For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid, the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid. With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface, fracture closure and rock powder blocking, the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid. The formation damage mechanism during drilling and completion process in shale reservoir is revealed, and the protection measures are raised. The drilling fluid can deeply invade into the shale formation through natural and induced fractures, erode shale minerals and weaken the mechanical properties of shale during the drilling process. In the process of hydraulic fracturing, the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale, results in fracture closure and rock powder shedding, and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures. The damage can yield significant conductivity decrease of fractures, and restrict the high and stable production of shale oil and gas wells. The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section, forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface, strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid, optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.
Deep coal seams show low permeability, low elastic modulus, high Poisson’s ratio, strong plasticity, high fracture initiation pressure, difficulty in fracture extension, and difficulty in proppants addition. We proposed the concept of large-scale stimulation by fracture network, balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane (CBM) horizontal wells. This technique involves massive injection with high pumping rate + high-intensity proppant injection + perforation with equal apertures and limited flow + temporary plugging and diverting fractures + slick water with integrated variable viscosity + graded proppants with multiple sizes. The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block, eastern margin of the Ordos Basin. The injection flow rate is 18 m3/min, proppant intensity is 2.1 m3/m, and fracturing fluid intensity is 16.5 m3/m. After fracturing, a complex fracture network was formed, with an average fracture length of 205 m. The stimulated reservoir volume was 1 987×104 m3, and the peak gas production rate reached 6.0×104 m3/d, which achieved efficient development of deep CBM.
A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance (NMR) and CT scanning. The microscopic production mechanism of tight/shale oil in pore throat by dynamic imbibition and the influencing factors on the development effect of dynamic imbibition were analyzed. The dynamic seepage process of fracking–soaking–backflow–production integration was simulated, which reveals the dynamic production characteristics at different development stages and their contribution to enhancing oil recovery (EOR). The seepage of tight/shale reservoirs can be divided into three stages: strong displacement and weak imbibition as oil produced rapidly by displacement from macropores and fractures, weak displacement and strong imbibition as oil produced slowly by reverse imbibition from small pores, and weak displacement and weak imbibition at dynamic equilibrium. The greater displacement pressure results in the higher displacement recovery and the lower imbibition recovery. However, if the displacement pressure is too high, the injected water is easy to break through the front and reduce the recovery degree. The higher the permeability, the greater the imbibition and displacement recovery, the shorter the time of imbibition balance, and the higher the final recovery. The fractures can effectively increase the imbibition contact area between matrix and water, reduce the oil-water seepage resistance, promote the oil-water displacement between matrix and fracture, and improve the oil displacement rate and recovery of the matrix. The soaking after fracturing is beneficial to the imbibition replacement and energy storage of the fluid; also, the effective use of the carrying of the backflow fluid and the displacement in the mining stage is the key to enhancing oil recovery.
In the mid-21st century, natural gas will enter its golden age, and the era of natural gas is arriving. This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas revolution, summarizes the development history and achievements of the natural gas industry in China, analyzes the status and challenges of natural gas in the green and low-carbon energy transition, and puts forward the natural gas industry development strategies under carbon neutral target in China. The natural gas industry in China has experienced three periods: start, growth, and leap forward. At present, China has become the fourth largest natural gas producer and third largest natural gas consumer in the world, and has made great achievements in natural gas exploration and development theory and technology, providing important support for the growth of production and reserves. China has set its goal of carbon neutrality to promote green and sustainable development, which brings opportunities and challenges for natural gas industry. Natural gas has significant low-carbon advantages, and gas-electric peak shaving boosts new energy development; the difficulty and cost of development are more prominent. For the national energy security and harmonious development between economy and ecology under the carbon neutral goal, based on the principle of “comprehensive planning, technological innovation, multi-energy complementarity, diversified integration, flexibility and efficiency, optimization and upgrading”, the construction of the production-supply- storage-marketing system has to be improved so as to boost the development of the natural gas industry. First, it is necessary to strengthen efforts in the exploration and development of natural gas, making projects and arrangement in key exploration and development areas, meanwhile, it is urgent to make breakthroughs in key science theories and technologies, so as to increase reserve and production. Second, it should promote green and innovative development of the natural gas by developing new techniques, expanding new fields and integrating with new energy. Third, there is a demand to realize transformation and upgrading of the supply and demand structure of natural gas by strengthening the layout of pipeline gas, liquefied natural gas and the construction of underground gas storage, establishing reserve system for improving abilities of emergency response and adjustment, raising the proportion of natural gas in the primary energy consumption and contributing to the transformation of energy consumption structure, realizing low-carbon resources utilization and clean energy consumption.
Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane, the indication of geochemical characteristics of light hydrocarbons on the migration features, dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed, and the effect of migration on specific light hydrocarbon indexes is further discussed. The study indicates that, natural gas from the Lower Shihezi Formation (P1x) in the Dongsheng gas field displays higher iso-C5−7 contents than n-C5−7 contents, and the C6−7 light hydrocarbons are composed of paraffins with extremely low aromatic contents (<0.4%), whereas the C7 light hydrocarbons are dominated by methylcyclohexane, suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution. The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging, and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation. Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio, as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values. The dissolution causes the increase of isoheptane values of the light hydrocarbons, whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5−7 contents compared to the iso-C5−7 contents.
Based on the 3D seismic data and the analysis and test data of lithology, electricity, thin sections and chronology obtained from drilling of the Qiongdongnan Basin, the characteristics and the quantitative analysis of the source-sink system are studied of the third member of the Upper Oligocene Lingshui Formation (Ling 3 Member) in the southern fault step zone of the Baodao Sag. First, the YL10 denudation area of the Ling 3 Member mainly developed two fluvial systems in the east and west, resulting in the formation of two dominant sand transport channels and two delta lobes in southern Baodao Sag, which are generally large in the west and small in the east. The evolution of the delta has experienced four stages: initiation, prosperity, intermittence and rejuvenation. Second, the source-sink coupled quantitative calculation is performed depending on the parameters of the delta sand bodies, including development phases, distribution area, flattening thickness, area of different parent rocks, and sand-forming coefficient, showing that the study area has the material basis for the formation of large-scale reservoir. Third, the drilling reveals that the delta of the Ling 3 Member is dominated by fine sandstone, with total sandstone thickness of 109–138 m, maximum single-layer sandstone thickness of 15.5–30.0 m, and sand-to-strata ratio of 43.7%–73.0%, but the physical properties are different among the fault steps. Fourth, the large delta development model of the small source area in the step fault zone with multi-stage uplift is established. It suggests that the episodic uplift provides sufficient sediments, the fluvial system and watershed area control the scale of the sand body, the multi-step active fault steps dominate the sand body transport channel, and local fault troughs decide the lateral propulsion direction of the sand body. The delta of the Ling 3 Member is coupled with fault blocks to form diverse traps, which are critical exploration targets in southern Baodao Sag.
Based on the microfluidic technology, a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage (UGS) rebuilt from water-invaded gas reservoirs. Through analysis of the gas-liquid contact stabilization mechanism, flow and occurrence, the optimal control method for lifecycle efficient operation of UGS was explored. The results show that in the initial construction stage of UGS, the action of gravity should be fully utilized by regulating the gas injection rate, so as to ensure the macroscopically stable migration of the gas-liquid contact, and greatly improve the gas sweeping capacity, providing a large pore space for gas storage in the subsequent cyclical injection-production stage. In the cyclical injection-production stage of UGS, a constant gas storage and production rate leads to a low pore space utilization. Gradually increasing the gas storage and production rate, that is, transitioning from small volume to large volume, can continuously break the hydraulic equilibrium of the remaining fluid in the porous media, which then expands the pore space and flow channels. This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir, a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed, and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established. The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure. In the early stage of production or in areas far from the wellbore with high reservoir pressure, the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models. In the late stage of production or in areas close to the wellbore with low reservoir pressure, the condensate oil saturation can be calculated using the data of constant composition expansion test. In the middle stages of production or when reservoir pressure is at an intermediate level, the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure. Through simulation and field application, the new method is verified to be reliable and practical. It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.