsp;M. Kenzie,&nbsp;T. Ketel,&nbsp;B. Khanji,&nbsp;A. Kharisova,&nbsp;S. Kholodenko,&nbsp;G. Khreich,&nbsp;T. Kirn,&nbsp;V. S. Kirsebom,&nbsp;O. Kitouni,&nbsp;S. Klaver,&nbsp;N. Kleijne,&nbsp;D. K. Klekots,&nbsp;K. Klimaszewski,&nbsp;M. R. Kmiec,&nbsp;T. Knospe,&nbsp;R. Kolb,&nbsp;S. Koliiev,&nbsp;L. Kolk,&nbsp;A. Konoplyannikov,&nbsp;P. Kopciewicz,&nbsp;P. Koppenburg,&nbsp;A. Korchin,&nbsp;M. Korolev,&nbsp;I. Kostiuk,&nbsp;O. Kot,&nbsp;S. Kotriakhova,&nbsp;E. Kowalczyk,&nbsp;A. Kozachuk,&nbsp;P. Kravchenko,&nbsp;L. Kravchuk,&nbsp;O. Kravcov,&nbsp;M. Kreps,&nbsp;P. Krokovny,&nbsp;W. Krupa,&nbsp;W. Krzemien,&nbsp;O. Kshyvanskyi,&nbsp;S. Kubis,&nbsp;M. Kucharczyk,&nbsp;V. Kudryavtsev,&nbsp;E. Kulikova,&nbsp;A. Kupsc,&nbsp;V. Kushnir,&nbsp;B. Kutsenko,&nbsp;J. Kvapil,&nbsp;I. Kyryllin,&nbsp;D. Lacarrere,&nbsp;P. Laguarta Gonzalez,&nbsp;A. Lai,&nbsp;A. Lampis,&nbsp;D. Lancierini,&nbsp;C. Landesa Gomez,&nbsp;J. J. Lane,&nbsp;G. Lanfranchi,&nbsp;C. Langenbruch,&nbsp;J. Langer,&nbsp;O. Lantwin,&nbsp;T. Latham,&nbsp;F. Lazzari,&nbsp;C. Lazzeroni,&nbsp;R. Le Gac,&nbsp;H. Lee,&nbsp;R. Lefèvre,&nbsp;A. Leflat,&nbsp;S. Legotin,&nbsp;M. Lehuraux,&nbsp;E. Lemos Cid,&nbsp;O. Leroy,&nbsp;T. Lesiak,&nbsp;E. D. Lesser,&nbsp;B. Leverington,&nbsp;A. Li,&nbsp;C. Li,&nbsp;C. Li,&nbsp;H. Li,&nbsp;J. Li,&nbsp;K. Li,&nbsp;L. Li,&nbsp;M. Li,&nbsp;P. Li,&nbsp;P.-R. Li,&nbsp;Q. Li,&nbsp;T. Li,&nbsp;T. Li,&nbsp;Y. Li,&nbsp;Y. Li,&nbsp;Y. Li,&nbsp;Z. Lian,&nbsp;Q. Liang,&nbsp;X. Liang,&nbsp;Z. Liang,&nbsp;S. Libralon,&nbsp;A. L. Lightbody,&nbsp;C. Lin,&nbsp;T. Lin,&nbsp;R. Lindner,&nbsp;H. Linton,&nbsp;R. Litvinov,&nbsp;D. Liu,&nbsp;F. L. Liu,&nbsp;G. Liu,&nbsp;K. Liu,&nbsp;S. Liu,&nbsp;W. Liu,&nbsp;Y. Liu,&nbsp;Y. Liu,&nbsp;Y. L. Liu,&nbsp;G. Loachamin Ordonez,&nbsp;A. Lobo Salvia,&nbsp;A. Loi,&nbsp;T. Long,&nbsp;F. C. L. Lopes,&nbsp;J. H. Lopes,&nbsp;A. Lopez Huertas,&nbsp;C. Lopez Iribarnegaray,&nbsp;S. López Soliño,&nbsp;Q. Lu,&nbsp;C. Lucarelli,&nbsp;D. Lucchesi,&nbsp;M. Lucio Martinez,&nbsp;Y. Luo,&nbsp;A. Lupato,&nbsp;E. Luppi,&nbsp;K. Lynch,&nbsp;X.-R. Lyu,&nbsp;G. M. Ma,&nbsp;H. Ma,&nbsp;S. Maccolini,&nbsp;F. Machefert,&nbsp;F. Maciuc,&nbsp;B. Mack,&nbsp;I. Mackay,&nbsp;L. M. Mackey,&nbsp;L. R. Madhan Mohan,&nbsp;M. J. Madurai,&nbsp;D. Magdalinski,&nbsp;D. Maisuzenko,&nbsp;J. J. Malczewski,&nbsp;S. Malde,&nbsp;L. Malentacca,&nbsp;A. Malinin,&nbsp;T. Maltsev,&nbsp;G. Manca,&nbsp;G. Mancinelli,&nbsp;C. Mancuso,&nbsp;R. Manera Escalero,&nbsp;F. M. Manganella,&nbsp;D. Manuzzi,&nbsp;D. Marangotto,&nbsp;J. F. Marchand,&nbsp;R. Marchevski,&nbsp;U. Marconi,&nbsp;E. Mariani,&nbsp;S. Mariani,&nbsp;C. Marin Benito,&nbsp;J. Marks,&nbsp;A. M. Marshall,&nbsp;L. Martel,&nbsp;G. Martelli,&nbsp;G. Martellotti,&nbsp;L. Martinazzoli,&nbsp;M. Martinelli,&nbsp;D. Martinez Gomez,&nbsp;D. Martinez Santos,&nbsp;F. Martinez Vidal,&nbsp;A. Martorell i Granollers,&nbsp;A. Massafferri,&nbsp;R. Matev,&nbsp;A. Mathad,&nbsp;V. Matiunin,&nbsp;C. Matteuzzi,&nbsp;K. R. Mattioli,&nbsp;A. Mauri,&nbsp;E. Maurice,&nbsp;J. Mauricio,&nbsp;P. Mayencourt,&nbsp;J. Mazorra de Cos,&nbsp;M. Mazurek,&nbsp;M. McCann,&nbsp;T. H. McGrath,&nbsp;N. T. McHugh,&nbsp;A. McNab,&nbsp;R. McNulty,&nbsp;B. Meadows,&nbsp;G. Meier,&nbsp;D. Melnychuk,&nbsp;D. Mendoza Granada,&nbsp;P. Menendez Valdes Perez,&nbsp;F. M. Meng,&nbsp;M. Merk,&nbsp;A. Merli,&nbsp;L. Meyer Garcia,&nbsp;D. Miao,&nbsp;H. Miao,&nbsp;M. Mikhasenko,&nbsp;D. A. Milanes,&nbsp;A. Minotti,&nbsp;E. Minucci,&nbsp;T. Miralles,&nbsp;B. Mitreska,&nbsp;D. S. Mitzel,&nbsp;R. Mocanu,&nbsp;A. Modak,&nbsp;L. Moeser,&nbsp;R. D. Moise,&nbsp;E. F. Molina Cardenas,&nbsp;T. Mombächer,&nbsp;M. Monk,&nbsp;S. Monteil,&nbsp;A. Morcillo Gomez,&nbsp;G. Morello,&nbsp;M. J. Morello,&nbsp;M. P. Morgenthaler,&nbsp;A. Moro,&nbsp;J. Moron,&nbsp;W. Morren,&nbsp;A. B. Morris,&nbsp;A. G. Morris,&nbsp;R. Mountain,&nbsp;H. Mu,&nbsp;Z. M. Mu,&nbsp;E. Muhammad,&nbsp;F. Muheim,&nbsp;M. Mulder,&nbsp;K. Müller,&nbsp;F. Muñoz-Rojas,&nbsp;R. Murta,&nbsp;V. Mytrochenko,&nbsp;P. Naik,&nbsp;T. Nakada,&nbsp;R. Nandakumar,&nbsp;T. Nanut,&nbsp;I. Nasteva,&nbsp;M. Needham,&nbsp;E. Nekrasova,&nbsp;N. Neri,&nbsp;S. Neubert,&nbsp;N. Neufeld,&nbsp;P. Neustroev,&nbsp;J. Nicolini,&nbsp;D. Nicotra,&nbsp;E. M. Niel,&nbsp;N. Nikitin,&nbsp;L. Nisi,&nbsp;Q. Niu,&nbsp;P. Nogarolli,&nbsp;P. Nogga,&nbsp;C. Normand,&nbsp;J. Novoa Fernandez,&nbsp;G. Nowak,&nbsp;C. Nunez,&nbsp;H. N. Nur,&nbsp;A. Oblakowska-Mucha,&nbsp;V. Obraztsov,&nbsp;T. Oeser,&nbsp;A. Okhotnikov,&nbsp;O. Okhrimenko,&nbsp;R. Oldeman,&nbsp;F. Oliva,&nbsp;E. Olivart Pino,&nbsp;M. Olocco,&nbsp;C. J. G. Onderwater,&nbsp;R. H. O’Neil,&nbsp;J. S. Ordonez Soto,&nbsp;D. Osthues,&nbsp;J. M. Otalora Goicochea,&nbsp;P. Owen,&nbsp;A. Oyanguren,&nbsp;O. Ozcelik,&nbsp;F. Paciolla,&nbsp;A. Padee,&nbsp;K. O. Padeken,&nbsp;B. Pagare,&nbsp;T. Pajero,&nbsp;A. Palano,&nbsp;L. Palini,&nbsp;M. Palutan,&nbsp;C. Pan,&nbsp;X. Pan,&nbsp;S. Panebianco,&nbsp;G. Panshin,&nbsp;L. Paolucci,&nbsp;A. Papanestis,&nbsp;M. Pappagallo,&nbsp;L. L. Pappalardo,&nbsp;C. Pappenheimer,&nbsp;C. Parkes,&nbsp;D. Parmar,&nbsp;B. Passalacqua,&nbsp;G. Passaleva,&nbsp;D. Passaro,&nbsp;A. Pastore,&nbsp;M. Patel,&nbsp;J. Patoc,&nbsp;C. Patrignani,&nbsp;A. Paul,&nbsp;C. J. Pawley,&nbsp;A. Pellegrino,&nbsp;J. Peng,&nbsp;X. Peng,&nbsp;M. Pepe Altarelli,&nbsp;S. Perazzini,&nbsp;D. Pereima,&nbsp;H. Pereira Da Costa,&nbsp;M. Pereira Martinez,&nbsp;A. Pereiro Castro,&nbsp;C. Perez,&nbsp;P. Perret,&nbsp;A. Perrevoort,&nbsp;A. Perro,&nbsp;M. J. Peters,&nbsp;K. Petridis,&nbsp;A. Petrolini,&nbsp;S. Pezzulo,&nbsp;J. P. Pfaller,&nbsp;H. Pham,&nbsp;L. Pica,&nbsp;M. Piccini,&nbsp;L. Piccolo,&nbsp;B. Pietrzyk,&nbsp;G. Pietrzyk,&nbsp;R. N. Pilato,&nbsp;D. Pinci,&nbsp;F. Pisani,&nbsp;M. Pizzichemi,&nbsp;V. M. Placinta,&nbsp;M. Plo Casasus,&nbsp;T. Poeschl,&nbsp;F. Polci,&nbsp;M. Poli Lener,&nbsp;A. Poluektov,&nbsp;N. Polukhina,&nbsp;I. Polyakov,&nbsp;E. Polycarpo,&nbsp;S. Ponce,&nbsp;D. Popov,&nbsp;S. Poslavskii,&nbsp;K. Prasanth,&nbsp;C. Prouve,&nbsp;D. Provenzano,&nbsp;V. Pugatch,&nbsp;G. Punzi,&nbsp;J. R. Pybus,&nbsp;S. Qasim,&nbsp;Q. Q. Qian,&nbsp;W. Qian,&nbsp;N. Qin,&nbsp;S. Qu,&nbsp;R. Quagliani,&nbsp;R. I. Rabadan Trejo,&nbsp;R. Racz,&nbsp;J. H. Rademacker,&nbsp;M. Rama,&nbsp;M. Ramírez García,&nbsp;V. Ramos De Oliveira,&nbsp;M. Ramos Pernas,&nbsp;M. S. Rangel,&nbsp;F. Ratnikov,&nbsp;G. Raven,&nbsp;M. Rebollo De Miguel,&nbsp;F. Redi,&nbsp;J. Reich,&nbsp;F. Reiss,&nbsp;Z. Ren,&nbsp;P. K. Resmi,&nbsp;M. Ribalda Galvez,&nbsp;R. Ribatti,&nbsp;G. Ricart,&nbsp;D. Riccardi,&nbsp;S. Ricciardi,&nbsp;K. Richardson,&nbsp;M. Richardson-Slipper,&nbsp;K. Rinnert,&nbsp;P. Robbe,&nbsp;G. Robertson,&nbsp;E. Rodrigues,&nbsp;A. Rodriguez Alvarez,&nbsp;E. Rodriguez Fernandez,&nbsp;J. A. Rodriguez Lopez,&nbsp;E. Rodriguez Rodriguez,&nbsp;J. Roensch,&nbsp;A. Rogachev,&nbsp;A. Rogovskiy,&nbsp;D. L. Rolf,&nbsp;P. Roloff,&nbsp;V. Romanovskiy,&nbsp;A. Romero Vidal,&nbsp;G. Romolini,&nbsp;F. Ronchetti,&nbsp;T. Rong,&nbsp;M. Rotondo,&nbsp;S. R. Roy,&nbsp;M. S. Rudolph,&nbsp;M. Ruiz Diaz,&nbsp;R. A. Ruiz Fernandez,&nbsp;J. Ruiz Vidal,&nbsp;J. J. Saavedra-Arias,&nbsp;J. J. Saborido Silva,&nbsp;S. E. R. Sacha Emile R.,&nbsp;N. Sagidova,&nbsp;D. Sahoo,&nbsp;N. Sahoo,&nbsp;B. Saitta,&nbsp;M. Salomoni,&nbsp;I. Sanderswood,&nbsp;R. Santacesaria,&nbsp;C. Santamarina Rios,&nbsp;M. Santimaria,&nbsp;L. Santoro,&nbsp;E. Santovetti,&nbsp;A. Saputi,&nbsp;D. Saranin,&nbsp;A. Sarnatskiy,&nbsp;G. Sarpis,&nbsp;M. Sarpis,&nbsp;C. Satriano,&nbsp;A. Satta,&nbsp;M. Saur,&nbsp;D. Savrina,&nbsp;H. Sazak,&nbsp;F. Sborzacchi,&nbsp;A. Scarabotto,&nbsp;S. Schael,&nbsp;S. Scherl,&nbsp;M. Schiller,&nbsp;H. Schindler,&nbsp;M. Schmelling,&nbsp;B. Schmidt,&nbsp;N. Schmidt,&nbsp;S. Schmitt,&nbsp;H. Schmitz,&nbsp;O. Schneider,&nbsp;A. Schopper,&nbsp;N. Schulte,&nbsp;M. H. Schune,&nbsp;G. Schwering,&nbsp;B. Sciascia,&nbsp;A. Sciuccati,&nbsp;G. Scriven,&nbsp;I. Segal,&nbsp;S. Sellam,&nbsp;A. Semennikov,&nbsp;T. Senger,&nbsp;M. Senghi Soares,&nbsp;A. Sergi,&nbsp;N. Serra,&nbsp;L. Sestini,&nbsp;A. Seuthe,&nbsp;B. Sevilla Sanjuan,&nbsp;Y. Shang,&nbsp;D. M. Shangase,&nbsp;M. Shapkin,&nbsp;R. S. Sharma,&nbsp;I. Shchemerov,&nbsp;L. Shchutska,&nbsp;T. Shears,&nbsp;L. Shekhtman,&nbsp;Z. Shen,&nbsp;S. Sheng,&nbsp;V. Shevchenko,&nbsp;B. Shi,&nbsp;Q. Shi,&nbsp;W. S. Shi,&nbsp;Y. Shimizu,&nbsp;E. Shmanin,&nbsp;R. Shorkin,&nbsp;J. D. Shupperd,&nbsp;R. Silva Coutinho,&nbsp;G. Simi,&nbsp;S. Simone,&nbsp;M. Singha,&nbsp;N. Skidmore,&nbsp;T. Skwarnicki,&nbsp;M. W. Slater,&nbsp;E. Smith,&nbsp;K. Smith,&nbsp;M. Smith,&nbsp;L. Soares Lavra,&nbsp;M. D. Sokoloff,&nbsp;F. J. P. Soler,&nbsp;A. Solomin,&nbsp;A. Solovev,&nbsp;K. Solovieva,&nbsp;N. S. Sommerfeld,&nbsp;R. Song,&nbsp;Y. Song,&nbsp;Y. Song,&nbsp;Y. S. Song,&nbsp;F. L. Souza De Almeida,&nbsp;B. Souza De Paula,&nbsp;K. M. Sowa,&nbsp;E. Spadaro Norella,&nbsp;E. Spedicato,&nbsp;J. G. Speer,&nbsp;P. Spradlin,&nbsp;V. Sriskaran,&nbsp;F. Stagni,&nbsp;M. Stahl,&nbsp;S. Stahl,&nbsp;S. Stanislaus,&nbsp;M. Stefaniak,&nbsp;E. N. Stein,&nbsp;O. Steinkamp,&nbsp;H. Stevens,&nbsp;D. Strekalina,&nbsp;Y. Su,&nbsp;F. Suljik,&nbsp;J. Sun,&nbsp;J. Sun,&nbsp;L. Sun,&nbsp;D. Sundfeld,&nbsp;W. Sutcliffe,&nbsp;V. Svintozelskyi,&nbsp;P. N. Swallow,&nbsp;K. Swientek,&nbsp;F. Swystun,&nbsp;A. Szabelski,&nbsp;T. Szumlak,&nbsp;Y. Tan,&nbsp;Y. Tang,&nbsp;Y. T. Tang,&nbsp;M. D. Tat,&nbsp;J. A. Teijeiro Jimenez,&nbsp;A. Terentev,&nbsp;F. Terzuoli,&nbsp;F. Teubert,&nbsp;E. Thomas,&nbsp;D. J. D. Thompson,&nbsp;A. R. Thomson-Strong,&nbsp;H. Tilquin,&nbsp;V. Tisserand,&nbsp;S. T’Jampens,&nbsp;M. Tobin,&nbsp;T. T. Todorov,&nbsp;L. Tomassetti,&nbsp;G. Tonani,&nbsp;X. Tong,&nbsp;T. Tork,&nbsp;D. Torres Machado,&nbsp;L. Toscano,&nbsp;D. Y. Tou,&nbsp;C. Trippl,&nbsp;G. Tuci,&nbsp;N. Tuning,&nbsp;L. H. Uecker,&nbsp;A. Ukleja,&nbsp;D. J. Unverzagt,&nbsp;A. Upadhyay,&nbsp;B. Urbach,&nbsp;A. Usachov,&nbsp;A. Ustyuzhanin,&nbsp;U. Uwer,&nbsp;V. Vagnoni,&nbsp;V. Valcarce Cadenas,&nbsp;G. Valenti,&nbsp;N. Valls Canudas,&nbsp;J. van Eldik,&nbsp;H. Van Hecke,&nbsp;E. van Herwijnen,&nbsp;C. B. Van Hulse,&nbsp;R. Van Laak,&nbsp;M. van Veghel,&nbsp;G. Vasquez,&nbsp;R. Vazquez Gomez,&nbsp;P. Vazquez Regueiro,&nbsp;C. Vázquez Sierra,&nbsp;S. Vecchi,&nbsp;J. Velilla Serna,&nbsp;J. J. Velthuis,&nbsp;M. Veltri,&nbsp;A. Venkateswaran,&nbsp;M. Verdoglia,&nbsp;M. Vesterinen,&nbsp;W. Vetens,&nbsp;D. Vico Benet,&nbsp;P. Vidrier Villalba,&nbsp;M. Vieites Diaz,&nbsp;X. Vilasis-Cardona,&nbsp;E. Vilella Figueras,&nbsp;A. Villa,&nbsp;P. Vincent,&nbsp;B. Vivacqua,&nbsp;F. C. Volle,&nbsp;D. vom Bruch,&nbsp;N. Voropaev,&nbsp;K. Vos,&nbsp;C. Vrahas,&nbsp;J. Wagner,&nbsp;J. Walsh,&nbsp;E. J. Walton,&nbsp;G. Wan,&nbsp;A. Wang,&nbsp;B. Wang,&nbsp;C. Wang,&nbsp;G. Wang,&nbsp;H. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;M. Wang,&nbsp;N. W. Wang,&nbsp;R. Wang,&nbsp;X. Wang,&nbsp;X. Wang,&nbsp;X. W. Wang,&nbsp;Y. Wang,&nbsp;Y. Wang,&nbsp;Y. H. Wang,&nbsp;Z. Wang,&nbsp;Z. Wang,&nbsp;J. A. Ward,&nbsp;M. Waterlaat,&nbsp;N. K. Watson,&nbsp;D. Websdale,&nbsp;Y. Wei,&nbsp;Z. Weida,&nbsp;J. Wendel,&nbsp;B. D. C. Westhenry,&nbsp;C. White,&nbsp;M. Whitehead,&nbsp;E. Whiter,&nbsp;A. R. Wiederhold,&nbsp;D. Wiedner,&nbsp;M. A. Wiegertjes,&nbsp;C. Wild,&nbsp;G. Wilkinson,&nbsp;M. K. Wilkinson,&nbsp;M. Williams,&nbsp;M. J. Williams,&nbsp;M. R. J. Williams,&nbsp;R. Williams,&nbsp;S. Williams,&nbsp;Z. Williams,&nbsp;F. F. Wilson,&nbsp;M. Winn,&nbsp;W. Wislicki,&nbsp;M. Witek,&nbsp;L. Witola,&nbsp;T. Wolf,&nbsp;E. Wood,&nbsp;G. Wormser,&nbsp;S. A. Wotton,&nbsp;H. Wu,&nbsp;J. Wu,&nbsp;X. Wu,&nbsp;Y. Wu,&nbsp;Z. Wu,&nbsp;K. Wyllie,&nbsp;S. Xian,&nbsp;Z. Xiang,&nbsp;Y. Xie,&nbsp;T. X. Xing,&nbsp;A. Xu,&nbsp;L. Xu,&nbsp;L. Xu,&nbsp;M. Xu,&nbsp;Z. Xu,&nbsp;Z. Xu,&nbsp;Z. Xu,&nbsp;K. Yang,&nbsp;X. Yang,&nbsp;Y. Yang,&nbsp;Z. Yang,&nbsp;V. Yeroshenko,&nbsp;H. Yeung,&nbsp;H. Yin,&nbsp;X. Yin,&nbsp;C. Y. Yu,&nbsp;J. Yu,&nbsp;X. Yuan,&nbsp;Y. Yuan,&nbsp;E. Zaffaroni,&nbsp;J. A. Zamora Saa,&nbsp;M. Zavertyaev,&nbsp;M. Zdybal,&nbsp;F. Zenesini,&nbsp;C. Zeng,&nbsp;M. Zeng,&nbsp;C. Zhang,&nbsp;D. Zhang,&nbsp;J. Zhang,&nbsp;L. Zhang,&nbsp;R. Zhang,&nbsp;S. Zhang,&nbsp;S. Zhang,&nbsp;Y. Zhang,&nbsp;Y. Z. Zhang,&nbsp;Z. Zhang,&nbsp;Y. Zhao,&nbsp;A. Zhelezov,&nbsp;S. Z. Zheng,&nbsp;X. Z. Zheng,&nbsp;Y. Zheng,&nbsp;T. Zhou,&nbsp;X. Zhou,&nbsp;Y. Zhou,&nbsp;V. Zhovkovska,&nbsp;L. Z. Zhu,&nbsp;X. Zhu,&nbsp;X. Zhu,&nbsp;Y. Zhu,&nbsp;V. Zhukov,&nbsp;J. Zhuo,&nbsp;Q. Zou,&nbsp;D. Zuliani,&nbsp;G. Zunica","doi":"10.1007/JHEP01(2026)159","DOIUrl":"10.1007/JHEP01(2026)159","url":null,"abstract":"<p>This paper describes a measurement of the <span>( {Lambda}_b^0to J/psi Lambda )</span> branching fraction using data collected with the LHCb experiment in proton-proton collisions from 2016 to 2018. The dataset corresponds to an integrated luminosity of 5<i>.</i>4 fb<sup><i>−</i>1</sup>. The branching fraction is determined relative to that of <span>( {B}^0to J/psi {K}_{textrm{S}}^0 )</span> decays,</p><p>yielding <span>( mathcal{B}left({Lambda}_b^0to J/psi Lambda right)=left(3.34pm 0.02pm 0.10pm 0.08pm 0.28right)times {10}^{-4} )</span>, where the first uncertainty is statistical, the second systematic, the third due to external inputs on branching fractions and the fourth due to the ratio of <span>( {Lambda}_b^0 )</span> baryon and <i>B</i><sup>0</sup> meson hadronisation fractions. In addition, the isospin asymmetry between the rates of <span>( {B}^0to J/psi {K}_{textrm{S}}^0 )</span> and <i>B</i><sup>+</sup> <i>→ J/ψK</i><sup>+</sup> decays is measured to be</p><p>where the first uncertainty is statistical and the second systematic.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)159.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gauge-invariant action for free string field theory with boundary 带边界的自由弦场理论的规范不变作用
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-26 DOI: 10.1007/JHEP01(2026)161
Carlo Maccaferri, Alberto Ruffino, Jakub Vošmera

We construct fully gauge-invariant kinetic terms for open and closed string field theories on a target space with boundary. This is realized by promoting the gauge parameters at the boundary to extra dynamical modes describing boundary degrees of freedom. Having a gauge-invariant classical action, we also construct the corresponding BV master action and show that the master equation is obeyed thanks to a peculiar nilpotent structure of the BV kinetic operator. From this general construction we explicitly derive free actions for massless and massive modes of open and closed strings propagating on a target with a boundary, including linear-dilaton backgrounds.

在有边界的目标空间上构造了开弦场理论和闭弦场理论的完全规范不变动力学项。这是通过将边界处的规范参数提升为描述边界自由度的额外动力模式来实现的。在具有规范不变经典作用的情况下,我们还构造了相应的BV主作用,并通过BV动力学算子特有的幂零结构证明了主方程是服从的。从这个一般构造中,我们明确地推导了在有边界的目标上传播的无质量和有质量模式的开弦和闭弦的自由作用,包括线性膨胀背景。
{"title":"Gauge-invariant action for free string field theory with boundary","authors":"Carlo Maccaferri,&nbsp;Alberto Ruffino,&nbsp;Jakub Vošmera","doi":"10.1007/JHEP01(2026)161","DOIUrl":"10.1007/JHEP01(2026)161","url":null,"abstract":"<p>We construct fully gauge-invariant kinetic terms for open and closed string field theories on a target space with boundary. This is realized by promoting the gauge parameters at the boundary to extra dynamical modes describing boundary degrees of freedom. Having a gauge-invariant classical action, we also construct the corresponding BV master action and show that the master equation is obeyed thanks to a peculiar nilpotent structure of the BV kinetic operator. From this general construction we explicitly derive free actions for massless and massive modes of open and closed strings propagating on a target with a boundary, including linear-dilaton backgrounds.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)161.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waterfall phase in supersymmetric hybrid inflation 超对称混合膨胀中的瀑布阶段
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-26 DOI: 10.1007/JHEP01(2026)162
Ahmad Moursy, Qaisar Shafi

We explore a class of realistic supersymmetric hybrid inflation models with a predicted scalar spectral index ns ≈ 0.97 − 0.978, which is in good agreement with the recent Atacama Cosmology Telescope (ACT) measurement. The waterfall field responsible for the gauge symmetry breaking in this scenario experiences some e-foldings during the inflationary epoch. The scalar perturbations associated with the waterfall field during this phase induce a stochastic gravitational wave spectrum that will be tested in the ongoing Pulsar Timing Array (PTA) measurements and in future experiments. In an SU(5) setting an observable number density of the superheavy GUT monopole linked to the waterfall field can be realized.

我们探索了一类具有预测标量谱指数ns≈0.97−0.978的现实超对称混合暴胀模型,该模型与最近的阿塔卡马宇宙望远镜(ACT)测量结果很好地吻合。在这种情况下,导致规范对称破缺的瀑布场在暴胀时期经历了一些电子折叠。在此阶段与瀑布场相关的标量扰动会产生随机引力波频谱,该频谱将在正在进行的脉冲星定时阵列(PTA)测量和未来的实验中进行测试。在SU(5)条件下,可以实现与瀑布场相连的超重GUT单极子的可观测数密度。
{"title":"Waterfall phase in supersymmetric hybrid inflation","authors":"Ahmad Moursy,&nbsp;Qaisar Shafi","doi":"10.1007/JHEP01(2026)162","DOIUrl":"10.1007/JHEP01(2026)162","url":null,"abstract":"<p>We explore a class of realistic supersymmetric hybrid inflation models with a predicted scalar spectral index <i>n</i><sub><i>s</i></sub> ≈ 0<i>.</i>97 − 0<i>.</i>978, which is in good agreement with the recent Atacama Cosmology Telescope (ACT) measurement. The waterfall field responsible for the gauge symmetry breaking in this scenario experiences some <i>e</i>-foldings during the inflationary epoch. The scalar perturbations associated with the waterfall field during this phase induce a stochastic gravitational wave spectrum that will be tested in the ongoing Pulsar Timing Array (PTA) measurements and in future experiments. In an SU(5) setting an observable number density of the superheavy GUT monopole linked to the waterfall field can be realized.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)162.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of High Energy Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1