Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir, a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed, and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established. The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure. In the early stage of production or in areas far from the wellbore with high reservoir pressure, the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models. In the late stage of production or in areas close to the wellbore with low reservoir pressure, the condensate oil saturation can be calculated using the data of constant composition expansion test. In the middle stages of production or when reservoir pressure is at an intermediate level, the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure. Through simulation and field application, the new method is verified to be reliable and practical. It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.
{"title":"A transient production prediction method for tight condensate gas wells with multiphase flow","authors":"Wenpeng BAI, Shiqing CHENG, Yang WANG, Dingning CAI, Xinyang GUO, Qiao GUO","doi":"10.1016/S1876-3804(24)60014-5","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60014-5","url":null,"abstract":"<div><p>Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir, a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed, and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established. The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure. In the early stage of production or in areas far from the wellbore with high reservoir pressure, the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models. In the late stage of production or in areas close to the wellbore with low reservoir pressure, the condensate oil saturation can be calculated using the data of constant composition expansion test. In the middle stages of production or when reservoir pressure is at an intermediate level, the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure. Through simulation and field application, the new method is verified to be reliable and practical. It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 172-179"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600145/pdf?md5=da3c4292f9dece98635177b1018353cd&pid=1-s2.0-S1876380424600145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/S1876-3804(24)60005-4
Shuyuan SHI , Suyun HU , Wei LIU , Tongshan WANG , Gang ZHOU , Anna XU , Qingyu HUANG , Zhaohui XU , Bin HAO , Kun WANG , Hua JIANG , Kui MA , Zhuangzhuang BAI
The Ediacaran–Ordovician strata within three major marine basins (Tarim, Sichuan, and Ordos) in China are analyzed. Based on previous studies focusing on the characteristics of the Neoproterozoic–Cambrian strata within the three major basins (East Siberian, Oman, and Officer in Australian) overseas, the carbonate–evaporite assemblages in the target interval are divided into three types: intercalated carbonate and gypsum salt, interbedded carbonate and gypsum salt, and coexisted carbonate, gypsum salt and clastic rock. Moreover, the concept and definition of the carbonate–evaporite assemblage are clarified. The results indicate that the oil and gas in the carbonate–evaporite assemblage are originated from two types of source rocks: shale and argillaceous carbonate, and confirmed the capability of gypsum salt in the saline environment to drive the source rock hydrocarbon generation. The dolomite reservoirs are classified in two types: gypsum-bearing dolomite flat, and grain shoal & microbial mound. This study clarifies that the penecontemporaneous or epigenic leaching of atmospheric fresh water mainly controlled the large-scale development of reservoirs. Afterwards, burial dissolution transformed and reworked the reservoirs. The hydrocarbon accumulation in carbonate-evaporite assemblage can be categorized into eight sub-models under three models (sub-evaporite hydrocarbon accumulation, supra-evaporite hydrocarbon accumulation, and inter-evaporite hydrocarbon accumulation). As a result, the Cambrian strata in the Tazhong Uplift North Slope, Maigaiti Slope and Mazatag Front Uplift Zone of the Tarim Basin, the Cambrian strata in the eastern-southern area of the Sichuan Basin, and the inter-evaporite Ma-4 Member of Ordovician in the Ordos Basin, China, are defined as favorable targets for future exploration.
{"title":"Hydrocarbon accumulation in deep ancient carbonate–evaporite assemblages","authors":"Shuyuan SHI , Suyun HU , Wei LIU , Tongshan WANG , Gang ZHOU , Anna XU , Qingyu HUANG , Zhaohui XU , Bin HAO , Kun WANG , Hua JIANG , Kui MA , Zhuangzhuang BAI","doi":"10.1016/S1876-3804(24)60005-4","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60005-4","url":null,"abstract":"<div><p>The Ediacaran–Ordovician strata within three major marine basins (Tarim, Sichuan, and Ordos) in China are analyzed. Based on previous studies focusing on the characteristics of the Neoproterozoic–Cambrian strata within the three major basins (East Siberian, Oman, and Officer in Australian) overseas, the carbonate–evaporite assemblages in the target interval are divided into three types: intercalated carbonate and gypsum salt, interbedded carbonate and gypsum salt, and coexisted carbonate, gypsum salt and clastic rock. Moreover, the concept and definition of the carbonate–evaporite assemblage are clarified. The results indicate that the oil and gas in the carbonate–evaporite assemblage are originated from two types of source rocks: shale and argillaceous carbonate, and confirmed the capability of gypsum salt in the saline environment to drive the source rock hydrocarbon generation. The dolomite reservoirs are classified in two types: gypsum-bearing dolomite flat, and grain shoal & microbial mound. This study clarifies that the penecontemporaneous or epigenic leaching of atmospheric fresh water mainly controlled the large-scale development of reservoirs. Afterwards, burial dissolution transformed and reworked the reservoirs. The hydrocarbon accumulation in carbonate-evaporite assemblage can be categorized into eight sub-models under three models (sub-evaporite hydrocarbon accumulation, supra-evaporite hydrocarbon accumulation, and inter-evaporite hydrocarbon accumulation). As a result, the Cambrian strata in the Tazhong Uplift North Slope, Maigaiti Slope and Mazatag Front Uplift Zone of the Tarim Basin, the Cambrian strata in the eastern-southern area of the Sichuan Basin, and the inter-evaporite Ma-4 Member of Ordovician in the Ordos Basin, China, are defined as favorable targets for future exploration.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 54-68"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600054/pdf?md5=403b5e6e22702d1df81fdd6ec76e5803&pid=1-s2.0-S1876380424600054-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/S1876-3804(24)60003-0
Zecheng WANG , Qingchun JIANG , Jufeng WANG , Guohui LONG , Honggang CHENG , Yizuo SHI , Qisen SUN , Hua JIANG , Yiming ABULIMITI , Zhenglin CAO , Yang XU , Jiamin LU , Linjun HUANG
Based on the global basement reservoir database and the dissection of basement reservoirs in China, the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed, and the favorable conditions for hydrocarbon accumulation in deep basement reservoirs are investigated to highlight the exploration targets. The discovered basement reservoirs worldwide are mainly buried in the Archean and Precambrian granitic and metamorphic formations with depths less than 4 500 m, and the relatively large reservoirs have been found in rift, back-arc and foreland basins in tectonic active zones of the Meso-Cenozoic plates. The hydrocarbon accumulation in basement reservoirs exhibits the characteristics in three aspects. First, the porous-fractured reservoirs with low porosity and ultra-low permeability are dominant, where extensive hydrocarbon accumulation occurred during the weathering denudation and later tectonic reworking of the basin basement. High resistance to compaction allows the physical properties of these highly heterogeneous reservoirs to be independent of the buried depth. Second, the hydrocarbons were sourced from the formations outside the basement. The source-reservoir assemblages are divided into contacted source rock-basement and separated source rock-basement patterns. Third, the abnormal high pressure in the source rock and the normal–low pressure in the basement reservoirs cause a large pressure difference between the source rock and the reservoirs, which is conducive to the pumping effect of hydrocarbons in the deep basement. The deep basement prospects are mainly evaluated by the factors such as tectonic activity of basement, source-reservoir combination, development of large deep faults (especially strike-slip faults), and regional seals. The Precambrian crystalline basements at the margin of the intracontinental rifts in cratonic basins, as well as the Paleozoic folded basements and the Meso-Cenozoic fault-block basements adjacent to the hydrocarbon generation depressions, have favorable conditions for hydrocarbon accumulation, and thus they are considered as the main targets for future exploration of deep basement reservoirs.
{"title":"Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China","authors":"Zecheng WANG , Qingchun JIANG , Jufeng WANG , Guohui LONG , Honggang CHENG , Yizuo SHI , Qisen SUN , Hua JIANG , Yiming ABULIMITI , Zhenglin CAO , Yang XU , Jiamin LU , Linjun HUANG","doi":"10.1016/S1876-3804(24)60003-0","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60003-0","url":null,"abstract":"<div><p>Based on the global basement reservoir database and the dissection of basement reservoirs in China, the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed, and the favorable conditions for hydrocarbon accumulation in deep basement reservoirs are investigated to highlight the exploration targets. The discovered basement reservoirs worldwide are mainly buried in the Archean and Precambrian granitic and metamorphic formations with depths less than 4 500 m, and the relatively large reservoirs have been found in rift, back-arc and foreland basins in tectonic active zones of the Meso-Cenozoic plates. The hydrocarbon accumulation in basement reservoirs exhibits the characteristics in three aspects. First, the porous-fractured reservoirs with low porosity and ultra-low permeability are dominant, where extensive hydrocarbon accumulation occurred during the weathering denudation and later tectonic reworking of the basin basement. High resistance to compaction allows the physical properties of these highly heterogeneous reservoirs to be independent of the buried depth. Second, the hydrocarbons were sourced from the formations outside the basement. The source-reservoir assemblages are divided into contacted source rock-basement and separated source rock-basement patterns. Third, the abnormal high pressure in the source rock and the normal–low pressure in the basement reservoirs cause a large pressure difference between the source rock and the reservoirs, which is conducive to the pumping effect of hydrocarbons in the deep basement. The deep basement prospects are mainly evaluated by the factors such as tectonic activity of basement, source-reservoir combination, development of large deep faults (especially strike-slip faults), and regional seals. The Precambrian crystalline basements at the margin of the intracontinental rifts in cratonic basins, as well as the Paleozoic folded basements and the Meso-Cenozoic fault-block basements adjacent to the hydrocarbon generation depressions, have favorable conditions for hydrocarbon accumulation, and thus they are considered as the main targets for future exploration of deep basement reservoirs.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 31-43"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600030/pdf?md5=3729f6c7f43a3bed59192058f7c35c8f&pid=1-s2.0-S1876380424600030-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/S1876-3804(24)60015-7
Degang WU , Shenghe WU , Lei LIU , Yide SUN
Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness, an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed. We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata, constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each strata. The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%, and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results, which is about 17 percentage points higher than that of the existing automatic correlation methods. The accuracy of the automatic correlation of oil-bearing strata has been effectively improved.
{"title":"An intelligent automatic correlation method of oil-bearing strata based on pattern constraints: An example of accretionary stratigraphy of Shishen 100 block in Shinan Oilfield of Bohai Bay Basin, East China","authors":"Degang WU , Shenghe WU , Lei LIU , Yide SUN","doi":"10.1016/S1876-3804(24)60015-7","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60015-7","url":null,"abstract":"<div><p>Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness, an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed. We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata, constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each strata. The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%, and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results, which is about 17 percentage points higher than that of the existing automatic correlation methods. The accuracy of the automatic correlation of oil-bearing strata has been effectively improved.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 180-192"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600157/pdf?md5=df0e89a5a44d0491f3897586de95f1c4&pid=1-s2.0-S1876380424600157-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139748917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/S1876-3804(24)60016-9
Xuehao PEI , Yuetian LIU , Ziyu LIN , Pingtian FAN , Liao MI , Liang XUE
Based on the tortuous capillary network model, the relationship between anisotropic permeability and rock normal strain, namely the anisotropic dynamic permeability model (ADPM), was derived and established. The model was verified using pore-scale flow simulation. The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed. In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs, the effect of effective surface porosity on the permeability in all directions is consistent. With the decrease of effective surface porosity, the sensitivity of permeability to strain increases. The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity, while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity. For layered reservoirs with the same initial tortuosity in all directions, the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop. When the tortuosity is less than 1.6, the decrease rate of horizontal permeability is higher than that of vertical permeability, while the opposite is true when the tortuosity is greater than 1.6. This phenomenon cannot be represented by traditional dynamic permeability model. After the verification by experimental data of pore-scale simulation, the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions.
{"title":"Anisotropic dynamic permeability model for porous media","authors":"Xuehao PEI , Yuetian LIU , Ziyu LIN , Pingtian FAN , Liao MI , Liang XUE","doi":"10.1016/S1876-3804(24)60016-9","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60016-9","url":null,"abstract":"<div><p>Based on the tortuous capillary network model, the relationship between anisotropic permeability and rock normal strain, namely the anisotropic dynamic permeability model (ADPM), was derived and established. The model was verified using pore-scale flow simulation. The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed. In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs, the effect of effective surface porosity on the permeability in all directions is consistent. With the decrease of effective surface porosity, the sensitivity of permeability to strain increases. The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity, while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity. For layered reservoirs with the same initial tortuosity in all directions, the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop. When the tortuosity is less than 1.6, the decrease rate of horizontal permeability is higher than that of vertical permeability, while the opposite is true when the tortuosity is greater than 1.6. This phenomenon cannot be represented by traditional dynamic permeability model. After the verification by experimental data of pore-scale simulation, the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 193-202"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600169/pdf?md5=5c992308e796c48d4bf012e76a696c91&pid=1-s2.0-S1876380424600169-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/S1876-3804(24)60008-X
Changzhi LI , Pei GUO , Jinghong XU , Kai ZHONG , Huaguo WEN
Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in different depositional zones of Mahu Sag in the Junggar Basin, and to reconstruct their differential diagenetic evolutional processes. The diagenetic environment of shales in the lake-central zone kept alkaline, which mainly underwent the early stage (Ro<0.5%) dominated by the authigenesis of Na-carbonates and K-feldspar and the late stage (Ro0.5%) dominated by the replacement of Na-carbonates by reedmergnerite. The shales from the marginal zone underwent a transition from weak alkaline to acidic diagenetic environments, with the early stage dominated by the authigenesis of Mg-bearing clay and silica and the late stage dominated by the dissolution of feldspar and carbonate minerals. The shales from the transitional zone also underwent a transition from an early alkaline diagenetic environment, evidenced by the formation of dolomite and zeolite, to a late acidic diagenetic environment, represented by the reedmergnerite replacement and silicification of feldspar and carbonate minerals. The differences in formation of authigenic minerals during early diagenetic stage determine the fracability of shales. The differences in dissolution of minerals during late diagenetic stage control the content of free shale oil. Dolomitic shale in the transitional zone and siltstone in the marginal zone have relatively high content of free shale oil and strong fracability, and are favorable “sweet spots” for shale oil exploitation and development.
{"title":"Influences of different alkaline and acidic diagenetic environments on diagenetic evolution and reservoir quality of alkaline lake shales","authors":"Changzhi LI , Pei GUO , Jinghong XU , Kai ZHONG , Huaguo WEN","doi":"10.1016/S1876-3804(24)60008-X","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60008-X","url":null,"abstract":"<div><p>Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in different depositional zones of Mahu Sag in the Junggar Basin, and to reconstruct their differential diagenetic evolutional processes. The diagenetic environment of shales in the lake-central zone kept alkaline, which mainly underwent the early stage (<em>R</em><sub>o</sub><0.5%) dominated by the authigenesis of Na-carbonates and K-feldspar and the late stage (<em>R</em><sub>o</sub>0.5%) dominated by the replacement of Na-carbonates by reedmergnerite. The shales from the marginal zone underwent a transition from weak alkaline to acidic diagenetic environments, with the early stage dominated by the authigenesis of Mg-bearing clay and silica and the late stage dominated by the dissolution of feldspar and carbonate minerals. The shales from the transitional zone also underwent a transition from an early alkaline diagenetic environment, evidenced by the formation of dolomite and zeolite, to a late acidic diagenetic environment, represented by the reedmergnerite replacement and silicification of feldspar and carbonate minerals. The differences in formation of authigenic minerals during early diagenetic stage determine the fracability of shales. The differences in dissolution of minerals during late diagenetic stage control the content of free shale oil. Dolomitic shale in the transitional zone and siltstone in the marginal zone have relatively high content of free shale oil and strong fracability, and are favorable “sweet spots” for shale oil exploitation and development.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 97-113"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187638042460008X/pdf?md5=d261ee9e2d63a21e8cbcd2102abdbf7c&pid=1-s2.0-S187638042460008X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/S1876-3804(24)60010-8
Tao HU , Fujie JIANG , Xiongqi PANG , Yuan LIU , Guanyun WU , Kuo ZHOU , Huiyi XIAO , Zhenxue JIANG , Maowen LI , Shu JIANG , Liliang HUANG , Dongxia CHEN , Qingyang MENG
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin, NW China, as an example, core observation, test analysis, geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon. The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method, and the petroleum geological significance of shale oil micro-migration evaluation was determined. Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina. The organic-rich lamina has strong hydrocarbon generation ability. The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption, while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil. About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon, while 31% of those exhibit hydrocarbon expulsion phenomenon. The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect, two-dimension nuclear magnetic resonance analysis, and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration. Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations, which reflects the whole process of shale oil generation, expulsion and accumulation, and controls the content and composition of shale oil. The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a “multi-peak model in oil generation” of shale.
{"title":"Identification and evaluation of shale oil micro-migration and its petroleum geological significance","authors":"Tao HU , Fujie JIANG , Xiongqi PANG , Yuan LIU , Guanyun WU , Kuo ZHOU , Huiyi XIAO , Zhenxue JIANG , Maowen LI , Shu JIANG , Liliang HUANG , Dongxia CHEN , Qingyang MENG","doi":"10.1016/S1876-3804(24)60010-8","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60010-8","url":null,"abstract":"<div><p>Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin, NW China, as an example, core observation, test analysis, geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon. The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method, and the petroleum geological significance of shale oil micro-migration evaluation was determined. Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina. The organic-rich lamina has strong hydrocarbon generation ability. The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption, while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil. About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon, while 31% of those exhibit hydrocarbon expulsion phenomenon. The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect, two-dimension nuclear magnetic resonance analysis, and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration. Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations, which reflects the whole process of shale oil generation, expulsion and accumulation, and controls the content and composition of shale oil. The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a “multi-peak model in oil generation” of shale.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 127-140"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600108/pdf?md5=813cefe4bc5c3f28679f162e3b163e03&pid=1-s2.0-S1876380424600108-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/S1876-3804(24)60011-X
Li WANG , Zhiquan NIE , Yebo DU , Lin WANG , Fanchao MENG , Yuliu CHEN , Jie HU , Ruxin DING
Based on the analysis of the fluid inclusion homogenization temperature and apatite fission track on the northern slope zone of the Bongor Basin in Chad, this paper studied the time and stages of hydrocarbon accumulation in the study area. The results show that: (1) The brine inclusions of the samples from the Kubla and Prosopis formations in the Lower Cretaceous coexisting with the hydrocarbon generally present two sets of peak ranges of homogenization temperature, with the peak ranges of low temperature and high temperature being 75–105 °C and 115–135 °C, respectively; (2) The samples from the Kubla and Prosopis formations have experienced five tectonic evolution stages, i.e., rapid subsidence in the Early Cretaceous, tectonic inversion in the Late Cretaceous, small subsidence in the Paleogene, uplift at the turn of the Paleogene and Neogene, and subsidence since the Miocene, in which the denudation thickness of the Late Cretaceous and after the turn of the Paleogene and Neogene are ~1.8 km and ~0.5 km, respectively. The cumulative denudation thickness of the two periods is about 2.3 km; (3) Using the brine inclusion homogenization temperature coexisting with the hydrocarbon as the capture temperature of the hydrocarbon, and combining with the apatite fission track thermal history modeling, the result shows that the Kubla and Prosopis formations in the Lower Cretaceous on the northern slope of the Bongor Basin have the same hydrocarbon accumulation time and stages, both of which have undergone two stages of hydrocarbon charging at 80–95 Ma and 65–80 Ma. The first stage of charging corresponds to the initial migration of hydrocarbon at the end of the Early Cretaceous rapid sedimentation, while the second stage of charging is in the stage of intense tectonic inversion in the Late Cretaceous.
{"title":"Hydrocarbon accumulation history in Lower Cretaceous in northern slope of Bongor Basin in Chad, Central Africa","authors":"Li WANG , Zhiquan NIE , Yebo DU , Lin WANG , Fanchao MENG , Yuliu CHEN , Jie HU , Ruxin DING","doi":"10.1016/S1876-3804(24)60011-X","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60011-X","url":null,"abstract":"<div><p>Based on the analysis of the fluid inclusion homogenization temperature and apatite fission track on the northern slope zone of the Bongor Basin in Chad, this paper studied the time and stages of hydrocarbon accumulation in the study area. The results show that: (1) The brine inclusions of the samples from the Kubla and Prosopis formations in the Lower Cretaceous coexisting with the hydrocarbon generally present two sets of peak ranges of homogenization temperature, with the peak ranges of low temperature and high temperature being 75–105 °C and 115–135 °C, respectively; (2) The samples from the Kubla and Prosopis formations have experienced five tectonic evolution stages, i.e., rapid subsidence in the Early Cretaceous, tectonic inversion in the Late Cretaceous, small subsidence in the Paleogene, uplift at the turn of the Paleogene and Neogene, and subsidence since the Miocene, in which the denudation thickness of the Late Cretaceous and after the turn of the Paleogene and Neogene are ~1.8 km and ~0.5 km, respectively. The cumulative denudation thickness of the two periods is about 2.3 km; (3) Using the brine inclusion homogenization temperature coexisting with the hydrocarbon as the capture temperature of the hydrocarbon, and combining with the apatite fission track thermal history modeling, the result shows that the Kubla and Prosopis formations in the Lower Cretaceous on the northern slope of the Bongor Basin have the same hydrocarbon accumulation time and stages, both of which have undergone two stages of hydrocarbon charging at 80–95 Ma and 65–80 Ma. The first stage of charging corresponds to the initial migration of hydrocarbon at the end of the Early Cretaceous rapid sedimentation, while the second stage of charging is in the stage of intense tectonic inversion in the Late Cretaceous.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 141-151"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187638042460011X/pdf?md5=a879dd0a66a18d14ae37388ddc248a18&pid=1-s2.0-S187638042460011X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/S1876-3804(24)60012-1
Zhengdong LEI , Zhengmao WANG , Lijun MU , Huanhuan PENG , Xin LI , Xiaohu BAI , Zhen TAO , Hongchang LI , Yingfeng PENG
A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs, revealing the patterns of change in pressure field, seepage field, and stress field after long-term water injection in tight oil reservoirs. Based on this, a technique for enhanced oil recovery (EOR) combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed. The study shows that after long-term water flooding for tight oil development, the pressure diffusion range is limited, making it difficult to establish an effective displacement system. The variation in geostress exhibits diversity, with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress, and the variation around the injection wells being more significant than that around the production wells. The deflection of geostress direction around injection wells is also large. The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system. Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation, energy increase during fracturing, well soaking for energy storage, and combination of displacement and imbibition, it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing. By intensifying the imbibition effect through the coordination of multiple wells, it reconstructs the combined system of displacement and imbibition under a complex fracture network, transitioning from avoiding fractures to utilizing them, thereby improving microscopic sweep and oil displacement efficiencies. Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points, enabling large scale and efficient development of tight oil.
{"title":"A technique for enhancing tight oil recovery by multi-field reconstruction and combined displacement and imbibition","authors":"Zhengdong LEI , Zhengmao WANG , Lijun MU , Huanhuan PENG , Xin LI , Xiaohu BAI , Zhen TAO , Hongchang LI , Yingfeng PENG","doi":"10.1016/S1876-3804(24)60012-1","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60012-1","url":null,"abstract":"<div><p>A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs, revealing the patterns of change in pressure field, seepage field, and stress field after long-term water injection in tight oil reservoirs. Based on this, a technique for enhanced oil recovery (EOR) combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed. The study shows that after long-term water flooding for tight oil development, the pressure diffusion range is limited, making it difficult to establish an effective displacement system. The variation in geostress exhibits diversity, with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress, and the variation around the injection wells being more significant than that around the production wells. The deflection of geostress direction around injection wells is also large. The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system. Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation, energy increase during fracturing, well soaking for energy storage, and combination of displacement and imbibition, it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing. By intensifying the imbibition effect through the coordination of multiple wells, it reconstructs the combined system of displacement and imbibition under a complex fracture network, transitioning from avoiding fractures to utilizing them, thereby improving microscopic sweep and oil displacement efficiencies. Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points, enabling large scale and efficient development of tight oil.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 152-163"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600121/pdf?md5=dcbfbf96bcf931c381dd1463c51f5952&pid=1-s2.0-S1876380424600121-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/S1876-3804(24)60004-2
Yong LI , Zhuangsen WANG , Longyi SHAO , Jiaxun GONG , Peng WU
Through core observation, thin section identification, X-ray diffraction analysis, scanning electron microscopy, and low-temperature nitrogen adsorption and isothermal adsorption experiments, the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs. A petrological nomenclature and classification scheme for bauxitic rocks based on three units (aluminum hydroxides, iron minerals and clay minerals) is proposed. It is found that bauxitic mudstone is in the form of dense massive and clastic structures, while the (clayey) bauxite is of dense massive, pisolite, oolite, porous soil and clastic structures. Both bauxitic mudstone and bauxite reservoirs develop dissolution pores, intercrystalline pores, and microfractures as the dominant gas storage space, with the porosity less than 10% and mesopores in dominance. The bauxite series in the North China Craton, which can be divided into five sections, i.e., ferrilite (Shanxi-style iron ore, section A), bauxitic mudstone (section B), bauxite (section C), bauxite mudstone (debris-containing, section D) and dark mudstone-coal section (section E). The burrow/funnel filling, lenticular, layered/massive bauxite deposits occur separately in the karst platforms, gentle slopes and low-lying areas. The karst platforms and gentle slopes are conducive to surface water leaching, with strong karstification, well-developed pores, large reservoir thickness and good physical properties, but poor strata continuity. The low-lying areas have poor physical properties but relatively continuous and stable reservoirs. The gas enrichment in bauxites is jointly controlled by source rock, reservoir rock and fractures. This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
{"title":"Reservoir characteristics and formation model of Upper Carboniferous bauxite series in eastern Ordos Basin, NW China","authors":"Yong LI , Zhuangsen WANG , Longyi SHAO , Jiaxun GONG , Peng WU","doi":"10.1016/S1876-3804(24)60004-2","DOIUrl":"https://doi.org/10.1016/S1876-3804(24)60004-2","url":null,"abstract":"<div><p>Through core observation, thin section identification, X-ray diffraction analysis, scanning electron microscopy, and low-temperature nitrogen adsorption and isothermal adsorption experiments, the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs. A petrological nomenclature and classification scheme for bauxitic rocks based on three units (aluminum hydroxides, iron minerals and clay minerals) is proposed. It is found that bauxitic mudstone is in the form of dense massive and clastic structures, while the (clayey) bauxite is of dense massive, pisolite, oolite, porous soil and clastic structures. Both bauxitic mudstone and bauxite reservoirs develop dissolution pores, intercrystalline pores, and microfractures as the dominant gas storage space, with the porosity less than 10% and mesopores in dominance. The bauxite series in the North China Craton, which can be divided into five sections, i.e., ferrilite (Shanxi-style iron ore, section A), bauxitic mudstone (section B), bauxite (section C), bauxite mudstone (debris-containing, section D) and dark mudstone-coal section (section E). The burrow/funnel filling, lenticular, layered/massive bauxite deposits occur separately in the karst platforms, gentle slopes and low-lying areas. The karst platforms and gentle slopes are conducive to surface water leaching, with strong karstification, well-developed pores, large reservoir thickness and good physical properties, but poor strata continuity. The low-lying areas have poor physical properties but relatively continuous and stable reservoirs. The gas enrichment in bauxites is jointly controlled by source rock, reservoir rock and fractures. This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 1","pages":"Pages 44-53"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600042/pdf?md5=2b4c148d05b29479290f5ab61dae2b1c&pid=1-s2.0-S1876380424600042-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}