首页 > 最新文献

Living Reviews in Relativity最新文献

英文 中文
Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo 利用先进LIGO和先进Virgo观测和定位引力波瞬态的前景
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2016-02-08 DOI: 10.1007/lrr-2016-1
B. P. Abbott, The LIGO Scientific Collaboration, Virgo Collaboration, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, A. Ain, P. Ajith, B. Allen, A. Allocca, P. A. Altin, D. V. Amariutei, S. B. Anderson, W. G. Anderson, K. Arai, M. C. Araya, C. C. Arceneaux, J. S. Areeda, N. Arnaud, K. G. Arun, G. Ashton, M. Ast, S. M. Aston, P. Astone, P. Aufmuth, C. Aulbert, S. Babak, P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, I. Bartos, R. Bassiri, A. Basti, J. C. Batch, C. Baune, V. Bavigadda, M. Bazzan, B. Behnke, M. Bejger, C. Belczynski, A. S. Bell, C. J. Bell, B. K. Berger, J. Bergman, G. Bergmann, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, S. Bhagwat, R. Bhandare, I. A. Bilenko, G. Billingsley, J. Birch, R. Birney, S. Biscans, A. Bisht, M. Bitossi, C. Biwer, M. A. Bizouard, J. K. Blackburn, C. D. Blair, D. Blair, R. M. Blair, S. Bloemen, O. Bock, T. P. Bodiya, M. Boer, G. Bogaert, C. Bogan, A. Bohe, P. Bojtos, C. Bond, F. Bondu, R. Bonnand, R. Bork, V. Boschi, S. Bose, A. Bozzi, C. Bradaschia, P. R. Brady, V. B. Braginsky, M. Branchesi, J. E. Brau, T. Briant, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, A. F. Brooks, D. A. Brown, D. D. Brown, N. M. Brown, C. C. Buchanan, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic, C. Buy, R. L. Byer, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, T. Callister, E. Calloni, J. B. Camp, K. C. Cannon, J. Cao, C. D. Capano, E. Capocasa, F. Carbognani, S. Caride, J. Casanueva Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, C. Cepeda, L. Cerboni Baiardi, G. Cerretani, E. Cesarini, R. Chakraborty, T. Chalermsongsak, S. J. Chamberlin, M. Chan, S. Chao, P. Charlton, E. Chassande-Mottin, H. Y. Chen, Y. Chen, C. Cheng, A. Chincarini, A. Chiummo, H. S. Cho, M. Cho, J. H. Chow, N. Christensen, Q. Chu, S. Chua, S. Chung, G. Ciani, F. Clara, J. A. Clark, F. Cleva, E. Coccia, P.-F. Cohadon, A. Colla, C. G. Collette, M. Constancio Jr., A. Conte, L. Conti, D. Cook, T. R. Corbitt, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, M. W. Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, K. Craig, J. D. E. Creighton, J. Cripe, S. G. Crowder, A. Cumming, L. Cunningham, E. Cuoco, T. Dal Canton, S. L. Danilishin, S. D’Antonio, K. Danzmann, N. S. Darman, V. Dattilo, I. Dave, H. P. Daveloza, M. Davier, G. S. Davies, E. J. Daw, R. Day, D. DeBra, G. Debreczeni, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, T. Denker, T. Dent, H. Dereli, V. Dergachev, R. DeRosa, R. De Rosa, R. DeSalvo, S. Dhurandhar, M. C. Díaz, L. Di Fiore, M. Di Giovanni, A. Di Lieto, I. Di Palma, A. Di Virgilio, G. Dojcinoski, V. Dolique, F. Donovan, K. L. Dooley, S. Doravari, R. Douglas, T. P. Downes, M. Drago, R. W. P. Drever, J. C. Driggers, Z. Du, M. Ducrot, S. E. Dwyer, T. B. Edo, M. C. Edwards, A. Effler, H.-B. Eggenstein, P. Ehrens, J. M. Eichholz, S. S. Eikenberry, W. Engels, R. C. Essick, T. Etzel, M. Evans, T. M. Evans, R. Everett, M. Factourovich, V. Fafone, H. Fair, S. Fairhurst, X. Fan, Q. Fang, S. Farinon, B. Farr, W. M. Farr, M. Favata, M. Fays, H. Fehrmann, M. M. Fejer, I. Ferrante, E. C. Ferreira, F. Ferrini, F. Fidecaro, I. Fiori, R. P. Fisher, R. Flaminio, M. Fletcher, J.-D. Fournier, S. Franco, S. Frasca, F. Frasconi, Z. Frei, A. Freise, R. Frey, T. T. Fricke, P. Fritschel, V. V. Frolov, P. Fulda, M. Fyffe, H. A. G. Gabbard, J. R. Gair, L. Gammaitoni, S. G. Gaonkar, F. Garufi, A. Gatto, G. Gaur, N. Gehrels, G. Gemme, B. Gendre, E. Genin, A. Gennai, J. George, L. Gergely, V. Germain, A. Ghosh, S. Ghosh, J. A. Giaime, K. D. Giardina, A. Giazotto, K. Gill, A. Glaefke, E. Goetz, R. Goetz, L. Gondan, G. González, J. M. Gonzalez Castro, A. Gopakumar, N. A. Gordon, M. L. Gorodetsky, S. E. Gossan, M. Gosselin, R. Gouaty, C. Graef, P. B. Graff, M. Granata, A. Grant, S. Gras, C. Gray, G. Greco, A. C. Green, P. Groot, H. Grote, S. Grunewald, G. M. Guidi, X. Guo, A. Gupta, M. K. Gupta, K. E. Gushwa, E. K. Gustafson, R. Gustafson, J. J. Hacker, B. R. Hall, E. D. Hall, G. Hammond, M. Haney, M. M. Hanke, J. Hanks, C. Hanna, M. D. Hannam, J. Hanson, T. Hardwick, J. Harms, G. M. Harry, I. W. Harry, M. J. Hart, M. T. Hartman, C.-J. Haster, K. Haughian, A. Heidmann, M. C. Heintze, H. Heitmann, P. Hello, G. Hemming, M. Hendry, I. S. Heng, J. Hennig, A. W. Heptonstall, M. Heurs, S. Hild, D. Hoak, K. A. Hodge, D. Hofman, S. E. Hollitt, K. Holt, D. E. Holz, P. Hopkins, D. J. Hosken, J. Hough, E. A. Houston, E. J. Howell, Y. M. Hu, S. Huang, E. A. Huerta, D. Huet, B. Hughey, S. Husa, S. H. Huttner, T. Huynh-Dinh, A. Idrisy, N. Indik, D. R. Ingram, R. Inta, H. N. Isa, J.-M. Isac, M. Isi, G. Islas, T. Isogai, B. R. Iyer, K. Izumi, T. Jacqmin, H. Jang, K. Jani, P. Jaranowski, S. Jawahar, F. Jiménez-Forteza, W. W. Johnson, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, K. Haris, C. V. Kalaghatgi, V. Kalogera, S. Kandhasamy, G. Kang, J. B. Kanner, S. Karki, M. Kasprzack, E. Katsavounidis, W. Katzman, S. Kaufer, T. Kaur, K. Kawabe, F. Kawazoe, F. Kéfélian, M. S. Kehl, D. Keitel, D. B. Kelley, W. Kells, R. Kennedy, J. S. Key, A. Khalaidovski, F. Y. Khalili, S. Khan, Z. Khan, E. A. Khazanov, N. Kijbunchoo, C. Kim, J. Kim, K. Kim, N. Kim, Y.-M. Kim, E. J. King, P. J. King, D. L. Kinzel, J. S. Kissel, L. Kleybolte, S. Klimenko, S. M. Koehlenbeck, K. Kokeyama, S. Koley, V. Kondrashov, A. Kontos, M. Korobko, W. Z. Korth, I. Kowalska, D. B. Kozak, V. Kringel, B. Krishnan, A. Królak, C. Krueger, G. Kuehn, P. Kumar, L. Kuo, A. Kutynia, B. D. Lackey, M. Landry, J. Lange, B. Lantz, P. D. Lasky, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, E. Lebigot, C. H. Lee, H. K. Lee, H. M. Lee, K. Lee, A. Lenon, M. Leonardi, J. R. Leong, N. Leroy, N. Letendre, Y. Levin, B. M. Levine, T. G. F. Li, A. Libson, T. B. Littenberg, N. A. Lockerbie, J. Logue, A. L. Lombardi, J. E. Lord, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, H. Lück, A. P. Lundgren, J. Luo, R. Lynch, Y. Ma, T. MacDonald, B. Machenschalk, M. MacInnis, D. M. Macleod, F. Magaña-Sandoval, R. M. Magee, M. Mageswaran, E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, I. Mandel, V. Mandic, V. Mangano, G. L. Mansell, M. Manske, M. Mantovani, F. Marchesoni, F. Marion, S. Márka, Z. Márka, A. S. Markosyan, E. Maros, F. Martelli, L. Martellini, I. W. Martin, R. M. Martin, D. V. Martynov, J. N. Marx, K. Mason, A. Masserot, T. J. Massinger, M. Masso-Reid, F. Matichard, L. Matone, N. Mavalvala, N. Mazumder, G. Mazzolo, R. McCarthy, D. E. McClelland, S. McCormick, S. C. McGuire, G. McIntyre, J. McIver, D. J. McManus, S. T. McWilliams, D. Meacher, G. D. Meadors, J. Meidam, A. Melatos, G. Mendell, D. Mendoza-Gandara, R. A. Mercer, E. Merilh, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, P. M. Meyers, F. Mezzani, H. Miao, C. Michel, H. Middleton, E. E. Mikhailov, L. Milano, J. Miller, M. Millhouse, Y. Minenkov, J. Ming, S. Mirshekari, C. Mishra, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, A. Moggi, M. Mohan, S. R. P. Mohapatra, M. Montani, B. C. Moore, C. J. Moore, D. Moraru, G. Moreno, S. R. Morriss, K. Mossavi, B. Mours, C. M. Mow-Lowry, C. L. Mueller, G. Mueller, A. W. Muir, Arunava Mukherjee, D. Mukherjee, S. Mukherjee, A. Mullavey, J. Munch, D. J. Murphy, P. G. Murray, A. Mytidis, I. Nardecchia, L. Naticchioni, R. K. Nayak, V. Necula, K. Nedkova, G. Nelemans, M. Neri, A. Neunzert, G. Newton, T. T. Nguyen, A. B. Nielsen, S. Nissanke, A. Nitz, F. Nocera, D. Nolting, M. E. N. Normandin, L. K. Nuttall, J. Oberling, E. Ochsner, J. O’Dell, E. Oelker, G. H. Ogin, J. J. Oh, S. H. Oh, F. Ohme, M. Oliver, P. Oppermann, R. J. Oram, B. O’Reilly, R. O’Shaughnessy, C. D. Ott, D. J. Ottaway, R. S. Ottens, H. Overmier, B. J. Owen, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, A. Pal-Singh, H. Pan, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, M. A. Papa, H. R. Paris, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, Z. Patrick, B. L. Pearlstone, M. Pedraza, R. Pedurand, L. Pekowsky, A. Pele, S. Penn, R. Pereira, A. Perreca, M. Phelps, O. Piccinni, M. Pichot, F. Piergiovanni, V. Pierro, G. Pillant, L. Pinard, I. M. Pinto, M. Pitkin, R. Poggiani, A. Post, J. Powell, J. Prasad, V. Predoi, S. S. Premachandra, T. Prestegard, L. R. Price, M. Prijatelj, M. Principe, S. Privitera, G. A. Prodi, L. Prokhorov, M. Punturo, P. Puppo, M. Pürrer, H. Qi, J. Qin, V. Quetschke, E. A. Quintero, R. Quitzow-James, F. J. Raab, D. S. Rabeling, H. Radkins, P. Raffai, S. Raja, M. Rakhmanov, P. Rapagnani, V. Raymond, M. Razzano, V. Re, J. Read, C. M. Reed, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, H. Rew, F. Ricci, K. Riles, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, L. Rolland, J. G. Rollins, V. J. Roma, J. D. Romano, R. Romano, G. Romanov, J. H. Romie, D. Rosińska, S. Rowan, A. Rüdiger, P. Ruggi, K. Ryan, S. Sachdev, T. Sadecki, L. Sadeghian, M. Saleem, F. Salemi, A. Samajdar, L. Sammut, E. J. Sanchez, V. Sandberg, B. Sandeen, J. R. Sanders, B. Sassolas, B. S. Sathyaprakash, P. R. Saulson, O. Sauter, R. L. Savage, A. Sawadsky, P. Schale, R. Schilling, J. Schmidt, P. Schmidt, R. Schnabel, R. M. S. Schofield, A. Schönbeck, E. Schreiber, D. Schuette, B. F. Schutz, J. Scott, S. M. Scott, D. Sellers, D. Sentenac, V. Sequino, A. Sergeev, G. Serna, Y. Setyawati, A. Sevigny, D. A. Shaddock, S. Shah, M. S. Shahriar, M. Shaltev, Z. Shao, B. Shapiro, P. Shawhan, A. Sheperd, D. H. Shoemaker, D. M. Shoemaker, K. Siellez, X. Siemens, D. Sigg, A. D. Silva, D. Simakov, A. Singer, L. P. Singer, A. Singh, R. Singh, A. M. Sintes, B. J. J. Slagmolen, J. R. Smith, N. D. Smith, R. J. E. Smith, E. J. Son, B. Sorazu, F. Sorrentino, T. Souradeep, A. K. Srivastava, A. Staley, M. Steinke, J. Steinlechner, S. Steinlechner, D. Steinmeyer, B. C. Stephens, R. Stone, K. A. Strain, N. Straniero, G. Stratta, N. A. Strauss, S. Strigin, R. Sturani, A. L. Stuver, T. Z. Summerscales, L. Sun, P. J. Sutton, B. L. Swinkels, M. J. Szczepanczyk, M. Tacca, D. Talukder, D. B. Tanner, M. Tápai, S. P. Tarabrin, A. Taracchini, R. Taylor, T. Theeg, M. P. Thirugnanasambandam, E. G. Thomas, M. Thomas, P. Thomas, K. A. Thorne, K. S. Thorne, E. Thrane, S. Tiwari, V. Tiwari, K. V. Tokmakov, C. Tomlinson, M. Tonelli, C. V. Torres, C. I. Torrie, D. Töyrä, F. Travasso, G. Traylor, D. Trifirò, M. C. Tringali, L. Trozzo, M. Tse, M. Turconi, D. Tuyenbayev, D. Ugolini, C. S. Unnikrishnan, A. L. Urban, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. van den Broeck, D. C. Vander-Hyde, L. van der Schaaf, M. V. van der Sluys, J. V. van Heijningen, A. A. van Veggel, M. Vardaro, S. Vass, M. Vasúth, R. Vaulin, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, D. Verkindt, F. Vetrano, A. Viceré, S. Vinciguerra, D. J. Vine, J.-Y. Vinet, S. Vitale, T. Vo, H. Vocca, C. Vorvick, W. D. Vousden, S. P. Vyatchanin, A. R. Wade, L. E. Wade, M. Wade, M. Walker, L. Wallace, S. Walsh, G. Wang, H. Wang, M. Wang, X. Wang, Y. Wang, R. L. Ward, J. Warner, M. Was, B. Weaver, L.-W. Wei, M. Weinert, A. J. Weinstein, R. Weiss, T. Welborn, L. Wen, P. Weßels, T. Westphal, K. Wette, J. T. Whelan, D. J. White, B. F. Whiting, R. D. Williams, A. R. Williamson, J. L. Willis, B. Willke, M. H. Wimmer, W. Winkler, C. C. Wipf, H. Wittel, G. Woan, J. Worden, J. L. Wright, G. Wu, J. Yablon, W. Yam, H. Yamamoto, C. C. Yancey, M. J. Yap, H. Yu, M. Yvert, A. Zadrożny, L. Zangrando, M. Zanolin, J.-P. Zendri, M. Zevin, F. Zhang, L. Zhang, M. Zhang, Y. Zhang, C. Zhao, M. Zhou, Z. Zhou, X. J. Zhu, M. E. Zucker, S. E. Zuraw, J. Zweizig

We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ~ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

我们提出了未来十年先进LIGO和先进处女座引力波探测器可能的观测方案,旨在为天文学界提供信息,以促进引力波多信使天文学的规划。我们确定了网络对瞬态引力波信号的期望灵敏度,并研究了网络确定源的天空位置的能力。我们报告了我们对引力波瞬变的发现,特别关注来自双中子星系统的引力波信号,这被认为是多信使天文学最有希望的。定位探测到的信号源的能力取决于探测器的地理分布和它们的相对灵敏度,当只有两个敏感探测器在工作时,90%的可信区域可以大到数千平方度。要确定很大一部分探测到的信号在5°2到20°2范围内的天空位置,需要至少三个灵敏度在彼此系数~ 2以内的探测器,并且具有宽的频率带宽。如果第三台LIGO探测器像预期的那样被安置到印度,那么仅通过引力波观测,就可以将很大一部分引力波信号定位到几平方度的范围内。
{"title":"Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo","authors":"B. P. Abbott,&nbsp;The LIGO Scientific Collaboration,&nbsp;Virgo Collaboration,&nbsp;R. Abbott,&nbsp;T. D. Abbott,&nbsp;M. R. Abernathy,&nbsp;F. Acernese,&nbsp;K. Ackley,&nbsp;C. Adams,&nbsp;T. Adams,&nbsp;P. Addesso,&nbsp;R. X. Adhikari,&nbsp;V. B. Adya,&nbsp;C. Affeldt,&nbsp;M. Agathos,&nbsp;K. Agatsuma,&nbsp;N. Aggarwal,&nbsp;O. D. Aguiar,&nbsp;A. Ain,&nbsp;P. Ajith,&nbsp;B. Allen,&nbsp;A. Allocca,&nbsp;P. A. Altin,&nbsp;D. V. Amariutei,&nbsp;S. B. Anderson,&nbsp;W. G. Anderson,&nbsp;K. Arai,&nbsp;M. C. Araya,&nbsp;C. C. Arceneaux,&nbsp;J. S. Areeda,&nbsp;N. Arnaud,&nbsp;K. G. Arun,&nbsp;G. Ashton,&nbsp;M. Ast,&nbsp;S. M. Aston,&nbsp;P. Astone,&nbsp;P. Aufmuth,&nbsp;C. Aulbert,&nbsp;S. Babak,&nbsp;P. T. Baker,&nbsp;F. Baldaccini,&nbsp;G. Ballardin,&nbsp;S. W. Ballmer,&nbsp;J. C. Barayoga,&nbsp;S. E. Barclay,&nbsp;B. C. Barish,&nbsp;D. Barker,&nbsp;F. Barone,&nbsp;B. Barr,&nbsp;L. Barsotti,&nbsp;M. Barsuglia,&nbsp;D. Barta,&nbsp;J. Bartlett,&nbsp;I. Bartos,&nbsp;R. Bassiri,&nbsp;A. Basti,&nbsp;J. C. Batch,&nbsp;C. Baune,&nbsp;V. Bavigadda,&nbsp;M. Bazzan,&nbsp;B. Behnke,&nbsp;M. Bejger,&nbsp;C. Belczynski,&nbsp;A. S. Bell,&nbsp;C. J. Bell,&nbsp;B. K. Berger,&nbsp;J. Bergman,&nbsp;G. Bergmann,&nbsp;C. P. L. Berry,&nbsp;D. Bersanetti,&nbsp;A. Bertolini,&nbsp;J. Betzwieser,&nbsp;S. Bhagwat,&nbsp;R. Bhandare,&nbsp;I. A. Bilenko,&nbsp;G. Billingsley,&nbsp;J. Birch,&nbsp;R. Birney,&nbsp;S. Biscans,&nbsp;A. Bisht,&nbsp;M. Bitossi,&nbsp;C. Biwer,&nbsp;M. A. Bizouard,&nbsp;J. K. Blackburn,&nbsp;C. D. Blair,&nbsp;D. Blair,&nbsp;R. M. Blair,&nbsp;S. Bloemen,&nbsp;O. Bock,&nbsp;T. P. Bodiya,&nbsp;M. Boer,&nbsp;G. Bogaert,&nbsp;C. Bogan,&nbsp;A. Bohe,&nbsp;P. Bojtos,&nbsp;C. Bond,&nbsp;F. Bondu,&nbsp;R. Bonnand,&nbsp;R. Bork,&nbsp;V. Boschi,&nbsp;S. Bose,&nbsp;A. Bozzi,&nbsp;C. Bradaschia,&nbsp;P. R. Brady,&nbsp;V. B. Braginsky,&nbsp;M. Branchesi,&nbsp;J. E. Brau,&nbsp;T. Briant,&nbsp;A. Brillet,&nbsp;M. Brinkmann,&nbsp;V. Brisson,&nbsp;P. Brockill,&nbsp;A. F. Brooks,&nbsp;D. A. Brown,&nbsp;D. D. Brown,&nbsp;N. M. Brown,&nbsp;C. C. Buchanan,&nbsp;A. Buikema,&nbsp;T. Bulik,&nbsp;H. J. Bulten,&nbsp;A. Buonanno,&nbsp;D. Buskulic,&nbsp;C. Buy,&nbsp;R. L. Byer,&nbsp;L. Cadonati,&nbsp;G. Cagnoli,&nbsp;C. Cahillane,&nbsp;J. Calderón Bustillo,&nbsp;T. Callister,&nbsp;E. Calloni,&nbsp;J. B. Camp,&nbsp;K. C. Cannon,&nbsp;J. Cao,&nbsp;C. D. Capano,&nbsp;E. Capocasa,&nbsp;F. Carbognani,&nbsp;S. Caride,&nbsp;J. Casanueva Diaz,&nbsp;C. Casentini,&nbsp;S. Caudill,&nbsp;M. Cavaglià,&nbsp;F. Cavalier,&nbsp;R. Cavalieri,&nbsp;G. Cella,&nbsp;C. Cepeda,&nbsp;L. Cerboni Baiardi,&nbsp;G. Cerretani,&nbsp;E. Cesarini,&nbsp;R. Chakraborty,&nbsp;T. Chalermsongsak,&nbsp;S. J. Chamberlin,&nbsp;M. Chan,&nbsp;S. Chao,&nbsp;P. Charlton,&nbsp;E. Chassande-Mottin,&nbsp;H. Y. Chen,&nbsp;Y. Chen,&nbsp;C. Cheng,&nbsp;A. Chincarini,&nbsp;A. Chiummo,&nbsp;H. S. Cho,&nbsp;M. Cho,&nbsp;J. H. Chow,&nbsp;N. Christensen,&nbsp;Q. Chu,&nbsp;S. Chua,&nbsp;S. Chung,&nbsp;G. Ciani,&nbsp;F. Clara,&nbsp;J. A. Clark,&nbsp;F. Cleva,&nbsp;E. Coccia,&nbsp;P.-F. Cohadon,&nbsp;A. Colla,&nbsp;C. G. Collette,&nbsp;M. Constancio Jr.,&nbsp;A. Conte,&nbsp;L. Conti,&nbsp;D. Cook,&nbsp;T. R. Corbitt,&nbsp;N. Cornish,&nbsp;A. Corsi,&nbsp;S. Cortese,&nbsp;C. A. Costa,&nbsp;M. W. Coughlin,&nbsp;S. B. Coughlin,&nbsp;J.-P. Coulon,&nbsp;S. T. Countryman,&nbsp;P. Couvares,&nbsp;D. M. Coward,&nbsp;M. J. Cowart,&nbsp;D. C. Coyne,&nbsp;R. Coyne,&nbsp;K. Craig,&nbsp;J. D. E. Creighton,&nbsp;J. Cripe,&nbsp;S. G. Crowder,&nbsp;A. Cumming,&nbsp;L. Cunningham,&nbsp;E. Cuoco,&nbsp;T. Dal Canton,&nbsp;S. L. Danilishin,&nbsp;S. D’Antonio,&nbsp;K. Danzmann,&nbsp;N. S. Darman,&nbsp;V. Dattilo,&nbsp;I. Dave,&nbsp;H. P. Daveloza,&nbsp;M. Davier,&nbsp;G. S. Davies,&nbsp;E. J. Daw,&nbsp;R. Day,&nbsp;D. DeBra,&nbsp;G. Debreczeni,&nbsp;J. Degallaix,&nbsp;M. De Laurentis,&nbsp;S. Deléglise,&nbsp;W. Del Pozzo,&nbsp;T. Denker,&nbsp;T. Dent,&nbsp;H. Dereli,&nbsp;V. Dergachev,&nbsp;R. DeRosa,&nbsp;R. De Rosa,&nbsp;R. DeSalvo,&nbsp;S. Dhurandhar,&nbsp;M. C. Díaz,&nbsp;L. Di Fiore,&nbsp;M. Di Giovanni,&nbsp;A. Di Lieto,&nbsp;I. Di Palma,&nbsp;A. Di Virgilio,&nbsp;G. Dojcinoski,&nbsp;V. Dolique,&nbsp;F. Donovan,&nbsp;K. L. Dooley,&nbsp;S. Doravari,&nbsp;R. Douglas,&nbsp;T. P. Downes,&nbsp;M. Drago,&nbsp;R. W. P. Drever,&nbsp;J. C. Driggers,&nbsp;Z. Du,&nbsp;M. Ducrot,&nbsp;S. E. Dwyer,&nbsp;T. B. Edo,&nbsp;M. C. Edwards,&nbsp;A. Effler,&nbsp;H.-B. Eggenstein,&nbsp;P. Ehrens,&nbsp;J. M. Eichholz,&nbsp;S. S. Eikenberry,&nbsp;W. Engels,&nbsp;R. C. Essick,&nbsp;T. Etzel,&nbsp;M. Evans,&nbsp;T. M. Evans,&nbsp;R. Everett,&nbsp;M. Factourovich,&nbsp;V. Fafone,&nbsp;H. Fair,&nbsp;S. Fairhurst,&nbsp;X. Fan,&nbsp;Q. Fang,&nbsp;S. Farinon,&nbsp;B. Farr,&nbsp;W. M. Farr,&nbsp;M. Favata,&nbsp;M. Fays,&nbsp;H. Fehrmann,&nbsp;M. M. Fejer,&nbsp;I. Ferrante,&nbsp;E. C. Ferreira,&nbsp;F. Ferrini,&nbsp;F. Fidecaro,&nbsp;I. Fiori,&nbsp;R. P. Fisher,&nbsp;R. Flaminio,&nbsp;M. Fletcher,&nbsp;J.-D. Fournier,&nbsp;S. Franco,&nbsp;S. Frasca,&nbsp;F. Frasconi,&nbsp;Z. Frei,&nbsp;A. Freise,&nbsp;R. Frey,&nbsp;T. T. Fricke,&nbsp;P. Fritschel,&nbsp;V. V. Frolov,&nbsp;P. Fulda,&nbsp;M. Fyffe,&nbsp;H. A. G. Gabbard,&nbsp;J. R. Gair,&nbsp;L. Gammaitoni,&nbsp;S. G. Gaonkar,&nbsp;F. Garufi,&nbsp;A. Gatto,&nbsp;G. Gaur,&nbsp;N. Gehrels,&nbsp;G. Gemme,&nbsp;B. Gendre,&nbsp;E. Genin,&nbsp;A. Gennai,&nbsp;J. George,&nbsp;L. Gergely,&nbsp;V. Germain,&nbsp;A. Ghosh,&nbsp;S. Ghosh,&nbsp;J. A. Giaime,&nbsp;K. D. Giardina,&nbsp;A. Giazotto,&nbsp;K. Gill,&nbsp;A. Glaefke,&nbsp;E. Goetz,&nbsp;R. Goetz,&nbsp;L. Gondan,&nbsp;G. González,&nbsp;J. M. Gonzalez Castro,&nbsp;A. Gopakumar,&nbsp;N. A. Gordon,&nbsp;M. L. Gorodetsky,&nbsp;S. E. Gossan,&nbsp;M. Gosselin,&nbsp;R. Gouaty,&nbsp;C. Graef,&nbsp;P. B. Graff,&nbsp;M. Granata,&nbsp;A. Grant,&nbsp;S. Gras,&nbsp;C. Gray,&nbsp;G. Greco,&nbsp;A. C. Green,&nbsp;P. Groot,&nbsp;H. Grote,&nbsp;S. Grunewald,&nbsp;G. M. Guidi,&nbsp;X. Guo,&nbsp;A. Gupta,&nbsp;M. K. Gupta,&nbsp;K. E. Gushwa,&nbsp;E. K. Gustafson,&nbsp;R. Gustafson,&nbsp;J. J. Hacker,&nbsp;B. R. Hall,&nbsp;E. D. Hall,&nbsp;G. Hammond,&nbsp;M. Haney,&nbsp;M. M. Hanke,&nbsp;J. Hanks,&nbsp;C. Hanna,&nbsp;M. D. Hannam,&nbsp;J. Hanson,&nbsp;T. Hardwick,&nbsp;J. Harms,&nbsp;G. M. Harry,&nbsp;I. W. Harry,&nbsp;M. J. Hart,&nbsp;M. T. Hartman,&nbsp;C.-J. Haster,&nbsp;K. Haughian,&nbsp;A. Heidmann,&nbsp;M. C. Heintze,&nbsp;H. Heitmann,&nbsp;P. Hello,&nbsp;G. Hemming,&nbsp;M. Hendry,&nbsp;I. S. Heng,&nbsp;J. Hennig,&nbsp;A. W. Heptonstall,&nbsp;M. Heurs,&nbsp;S. Hild,&nbsp;D. Hoak,&nbsp;K. A. Hodge,&nbsp;D. Hofman,&nbsp;S. E. Hollitt,&nbsp;K. Holt,&nbsp;D. E. Holz,&nbsp;P. Hopkins,&nbsp;D. J. Hosken,&nbsp;J. Hough,&nbsp;E. A. Houston,&nbsp;E. J. Howell,&nbsp;Y. M. Hu,&nbsp;S. Huang,&nbsp;E. A. Huerta,&nbsp;D. Huet,&nbsp;B. Hughey,&nbsp;S. Husa,&nbsp;S. H. Huttner,&nbsp;T. Huynh-Dinh,&nbsp;A. Idrisy,&nbsp;N. Indik,&nbsp;D. R. Ingram,&nbsp;R. Inta,&nbsp;H. N. Isa,&nbsp;J.-M. Isac,&nbsp;M. Isi,&nbsp;G. Islas,&nbsp;T. Isogai,&nbsp;B. R. Iyer,&nbsp;K. Izumi,&nbsp;T. Jacqmin,&nbsp;H. Jang,&nbsp;K. Jani,&nbsp;P. Jaranowski,&nbsp;S. Jawahar,&nbsp;F. Jiménez-Forteza,&nbsp;W. W. Johnson,&nbsp;D. I. Jones,&nbsp;R. Jones,&nbsp;R. J. G. Jonker,&nbsp;L. Ju,&nbsp;K. Haris,&nbsp;C. V. Kalaghatgi,&nbsp;V. Kalogera,&nbsp;S. Kandhasamy,&nbsp;G. Kang,&nbsp;J. B. Kanner,&nbsp;S. Karki,&nbsp;M. Kasprzack,&nbsp;E. Katsavounidis,&nbsp;W. Katzman,&nbsp;S. Kaufer,&nbsp;T. Kaur,&nbsp;K. Kawabe,&nbsp;F. Kawazoe,&nbsp;F. Kéfélian,&nbsp;M. S. Kehl,&nbsp;D. Keitel,&nbsp;D. B. Kelley,&nbsp;W. Kells,&nbsp;R. Kennedy,&nbsp;J. S. Key,&nbsp;A. Khalaidovski,&nbsp;F. Y. Khalili,&nbsp;S. Khan,&nbsp;Z. Khan,&nbsp;E. A. Khazanov,&nbsp;N. Kijbunchoo,&nbsp;C. Kim,&nbsp;J. Kim,&nbsp;K. Kim,&nbsp;N. Kim,&nbsp;Y.-M. Kim,&nbsp;E. J. King,&nbsp;P. J. King,&nbsp;D. L. Kinzel,&nbsp;J. S. Kissel,&nbsp;L. Kleybolte,&nbsp;S. Klimenko,&nbsp;S. M. Koehlenbeck,&nbsp;K. Kokeyama,&nbsp;S. Koley,&nbsp;V. Kondrashov,&nbsp;A. Kontos,&nbsp;M. Korobko,&nbsp;W. Z. Korth,&nbsp;I. Kowalska,&nbsp;D. B. Kozak,&nbsp;V. Kringel,&nbsp;B. Krishnan,&nbsp;A. Królak,&nbsp;C. Krueger,&nbsp;G. Kuehn,&nbsp;P. Kumar,&nbsp;L. Kuo,&nbsp;A. Kutynia,&nbsp;B. D. Lackey,&nbsp;M. Landry,&nbsp;J. Lange,&nbsp;B. Lantz,&nbsp;P. D. Lasky,&nbsp;A. Lazzarini,&nbsp;C. Lazzaro,&nbsp;P. Leaci,&nbsp;S. Leavey,&nbsp;E. Lebigot,&nbsp;C. H. Lee,&nbsp;H. K. Lee,&nbsp;H. M. Lee,&nbsp;K. Lee,&nbsp;A. Lenon,&nbsp;M. Leonardi,&nbsp;J. R. Leong,&nbsp;N. Leroy,&nbsp;N. Letendre,&nbsp;Y. Levin,&nbsp;B. M. Levine,&nbsp;T. G. F. Li,&nbsp;A. Libson,&nbsp;T. B. Littenberg,&nbsp;N. A. Lockerbie,&nbsp;J. Logue,&nbsp;A. L. Lombardi,&nbsp;J. E. Lord,&nbsp;M. Lorenzini,&nbsp;V. Loriette,&nbsp;M. Lormand,&nbsp;G. Losurdo,&nbsp;J. D. Lough,&nbsp;H. Lück,&nbsp;A. P. Lundgren,&nbsp;J. Luo,&nbsp;R. Lynch,&nbsp;Y. Ma,&nbsp;T. MacDonald,&nbsp;B. Machenschalk,&nbsp;M. MacInnis,&nbsp;D. M. Macleod,&nbsp;F. Magaña-Sandoval,&nbsp;R. M. Magee,&nbsp;M. Mageswaran,&nbsp;E. Majorana,&nbsp;I. Maksimovic,&nbsp;V. Malvezzi,&nbsp;N. Man,&nbsp;I. Mandel,&nbsp;V. Mandic,&nbsp;V. Mangano,&nbsp;G. L. Mansell,&nbsp;M. Manske,&nbsp;M. Mantovani,&nbsp;F. Marchesoni,&nbsp;F. Marion,&nbsp;S. Márka,&nbsp;Z. Márka,&nbsp;A. S. Markosyan,&nbsp;E. Maros,&nbsp;F. Martelli,&nbsp;L. Martellini,&nbsp;I. W. Martin,&nbsp;R. M. Martin,&nbsp;D. V. Martynov,&nbsp;J. N. Marx,&nbsp;K. Mason,&nbsp;A. Masserot,&nbsp;T. J. Massinger,&nbsp;M. Masso-Reid,&nbsp;F. Matichard,&nbsp;L. Matone,&nbsp;N. Mavalvala,&nbsp;N. Mazumder,&nbsp;G. Mazzolo,&nbsp;R. McCarthy,&nbsp;D. E. McClelland,&nbsp;S. McCormick,&nbsp;S. C. McGuire,&nbsp;G. McIntyre,&nbsp;J. McIver,&nbsp;D. J. McManus,&nbsp;S. T. McWilliams,&nbsp;D. Meacher,&nbsp;G. D. Meadors,&nbsp;J. Meidam,&nbsp;A. Melatos,&nbsp;G. Mendell,&nbsp;D. Mendoza-Gandara,&nbsp;R. A. Mercer,&nbsp;E. Merilh,&nbsp;M. Merzougui,&nbsp;S. Meshkov,&nbsp;C. Messenger,&nbsp;C. Messick,&nbsp;P. M. Meyers,&nbsp;F. Mezzani,&nbsp;H. Miao,&nbsp;C. Michel,&nbsp;H. Middleton,&nbsp;E. E. Mikhailov,&nbsp;L. Milano,&nbsp;J. Miller,&nbsp;M. Millhouse,&nbsp;Y. Minenkov,&nbsp;J. Ming,&nbsp;S. Mirshekari,&nbsp;C. Mishra,&nbsp;S. Mitra,&nbsp;V. P. Mitrofanov,&nbsp;G. Mitselmakher,&nbsp;R. Mittleman,&nbsp;A. Moggi,&nbsp;M. Mohan,&nbsp;S. R. P. Mohapatra,&nbsp;M. Montani,&nbsp;B. C. Moore,&nbsp;C. J. Moore,&nbsp;D. Moraru,&nbsp;G. Moreno,&nbsp;S. R. Morriss,&nbsp;K. Mossavi,&nbsp;B. Mours,&nbsp;C. M. Mow-Lowry,&nbsp;C. L. Mueller,&nbsp;G. Mueller,&nbsp;A. W. Muir,&nbsp;Arunava Mukherjee,&nbsp;D. Mukherjee,&nbsp;S. Mukherjee,&nbsp;A. Mullavey,&nbsp;J. Munch,&nbsp;D. J. Murphy,&nbsp;P. G. Murray,&nbsp;A. Mytidis,&nbsp;I. Nardecchia,&nbsp;L. Naticchioni,&nbsp;R. K. Nayak,&nbsp;V. Necula,&nbsp;K. Nedkova,&nbsp;G. Nelemans,&nbsp;M. Neri,&nbsp;A. Neunzert,&nbsp;G. Newton,&nbsp;T. T. Nguyen,&nbsp;A. B. Nielsen,&nbsp;S. Nissanke,&nbsp;A. Nitz,&nbsp;F. Nocera,&nbsp;D. Nolting,&nbsp;M. E. N. Normandin,&nbsp;L. K. Nuttall,&nbsp;J. Oberling,&nbsp;E. Ochsner,&nbsp;J. O’Dell,&nbsp;E. Oelker,&nbsp;G. H. Ogin,&nbsp;J. J. Oh,&nbsp;S. H. Oh,&nbsp;F. Ohme,&nbsp;M. Oliver,&nbsp;P. Oppermann,&nbsp;R. J. Oram,&nbsp;B. O’Reilly,&nbsp;R. O’Shaughnessy,&nbsp;C. D. Ott,&nbsp;D. J. Ottaway,&nbsp;R. S. Ottens,&nbsp;H. Overmier,&nbsp;B. J. Owen,&nbsp;A. Pai,&nbsp;S. A. Pai,&nbsp;J. R. Palamos,&nbsp;O. Palashov,&nbsp;C. Palomba,&nbsp;A. Pal-Singh,&nbsp;H. Pan,&nbsp;C. Pankow,&nbsp;F. Pannarale,&nbsp;B. C. Pant,&nbsp;F. Paoletti,&nbsp;A. Paoli,&nbsp;M. A. Papa,&nbsp;H. R. Paris,&nbsp;W. Parker,&nbsp;D. Pascucci,&nbsp;A. Pasqualetti,&nbsp;R. Passaquieti,&nbsp;D. Passuello,&nbsp;Z. Patrick,&nbsp;B. L. Pearlstone,&nbsp;M. Pedraza,&nbsp;R. Pedurand,&nbsp;L. Pekowsky,&nbsp;A. Pele,&nbsp;S. Penn,&nbsp;R. Pereira,&nbsp;A. Perreca,&nbsp;M. Phelps,&nbsp;O. Piccinni,&nbsp;M. Pichot,&nbsp;F. Piergiovanni,&nbsp;V. Pierro,&nbsp;G. Pillant,&nbsp;L. Pinard,&nbsp;I. M. Pinto,&nbsp;M. Pitkin,&nbsp;R. Poggiani,&nbsp;A. Post,&nbsp;J. Powell,&nbsp;J. Prasad,&nbsp;V. Predoi,&nbsp;S. S. Premachandra,&nbsp;T. Prestegard,&nbsp;L. R. Price,&nbsp;M. Prijatelj,&nbsp;M. Principe,&nbsp;S. Privitera,&nbsp;G. A. Prodi,&nbsp;L. Prokhorov,&nbsp;M. Punturo,&nbsp;P. Puppo,&nbsp;M. Pürrer,&nbsp;H. Qi,&nbsp;J. Qin,&nbsp;V. Quetschke,&nbsp;E. A. Quintero,&nbsp;R. Quitzow-James,&nbsp;F. J. Raab,&nbsp;D. S. Rabeling,&nbsp;H. Radkins,&nbsp;P. Raffai,&nbsp;S. Raja,&nbsp;M. Rakhmanov,&nbsp;P. Rapagnani,&nbsp;V. Raymond,&nbsp;M. Razzano,&nbsp;V. Re,&nbsp;J. Read,&nbsp;C. M. Reed,&nbsp;T. Regimbau,&nbsp;L. Rei,&nbsp;S. Reid,&nbsp;D. H. Reitze,&nbsp;H. Rew,&nbsp;F. Ricci,&nbsp;K. Riles,&nbsp;N. A. Robertson,&nbsp;R. Robie,&nbsp;F. Robinet,&nbsp;A. Rocchi,&nbsp;L. Rolland,&nbsp;J. G. Rollins,&nbsp;V. J. Roma,&nbsp;J. D. Romano,&nbsp;R. Romano,&nbsp;G. Romanov,&nbsp;J. H. Romie,&nbsp;D. Rosińska,&nbsp;S. Rowan,&nbsp;A. Rüdiger,&nbsp;P. Ruggi,&nbsp;K. Ryan,&nbsp;S. Sachdev,&nbsp;T. Sadecki,&nbsp;L. Sadeghian,&nbsp;M. Saleem,&nbsp;F. Salemi,&nbsp;A. Samajdar,&nbsp;L. Sammut,&nbsp;E. J. Sanchez,&nbsp;V. Sandberg,&nbsp;B. Sandeen,&nbsp;J. R. Sanders,&nbsp;B. Sassolas,&nbsp;B. S. Sathyaprakash,&nbsp;P. R. Saulson,&nbsp;O. Sauter,&nbsp;R. L. Savage,&nbsp;A. Sawadsky,&nbsp;P. Schale,&nbsp;R. Schilling,&nbsp;J. Schmidt,&nbsp;P. Schmidt,&nbsp;R. Schnabel,&nbsp;R. M. S. Schofield,&nbsp;A. Schönbeck,&nbsp;E. Schreiber,&nbsp;D. Schuette,&nbsp;B. F. Schutz,&nbsp;J. Scott,&nbsp;S. M. Scott,&nbsp;D. Sellers,&nbsp;D. Sentenac,&nbsp;V. Sequino,&nbsp;A. Sergeev,&nbsp;G. Serna,&nbsp;Y. Setyawati,&nbsp;A. Sevigny,&nbsp;D. A. Shaddock,&nbsp;S. Shah,&nbsp;M. S. Shahriar,&nbsp;M. Shaltev,&nbsp;Z. Shao,&nbsp;B. Shapiro,&nbsp;P. Shawhan,&nbsp;A. Sheperd,&nbsp;D. H. Shoemaker,&nbsp;D. M. Shoemaker,&nbsp;K. Siellez,&nbsp;X. Siemens,&nbsp;D. Sigg,&nbsp;A. D. Silva,&nbsp;D. Simakov,&nbsp;A. Singer,&nbsp;L. P. Singer,&nbsp;A. Singh,&nbsp;R. Singh,&nbsp;A. M. Sintes,&nbsp;B. J. J. Slagmolen,&nbsp;J. R. Smith,&nbsp;N. D. Smith,&nbsp;R. J. E. Smith,&nbsp;E. J. Son,&nbsp;B. Sorazu,&nbsp;F. Sorrentino,&nbsp;T. Souradeep,&nbsp;A. K. Srivastava,&nbsp;A. Staley,&nbsp;M. Steinke,&nbsp;J. Steinlechner,&nbsp;S. Steinlechner,&nbsp;D. Steinmeyer,&nbsp;B. C. Stephens,&nbsp;R. Stone,&nbsp;K. A. Strain,&nbsp;N. Straniero,&nbsp;G. Stratta,&nbsp;N. A. Strauss,&nbsp;S. Strigin,&nbsp;R. Sturani,&nbsp;A. L. Stuver,&nbsp;T. Z. Summerscales,&nbsp;L. Sun,&nbsp;P. J. Sutton,&nbsp;B. L. Swinkels,&nbsp;M. J. Szczepanczyk,&nbsp;M. Tacca,&nbsp;D. Talukder,&nbsp;D. B. Tanner,&nbsp;M. Tápai,&nbsp;S. P. Tarabrin,&nbsp;A. Taracchini,&nbsp;R. Taylor,&nbsp;T. Theeg,&nbsp;M. P. Thirugnanasambandam,&nbsp;E. G. Thomas,&nbsp;M. Thomas,&nbsp;P. Thomas,&nbsp;K. A. Thorne,&nbsp;K. S. Thorne,&nbsp;E. Thrane,&nbsp;S. Tiwari,&nbsp;V. Tiwari,&nbsp;K. V. Tokmakov,&nbsp;C. Tomlinson,&nbsp;M. Tonelli,&nbsp;C. V. Torres,&nbsp;C. I. Torrie,&nbsp;D. Töyrä,&nbsp;F. Travasso,&nbsp;G. Traylor,&nbsp;D. Trifirò,&nbsp;M. C. Tringali,&nbsp;L. Trozzo,&nbsp;M. Tse,&nbsp;M. Turconi,&nbsp;D. Tuyenbayev,&nbsp;D. Ugolini,&nbsp;C. S. Unnikrishnan,&nbsp;A. L. Urban,&nbsp;S. A. Usman,&nbsp;H. Vahlbruch,&nbsp;G. Vajente,&nbsp;G. Valdes,&nbsp;N. van Bakel,&nbsp;M. van Beuzekom,&nbsp;J. F. J. van den Brand,&nbsp;C. van den Broeck,&nbsp;D. C. Vander-Hyde,&nbsp;L. van der Schaaf,&nbsp;M. V. van der Sluys,&nbsp;J. V. van Heijningen,&nbsp;A. A. van Veggel,&nbsp;M. Vardaro,&nbsp;S. Vass,&nbsp;M. Vasúth,&nbsp;R. Vaulin,&nbsp;A. Vecchio,&nbsp;G. Vedovato,&nbsp;J. Veitch,&nbsp;P. J. Veitch,&nbsp;K. Venkateswara,&nbsp;D. Verkindt,&nbsp;F. Vetrano,&nbsp;A. Viceré,&nbsp;S. Vinciguerra,&nbsp;D. J. Vine,&nbsp;J.-Y. Vinet,&nbsp;S. Vitale,&nbsp;T. Vo,&nbsp;H. Vocca,&nbsp;C. Vorvick,&nbsp;W. D. Vousden,&nbsp;S. P. Vyatchanin,&nbsp;A. R. Wade,&nbsp;L. E. Wade,&nbsp;M. Wade,&nbsp;M. Walker,&nbsp;L. Wallace,&nbsp;S. Walsh,&nbsp;G. Wang,&nbsp;H. Wang,&nbsp;M. Wang,&nbsp;X. Wang,&nbsp;Y. Wang,&nbsp;R. L. Ward,&nbsp;J. Warner,&nbsp;M. Was,&nbsp;B. Weaver,&nbsp;L.-W. Wei,&nbsp;M. Weinert,&nbsp;A. J. Weinstein,&nbsp;R. Weiss,&nbsp;T. Welborn,&nbsp;L. Wen,&nbsp;P. Weßels,&nbsp;T. Westphal,&nbsp;K. Wette,&nbsp;J. T. Whelan,&nbsp;D. J. White,&nbsp;B. F. Whiting,&nbsp;R. D. Williams,&nbsp;A. R. Williamson,&nbsp;J. L. Willis,&nbsp;B. Willke,&nbsp;M. H. Wimmer,&nbsp;W. Winkler,&nbsp;C. C. Wipf,&nbsp;H. Wittel,&nbsp;G. Woan,&nbsp;J. Worden,&nbsp;J. L. Wright,&nbsp;G. Wu,&nbsp;J. Yablon,&nbsp;W. Yam,&nbsp;H. Yamamoto,&nbsp;C. C. Yancey,&nbsp;M. J. Yap,&nbsp;H. Yu,&nbsp;M. Yvert,&nbsp;A. Zadrożny,&nbsp;L. Zangrando,&nbsp;M. Zanolin,&nbsp;J.-P. Zendri,&nbsp;M. Zevin,&nbsp;F. Zhang,&nbsp;L. Zhang,&nbsp;M. Zhang,&nbsp;Y. Zhang,&nbsp;C. Zhao,&nbsp;M. Zhou,&nbsp;Z. Zhou,&nbsp;X. J. Zhu,&nbsp;M. E. Zucker,&nbsp;S. E. Zuraw,&nbsp;J. Zweizig","doi":"10.1007/lrr-2016-1","DOIUrl":"https://doi.org/10.1007/lrr-2016-1","url":null,"abstract":"<p>We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg<sup>2</sup> to 20 deg<sup>2</sup> will require at least three detectors of sensitivity within a factor of ~ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"19 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/lrr-2016-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4337606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 447
Terrestrial Gravity Fluctuations 地球重力波动
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2015-12-02 DOI: 10.1007/lrr-2015-3
Jan Harms

Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10?23 Hz?1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

重力实验观测到地球重力场不同形式的波动。例如,在超导重力仪的测量中,大气压力波动会产生重力噪声前景。GRACE卫星重力实验已经探测到高震级地震引起的重力变化,我们预计环境地震场产生的高频地面重力波动将限制地面引力波探测器的灵敏度。因此,根据实验,地球重力波动被认为是噪声和信号。在这里,我们将重点关注地面重力测量。随着GW探测器的发展,这一领域正在迅速发展。在先进一代的LIGO和Virgo探测器中,这项技术被推向了目前的极限,目标是重力应变灵敏度优于10?23赫兹?比几十赫兹高1/2。从扭杆、原子干涉仪和超导梯度仪等传统重力梯度仪演变而来的GW探测器的替代设计目前正在开发中,以将探测频带扩展到低于1hz的频率。本文的目的是提供一个分析框架来描述这些实验中的地球重力摄动。推导并分析了与地震场、大气扰动和振动、旋转或运动物体有关的地球重力扰动模型。然后使用这些模型评估GW探测器中的被动和主动重力噪声缓解策略,或者描述它们在地球物理中的潜在用途。本文回顾了该领域的现状,并提出了新的分析方法,特别是关于地震散射对重力扰动的影响,主动重力噪声消除,以及大气和地震点源重力扰动的时域模型。我们对地球重力波动的理解将对GW探测器和高精度重力测量的未来发展产生重大影响,许多悬而未决的问题仍需要回答,正如本文所强调的。
{"title":"Terrestrial Gravity Fluctuations","authors":"Jan Harms","doi":"10.1007/lrr-2015-3","DOIUrl":"https://doi.org/10.1007/lrr-2015-3","url":null,"abstract":"<p>Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10<sup>?23</sup> Hz<sup>?1/2</sup> above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"18 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2015-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/lrr-2015-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4072595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 109
The Hubble Constant 哈勃常数
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2015-09-24 DOI: 10.1007/lrr-2015-2
Neal Jackson

I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0 values of around 72–74 km s?1 Mpc?1, with typical errors of 2–3 km s?1 Mpc?1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s?1 Mpc?1 and typical errors of 1–2 km s?1 Mpc?1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

我将回顾哈勃常数的测定现状,该常数通过将物体的膨胀速度与其距离联系起来,给出了宇宙的长度尺度。测量有两大类。第一种方法使用单个天体物理对象,这些对象具有某些特性,可以确定其固有亮度或大小,或者可以通过几何方法确定其距离。第二类包括利用全天空宇宙微波背景,或大型星系样本之间的相关性,来确定有关宇宙几何形状的信息,从而确定哈勃常数,通常与其他宇宙学参数相结合。许多(但不是全部)基于物体的测量给出的H0值约为72-74 km / s。1 Mpc ?1、典型误差2-3 km s?1 Mpc ? 1。这与基于宇宙微波背景辐射的测量结果存在轻微差异,特别是来自普朗克卫星的测量结果,后者给出的值为67-68 km / s?1 Mpc ?典型误差为1 - 2 km s?1 Mpc ? 1。剩余的系统数据的大小表明,准确而不是精确是确定哈勃常数的剩余问题。是否存在差异,是否需要新的物理学来解决它,取决于基于物体的方法的系统细节,也取决于对其他宇宙学参数的假设,以及在全天空方法的情况下,哪些数据集被组合在一起。
{"title":"The Hubble Constant","authors":"Neal Jackson","doi":"10.1007/lrr-2015-2","DOIUrl":"https://doi.org/10.1007/lrr-2015-2","url":null,"abstract":"<p>I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give <i>H</i><sub>0</sub> values of around 72–74 km s<sup>?1</sup> Mpc<sup>?1</sup>, with typical errors of 2–3 km s<sup>?1</sup> Mpc<sup>?1</sup>. This is in mild discrepancy with CMB-based measurements, in particular those from the <i>Planck</i> satellite, which give values of 67–68 km s<sup>?1</sup> Mpc<sup>?1</sup> and typical errors of 1–2 km s<sup>?1</sup> Mpc<sup>?1</sup>. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"18 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/lrr-2015-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4953178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Exploring New Physics Frontiers Through Numerical Relativity 通过数值相对论探索新的物理前沿
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2015-09-21 DOI: 10.1007/lrr-2015-1
Vitor Cardoso, Leonardo Gualtieri, Carlos Herdeiro, Ulrich Sperhake

The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein’s equations — along with some spectacular results — in various setups.

We review techniques for solving Einstein’s equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology.

在强场引力中获得高度复杂问题的答案的需求已经在爱因斯坦方程的数值解方面取得了重大进展,并在各种设置中取得了一些惊人的结果。我们回顾了在一般时空中求解爱因斯坦方程的技术,重点是完全非线性演化,但也讨论了如何用微扰方法对这些结果进行基准测试。研究结果涉及高能物理、全息、数学物理、基础物理、天体物理和宇宙学等领域的问题。
{"title":"Exploring New Physics Frontiers Through Numerical Relativity","authors":"Vitor Cardoso,&nbsp;Leonardo Gualtieri,&nbsp;Carlos Herdeiro,&nbsp;Ulrich Sperhake","doi":"10.1007/lrr-2015-1","DOIUrl":"https://doi.org/10.1007/lrr-2015-1","url":null,"abstract":"<p>The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein’s equations — along with some spectacular results — in various setups.</p><p>We review techniques for solving Einstein’s equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"18 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/lrr-2015-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5140974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 75
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries 后牛顿源的引力辐射和激励紧致双星
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2014-12-01 DOI: 10.12942/lrr-2014-2
Luc Blanchet

To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc.) and by the future detectors in space (eLISA, etc.), inspiralling compact binaries — binary star systems composed of neutron stars and/or black holes in their late stage of evolution — require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source) and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary’s orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries — moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins), and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.

为了被地面上的引力波探测器网络(LIGO, VIRGO等)和未来的空间探测器(eLISA等)观察和分析,激励致密双星——由中子星和/或黑洞组成的演化后期的双星系统——需要广义相对论预测的高精度模板。这些非常相对性的系统发出的引力波可以用高阶后牛顿引力波产生的形式精确地建模。在这篇文章中,我们介绍了应用于一般物质源的动力学和引力辐射(包括对源的辐射反应)和激励紧致双星的后牛顿方法的最新进展。我们描述了紧二元体的后牛顿运动方程及其相关的拉格朗日和哈密顿形式,并注意了在计算中起作用的自场正则化。讨论了最内层圆轨道的几个概念。我们估计了后牛顿近似的精度,并与小质量比极限下致密双星引力自力的数值计算进行了比较。得到了高后牛顿阶的引力波形和能量通量,并从能量平衡的角度推导了双星的轨道相位演化。本文给出了偏心紧致双星在不可忽略偏心率的准椭圆轨道上运动的一些划时代的结果。两个黑洞的自旋在引力波模板的定义中起着重要的作用。我们研究了它们在高阶后牛顿运动方程和引力波相位方程上的印记(限于自旋为线性的自旋-轨道效应),并分析了后牛顿自旋进动方程以及轨道平面的诱导进动。
{"title":"Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries","authors":"Luc Blanchet","doi":"10.12942/lrr-2014-2","DOIUrl":"https://doi.org/10.12942/lrr-2014-2","url":null,"abstract":"<p>To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc.) and by the future detectors in space (<i>e</i>LISA, etc.), inspiralling compact binaries — binary star systems composed of neutron stars and/or black holes in their late stage of evolution — require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source) and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary’s orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries — moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins), and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"17 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2014-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4014278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
The Confrontation between General Relativity and Experiment 广义相对论与实验的对抗
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2014-12-01 DOI: 10.12942/lrr-2014-4
Clifford M. Will

The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the E?tv?s experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

综述和更新了广义相对论的实验检验和分析实验检验的理论框架的现状。爱因斯坦的等效原理(EEP)得到了E?tv?s实验、局部洛伦兹不变性测试和时钟实验。正在进行的EEP和平方反比定律的测试正在寻找由统一或量子引力引起的新的相互作用。广义相对论在后牛顿水平上的测试已经达到了很高的精度,包括光偏转、夏皮罗时间延迟、水星近日点推进、月球运动中的诺德维特效应和框架拖曳。利用赫尔斯-泰勒双星脉冲星,引力波衰减已经被探测到,其数量与广义相对论相一致,超过0.5%。越来越多的其他双星脉冲星系统正在进行新的测试,尤其是强场效应的测试。目前和未来的相对论测试将集中在强重力和引力波上。
{"title":"The Confrontation between General Relativity and Experiment","authors":"Clifford M. Will","doi":"10.12942/lrr-2014-4","DOIUrl":"https://doi.org/10.12942/lrr-2014-4","url":null,"abstract":"<p>The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the E?tv?s experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"17 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2014-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4014272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the History of Unified Field Theories. Part II. (ca. 1930–ca. 1965) 论统一场论的历史。第二部分。(ca 1930 - ca。1965)
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2014-12-01 DOI: 10.12942/lrr-2014-5
Hubert F. M. Goenner

The present review intends to provide an overall picture of the research concerning classical unified field theory, worldwide, in the decades between the mid-1930 and mid-1960. Main themes are the conceptual and methodical development of the field, the interaction among the scientists working in it, their opinions and interpretations. Next to the most prominent players, A. Einstein and E. Schr?dinger, V. Hlavaty and the French groups around A. Lichnerowicz, M.-A. Tonnelat, and Y. Thiry are presented. It is shown that they have given contributions of comparable importance. The review also includes a few sections on the fringes of the central topic like Born-Infeld electromagnetic theory or scalar-tensor theory. Some comments on the structure and organization of research-groups are also made.

本文概述了20世纪30年代中期至60年代中期,世界范围内关于经典统一场论的研究概况。主要主题是该领域的概念和方法的发展,在该领域工作的科学家之间的互动,他们的观点和解释。在最杰出的球员之后,A.爱因斯坦和E. Schr?丁格(dinger)、V.赫拉瓦蒂(V. Hlavaty)以及围绕在A. Lichnerowicz、m . A. A. a。Tonnelat,和y。这表明他们作出了相当重要的贡献。这篇综述还包括一些关于中心主题的边缘部分,如Born-Infeld电磁理论或标量张量理论。对课题组的结构和组织也作了一些评论。
{"title":"On the History of Unified Field Theories. Part II. (ca. 1930–ca. 1965)","authors":"Hubert F. M. Goenner","doi":"10.12942/lrr-2014-5","DOIUrl":"https://doi.org/10.12942/lrr-2014-5","url":null,"abstract":"<p>The present review intends to provide an overall picture of the research concerning classical unified field theory, worldwide, in the decades between the mid-1930 and mid-1960. Main themes are the conceptual and methodical development of the field, the interaction among the scientists working in it, their opinions and interpretations. Next to the most prominent players, A. Einstein and E. Schr?dinger, V. Hlavaty and the French groups around A. Lichnerowicz, M.-A. Tonnelat, and Y. Thiry are presented. It is shown that they have given contributions of comparable importance. The review also includes a few sections on the fringes of the central topic like Born-Infeld electromagnetic theory or scalar-tensor theory. Some comments on the structure and organization of research-groups are also made.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"17 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2014-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4014251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 60
Massive Gravity 巨大的引力
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2014-12-01 DOI: 10.12942/lrr-2014-7
Claudia de Rham

We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.

我们回顾了大质量引力的最新进展。我们首先展示了不同的大质量引力理论是如何从高维广义相对论中产生的,从而导致了Dvali-Gabadadze-Porrati模型(DGP)、级联引力和无鬼大质量引力。然后,我们探讨了它们的理论和现象学一致性,证明了Boulware-Deser幽灵的不存在,并回顾了这些模型中的Vainshtein机制和宇宙学解。最后,我们提出了新的质量引力模型、违反洛伦兹的质量引力模型和非局部质量引力模型。
{"title":"Massive Gravity","authors":"Claudia de Rham","doi":"10.12942/lrr-2014-7","DOIUrl":"https://doi.org/10.12942/lrr-2014-7","url":null,"abstract":"<p>We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"17 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2014-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4012993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 800
Time-Delay Interferometry 时滞干涉法
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2014-08-05 DOI: 10.12942/lrr-2014-6
Massimo Tinto, Sanjeev V. Dhurandhar

Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers), the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI).

This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA) mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

重力辐射的等臂探测器允许相位测量比向其臂内注入光的激光的固有相位稳定性低许多数量级。这是因为激光中的噪声对两个臂来说是共同的,经历完全相同的延迟,因此当它在光电探测器处被区分时就会被抵消。在这种情况下,低得多的二次噪声设定了整体性能。然而,如果两个臂的长度不同(星载干涉仪必然如此),激光噪声在两个臂中经历不同的延迟,因此不会在探测器处直接抵消。为了解决这一问题,提出了一种采用不等臂长和独立相位差读数的外差干涉测量技术。它依赖于适当的时移和线性组合的独立多普勒测量,因此被称为延时干涉测量(TDI)。本文概述了与TDI实现相关的理论、数学基础和实验方面。尽管本文强调了TDI在激光干涉仪空间天线(LISA)任务中的应用,但TDI可以被纳入任何未来旨在通过干涉测量搜索引力波的天基任务的设计中。我们有意省略了数据分析师在分析TDI数据组合时需要考虑的所有理论方面。
{"title":"Time-Delay Interferometry","authors":"Massimo Tinto,&nbsp;Sanjeev V. Dhurandhar","doi":"10.12942/lrr-2014-6","DOIUrl":"https://doi.org/10.12942/lrr-2014-6","url":null,"abstract":"<p>Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers), the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI).</p><p>This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA) mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"17 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2014-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2014-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4197805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 70
The Evolution of Compact Binary Star Systems 致密双星系统的演化
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2014-05-05 DOI: 10.12942/lrr-2014-3
Konstantin A. Postnov, Lev R. Yungelson

We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

本文综述了由白矮星(WDs)、中子星(NSs)和黑洞(BHs)组成的致密双星的形成和演化。紧凑型双星的合并被认为是即将到来的引力波(GW)天文学最重要的来源。在第一部分中,我们讨论了具有NS和(或)BH成分的近距离双星的观测表现及其合并速率、双星系统中致密恒星形成和演化的关键点,包括大质量恒星核心坍缩过程中NSs和BHs获得的出生波的处理以及双星演化的共同包络阶段,这些与NS-NS、NS-BH和BH-BH双星的合并速率最为相关。第二部分主要介绍了双星WDs的形成和演化及其观测表现,包括它们作为具有重要宇宙学意义的热核超新星Ia的前身的作用。我们还考虑了AM CVn-stars,它们被认为是未来低频GW空间干涉仪的最佳验证二元GW源。
{"title":"The Evolution of Compact Binary Star Systems","authors":"Konstantin A. Postnov,&nbsp;Lev R. Yungelson","doi":"10.12942/lrr-2014-3","DOIUrl":"https://doi.org/10.12942/lrr-2014-3","url":null,"abstract":"<p>We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"17 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2014-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4223755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 289
期刊
Living Reviews in Relativity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1