首页 > 最新文献

Living Reviews in Relativity最新文献

英文 中文
Advanced quantum techniques for future gravitational-wave detectors 未来引力波探测器的先进量子技术
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2019-04-29 DOI: 10.1007/s41114-019-0018-y
Stefan L. Danilishin, Farid Ya. Khalili, Haixing Miao

Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article (Danilishin and Khalili in Living Rev Relativ 15:5, 2012), we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.

光的量子涨落限制了先进激光干涉引力波探测器的灵敏度。这是通往下一代引力波天文台的主要障碍之一。设想的探测器灵敏度的显著提高需要使用量子非拆除测量和反作用规避技术,这使我们能够绕过海森堡测不准原理施加的灵敏度限制。在我们之前的综述文章(Danilishin and Khalili In Living Rev Relativ 15:5, 2012)中,我们奠定了量子测量理论的基本原理,并提供了分析干涉仪量子噪声的框架。本文的范围是回顾近年来提出的新的量子噪声抑制技术,并将它们放在同一个框架中。我们对干涉测量方案和拓扑结构的描述是为了帮助下一代引力波天文台选择设计的过程。
{"title":"Advanced quantum techniques for future gravitational-wave detectors","authors":"Stefan L. Danilishin,&nbsp;Farid Ya. Khalili,&nbsp;Haixing Miao","doi":"10.1007/s41114-019-0018-y","DOIUrl":"https://doi.org/10.1007/s41114-019-0018-y","url":null,"abstract":"<p>Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article (Danilishin and Khalili in Living Rev Relativ 15:5, 2012), we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"22 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0018-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5103861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Testing general relativity in cosmology 在宇宙学中检验广义相对论
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-12-18 DOI: 10.1007/s41114-018-0017-4
Mustapha Ishak

We review recent developments and results in testing general relativity (GR) at cosmological scales. The subject has witnessed rapid growth during the last two decades with the aim of addressing the question of cosmic acceleration and the dark energy associated with it. However, with the advent of precision cosmology, it has also become a well-motivated endeavor by itself to test gravitational physics at cosmic scales. We overview cosmological probes of gravity, formalisms and parameterizations for testing deviations from GR at cosmological scales, selected modified gravity (MG) theories, gravitational screening mechanisms, and computer codes developed for these tests. We then provide summaries of recent cosmological constraints on MG parameters and selected MG models. We supplement these cosmological constraints with a summary of implications from the recent binary neutron star merger event. Next, we summarize some results on MG parameter forecasts with and without astrophysical systematics that will dominate the uncertainties. The review aims at providing an overall picture of the subject and an entry point to students and researchers interested in joining the field. It can also serve as a quick reference to recent results and constraints on testing gravity at cosmological scales.

我们回顾了在宇宙尺度上检验广义相对论(GR)的最新进展和结果。在过去的二十年里,为了解决宇宙加速和与之相关的暗能量的问题,这一学科得到了迅速的发展。然而,随着精确宇宙学的出现,在宇宙尺度上测试引力物理本身也成为了一项有充分动机的努力。我们概述了宇宙重力探测器,在宇宙尺度上测试GR偏差的形式和参数化,选定的修正重力(MG)理论,重力筛选机制以及为这些测试开发的计算机代码。然后,我们总结了最近对MG参数和所选MG模型的宇宙学约束。我们补充了这些宇宙学上的限制,总结了最近的双中子星合并事件的影响。接下来,我们总结了一些有天体物理系统和没有天体物理系统的MG参数预测结果,这些结果将主导不确定性。该评论旨在提供主题的整体图景,并为有兴趣加入该领域的学生和研究人员提供切入点。它还可以作为在宇宙尺度上测试重力的最新结果和限制的快速参考。
{"title":"Testing general relativity in cosmology","authors":"Mustapha Ishak","doi":"10.1007/s41114-018-0017-4","DOIUrl":"https://doi.org/10.1007/s41114-018-0017-4","url":null,"abstract":"<p>We review recent developments and results in testing general relativity (GR) at cosmological scales. The subject has witnessed rapid growth during the last two decades with the aim of addressing the question of cosmic acceleration and the dark energy associated with it. However, with the advent of precision cosmology, it has also become a well-motivated endeavor by itself to test gravitational physics at cosmic scales. We overview cosmological probes of gravity, formalisms and parameterizations for testing deviations from GR at cosmological scales, selected modified gravity (MG) theories, gravitational screening mechanisms, and computer codes developed for these tests. We then provide summaries of recent cosmological constraints on MG parameters and selected MG models. We supplement these cosmological constraints with a summary of implications from the recent binary neutron star merger event. Next, we summarize some results on MG parameter forecasts with and without astrophysical systematics that will dominate the uncertainties. The review aims at providing an overall picture of the subject and an entry point to students and researchers interested in joining the field. It can also serve as a quick reference to recent results and constraints on testing gravity at cosmological scales.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"22 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0017-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4711447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 267
Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries 广义相对论的哈密顿公式和紧双星的后牛顿动力学
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-08-31 DOI: 10.1007/s41114-018-0016-5
Gerhard Schäfer, Piotr Jaranowski

Hamiltonian formalisms provide powerful tools for the computation of approximate analytic solutions of the Einstein field equations. The post-Newtonian computations of the explicit analytic dynamics and motion of compact binaries are discussed within the most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous Hamiltonians is achieved by the transition to Routhians. Order reduction of higher derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of general relativity is introduced for the tackling of compact binaries with spinning components. Configurations are treated where the absolute values of the spin vectors can be considered constant. Compact objects are modeled by use of Dirac delta functions and their derivatives. Consistency is achieved through transition to d-dimensional space and application of dimensional regularization. At the fourth post-Newtonian level, tail contributions to the binding energy show up. The conservative spin-dependent dynamics finds explicit presentation in Hamiltonian form through next-to-next-to-leading-order spin–orbit and spin1–spin2 couplings and to leading-order in the cubic and quartic in spin interactions. The radiation reaction dynamics is presented explicitly through the third-and-half post-Newtonian order for spinless objects, and, for spinning bodies, to leading-order in the spin–orbit and spin1–spin2 couplings. The most important historical issues get pointed out.

哈密顿形式为计算爱因斯坦场方程的近似解析解提供了强有力的工具。在最常用的Arnowitt-Deser-Misner形式主义中讨论了紧双星的显式解析动力学和运动的后牛顿计算。自治汉密尔顿人的关注是通过向罗西亚人的过渡而实现的。高阶导数哈密顿量的降阶得到标准哈密顿量。引入广义相对论的四分体表示来处理具有自旋分量的紧二进制。处理构型时,自旋矢量的绝对值可以被认为是常数。用狄拉克函数及其导数对紧致物体进行建模。一致性是通过转换到d维空间和应用维度正则化来实现的。在后牛顿能级,尾巴对结合能的贡献出现了。保守的自旋依赖动力学通过次至次至先序自旋轨道和自旋1 -自旋2耦合以及自旋相互作用中的三次和四次的先序得到哈密顿形式的明确表示。辐射反应动力学是通过third-and-half提出明确的后牛顿spinless对象,,旋转的身体,按顺序在自旋轨道和spin1-spin2耦合。最重要的历史问题被指出来。
{"title":"Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries","authors":"Gerhard Schäfer,&nbsp;Piotr Jaranowski","doi":"10.1007/s41114-018-0016-5","DOIUrl":"https://doi.org/10.1007/s41114-018-0016-5","url":null,"abstract":"<p>Hamiltonian formalisms provide powerful tools for the computation of approximate analytic solutions of the Einstein field equations. The post-Newtonian computations of the explicit analytic dynamics and motion of compact binaries are discussed within the most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous Hamiltonians is achieved by the transition to Routhians. Order reduction of higher derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of general relativity is introduced for the tackling of compact binaries with spinning components. Configurations are treated where the absolute values of the spin vectors can be considered constant. Compact objects are modeled by use of Dirac delta functions and their derivatives. Consistency is achieved through transition to <i>d</i>-dimensional space and application of dimensional regularization. At the fourth post-Newtonian level, tail contributions to the binding energy show up. The conservative spin-dependent dynamics finds explicit presentation in Hamiltonian form through next-to-next-to-leading-order spin–orbit and spin1–spin2 couplings and to leading-order in the cubic and quartic in spin interactions. The radiation reaction dynamics is presented explicitly through the third-and-half post-Newtonian order for spinless objects, and, for spinning bodies, to leading-order in the spin–orbit and spin1–spin2 couplings. The most important historical issues get pointed out.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0016-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5174159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 99
Computer algebra in gravity research 重力研究中的计算机代数
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-08-20 DOI: 10.1007/s41114-018-0015-6
Malcolm A. H. MacCallum

The complicated nature of calculations in general relativity was one of the driving forces in the early development of computer algebra (CA). CA has become widely used in gravity research (GR) and its use can be expected to grow further. Here the general nature of computer algebra is discussed, along with some aspects of CA system design; features particular to GR’s requirements are considered; information on packages for CA in GR is provided, both for those packages currently available and for their predecessors; and applications of CA in GR are outlined.

广义相对论中计算的复杂性是计算机代数(CA)早期发展的驱动力之一。CA在重力研究中得到了广泛的应用,其应用前景广阔。这里讨论了计算机代数的一般性质,以及CA系统设计的一些方面;考虑到GR要求的特殊特征;提供了GR中用于CA的包的信息,包括当前可用的包和它们的前身;概述了CA在GR中的应用。
{"title":"Computer algebra in gravity research","authors":"Malcolm A. H. MacCallum","doi":"10.1007/s41114-018-0015-6","DOIUrl":"https://doi.org/10.1007/s41114-018-0015-6","url":null,"abstract":"<p>The complicated nature of calculations in general relativity was one of the driving forces in the early development of computer algebra (CA). CA has become widely used in gravity research (GR) and its use can be expected to grow further. Here the general nature of computer algebra is discussed, along with some aspects of CA system design; features particular to GR’s requirements are considered; information on packages for CA in GR is provided, both for those packages currently available and for their predecessors; and applications of CA in GR are outlined.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0015-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5077976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Geometrical inequalities bounding angular momentum and charges in General Relativity 广义相对论中包含角动量和电荷的几何不等式
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-07-05 DOI: 10.1007/s41114-018-0014-7
Sergio Dain, María Eugenia Gabach-Clement

Geometrical inequalities show how certain parameters of a physical system set restrictions on other parameters. For instance, a black hole of given mass can not rotate too fast, or an ordinary object of given size can not have too much electric charge. In this article, we are interested in bounds on the angular momentum and electromagnetic charges, in terms of total mass and size. We are mainly concerned with inequalities for black holes and ordinary objects. The former are the most studied systems in this context in General Relativity, and where most results have been found. Ordinary objects, on the other hand, present numerous challenges and many basic questions concerning geometrical estimates for them are still unanswered. We present the many results in these areas. We make emphasis in identifying the mathematical conditions that lead to such estimates, both for black holes and ordinary objects.

几何不等式表明物理系统的某些参数如何对其他参数设置限制。例如,一个给定质量的黑洞不能旋转得太快,或者一个给定大小的普通物体不能有太多的电荷。在这篇文章中,我们感兴趣的是角动量和电磁电荷的边界,根据总质量和大小。我们主要关注黑洞和普通物体的不等式。前者是广义相对论中研究最多的系统,也是发现最多结果的系统。另一方面,普通物体提出了许多挑战,许多关于它们几何估计的基本问题仍然没有答案。我们介绍了这些领域的许多结果。我们强调指出导致这种估计的数学条件,对黑洞和普通物体都是如此。
{"title":"Geometrical inequalities bounding angular momentum and charges in General Relativity","authors":"Sergio Dain,&nbsp;María Eugenia Gabach-Clement","doi":"10.1007/s41114-018-0014-7","DOIUrl":"https://doi.org/10.1007/s41114-018-0014-7","url":null,"abstract":"<p>Geometrical inequalities show how certain parameters of a physical system set restrictions on other parameters. For instance, a black hole of given mass can not rotate too fast, or an ordinary object of given size can not have too much electric charge. In this article, we are interested in bounds on the angular momentum and electromagnetic charges, in terms of total mass and size. We are mainly concerned with inequalities for black holes and ordinary objects. The former are the most studied systems in this context in General Relativity, and where most results have been found. Ordinary objects, on the other hand, present numerous challenges and many basic questions concerning geometrical estimates for them are still unanswered. We present the many results in these areas. We make emphasis in identifying the mathematical conditions that lead to such estimates, both for black holes and ordinary objects.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0014-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4214131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Relativistic dynamics and extreme mass ratio inspirals 相对论动力学和极端质量比吸气
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-05-15 DOI: 10.1007/s41114-018-0013-8
Pau Amaro-Seoane

It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes—how some of them grow by orders of magnitude in mass—lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes “eat” stars that happen to be near them.

现在已经确定,银河系中心潜伏着一个黑暗、致密的物体,很可能是一个质量约为400万太阳质量的巨大黑洞(MBH)。虽然人们对超大质量黑洞(质量大于10亿个太阳质量)的起源和增长已经达成共识,但质量较小的黑洞,比如我们银河系中心的黑洞,仍然没有得到充分的研究,而且是个谜。了解这些黑洞的关键在于了解银河系附近恒星的动力学,了解其中一些黑洞的质量是如何以数量级增长的。恒星与中央MBH的相互作用主要是通过它们的逐渐吸入,这是由于引力辐射的发射。恒星也会产生气体,这些气体随后会被MBH通过碰撞和由强大的中心潮汐场带来的破坏而吸积。这些过程对MBH的质量有很大的贡献,理解它们的进展需要理论工作,为未来的引力辐射毫赫任务和x射线天文台做准备。特别地,对这些区域的一个独特探测是引力辐射,它是由一些非常接近黑洞的致密恒星发出的,可以通过毫赫引力波干涉仪进行测量,该干涉仪仔细检查质量范围,对理解超大质量黑洞的起源和生长至关重要。通过提取引力辐射所携带的信息,我们可以以前所未有的精度确定中心MBH的质量和旋转,我们可以确定黑洞是如何“吃掉”碰巧在它们附近的恒星的。
{"title":"Relativistic dynamics and extreme mass ratio inspirals","authors":"Pau Amaro-Seoane","doi":"10.1007/s41114-018-0013-8","DOIUrl":"https://doi.org/10.1007/s41114-018-0013-8","url":null,"abstract":"<p>It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes—how some of them grow by orders of magnitude in mass—lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes “eat” stars that happen to be near them.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0013-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4620127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 86
Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 先进LIGO、先进Virgo和KAGRA对引力波瞬态观测和定位的展望
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-04-26 DOI: 10.1007/s41114-018-0012-9
B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, B. Allen, A. Allocca, P. A. Altin, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. Appert, K. Arai, A. Araya, M. C. Araya, J. S. Areeda, N. Arnaud, K. G. Arun, H. Asada, S. Ascenzi, G. Ashton, Y. Aso, M. Ast, S. M. Aston, P. Astone, S. Atsuta, P. Aufmuth, C. Aulbert, A. Avila-Alvarez, K. Awai, S. Babak, P. Bacon, M. K. M. Bader, L. Baiotti, P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, J. C. Batch, C. Baune, V. Bavigadda, M. Bazzan, B. Bécsy, C. Beer, M. Bejger, I. Belahcene, M. Belgin, A. S. Bell, B. K. Berger, G. Bergmann, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, S. Bhagwat, R. Bhandare, I. A. Bilenko, G. Billingsley, C. R. Billman, J. Birch, R. Birney, O. Birnholtz, S. Biscans, A. Bisht, M. Bitossi, C. Biwer, M. A. Bizouard, J. K. Blackburn, J. Blackman, C. D. Blair, D. G. Blair, R. M. Blair, S. Bloemen, O. Bock, M. Boer, G. Bogaert, A. Bohe, F. Bondu, R. Bonnand, B. A. Boom, R. Bork, V. Boschi, S. Bose, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, V. B. Braginsky, M. Branchesi, J. E. Brau, T. Briant, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, J. E. Broida, A. F. Brooks, D. A. Brown, D. D. Brown, N. M. Brown, S. Brunett, C. C. Buchanan, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic, C. Buy, R. L. Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, T. A. Callister, E. Calloni, J. B. Camp, K. C. Cannon, H. Cao, J. Cao, C. D. Capano, E. Capocasa, F. Carbognani, S. Caride, J. Casanueva Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, C. B. Cepeda, L. Cerboni Baiardi, G. Cerretani, E. Cesarini, S. J. Chamberlin, M. Chan, S. Chao, P. Charlton, E. Chassande-Mottin, B. D. Cheeseboro, H. Y. Chen, Y. Chen, H.-P. Cheng, A. Chincarini, A. Chiummo, T. Chmiel, H. S. Cho, M. Cho, J. H. Chow, N. Christensen, Q. Chu, A. J. K. Chua, S. Chua, S. Chung, G. Ciani, F. Clara, J. A. Clark, F. Cleva, C. Cocchieri, E. Coccia, P.-F. Cohadon, A. Colla, C. G. Collette, L. Cominsky, M. Constancio Jr., L. Conti, S. J. Cooper, T. R. Corbitt, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, M. W. Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, P. B. Covas, E. E. Cowan, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, J. Cripe, S. G. Crowder, T. J. Cullen, A. Cumming, L. Cunningham, E. Cuoco, T. Dal Canton, S. L. Danilishin, S. D’Antonio, K. Danzmann, A. Dasgupta, C. F. Da Silva Costa, V. Dattilo, I. Dave, M. Davier, G. S. Davies, D. Davis, E. J. Daw, B. Day, R. Day, S. De, D. DeBra, G. Debreczeni, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, T. Denker, T. Dent, V. Dergachev, R. De Rosa, R. T. DeRosa, R. DeSalvo, R. C. Devine, S. Dhurandhar, M. C. Díaz, L. Di Fiore, M. Di Giovanni, T. Di Girolamo, A. Di Lieto, S. Di Pace, I. Di Palma, A. Di Virgilio, Z. Doctor, K. Doi, V. Dolique, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, R. Douglas, M. Dovale Álvarez, T. P. Downes, M. Drago, R. W. P. Drever, J. C. Driggers, Z. Du, M. Ducrot, S. E. Dwyer, K. Eda, T. B. Edo, M. C. Edwards, A. Effler, H.-B. Eggenstein, P. Ehrens, J. Eichholz, S. S. Eikenberry, R. A. Eisenstein, R. C. Essick, Z. Etienne, T. Etzel, M. Evans, T. M. Evans, R. Everett, M. Factourovich, V. Fafone, H. Fair, S. Fairhurst, X. Fan, S. Farinon, B. Farr, W. M. Farr, E. J. Fauchon-Jones, M. Favata, M. Fays, H. Fehrmann, M. M. Fejer, A. Fernández Galiana, I. Ferrante, E. C. Ferreira, F. Ferrini, F. Fidecaro, I. Fiori, D. Fiorucci, R. P. Fisher, R. Flaminio, M. Fletcher, H. Fong, S. S. Forsyth, J.-D. Fournier, S. Frasca, F. Frasconi, Z. Frei, A. Freise, R. Frey, V. Frey, E. M. Fries, P. Fritschel, V. V. Frolov, Y. Fujii, M.-K. Fujimoto, P. Fulda, M. Fyffe, H. Gabbard, B. U. Gadre, S. M. Gaebel, J. R. Gair, L. Gammaitoni, S. G. Gaonkar, F. Garufi, G. Gaur, V. Gayathri, N. Gehrels, G. Gemme, E. Genin, A. Gennai, J. George, L. Gergely, V. Germain, S. Ghonge, Abhirup Ghosh, Archisman Ghosh, S. Ghosh, J. A. Giaime, K. D. Giardina, A. Giazotto, K. Gill, A. Glaefke, E. Goetz, R. Goetz, L. Gondan, G. González, J. M. Gonzalez Castro, A. Gopakumar, M. L. Gorodetsky, S. E. Gossan, M. Gosselin, R. Gouaty, A. Grado, C. Graef, M. Granata, A. Grant, S. Gras, C. Gray, G. Greco, A. C. Green, P. Groot, H. Grote, S. Grunewald, G. M. Guidi, X. Guo, A. Gupta, M. K. Gupta, K. E. Gushwa, E. K. Gustafson, R. Gustafson, J. J. Hacker, A. Hagiwara, B. R. Hall, E. D. Hall, G. Hammond, M. Haney, M. M. Hanke, J. Hanks, C. Hanna, M. D. Hannam, J. Hanson, T. Hardwick, J. Harms, G. M. Harry, I. W. Harry, M. J. Hart, M. T. Hartman, C.-J. Haster, K. Haughian, K. Hayama, J. Healy, A. Heidmann, M. C. Heintze, H. Heitmann, P. Hello, G. Hemming, M. Hendry, I. S. Heng, J. Hennig, J. Henry, A. W. Heptonstall, M. Heurs, S. Hild, E. Hirose, D. Hoak, D. Hofman, K. Holt, D. E. Holz, P. Hopkins, J. Hough, E. A. Houston, E. J. Howell, Y. M. Hu, E. A. Huerta, D. Huet, B. Hughey, S. Husa, S. H. Huttner, T. Huynh-Dinh, N. Indik, D. R. Ingram, R. Inta, K. Ioka, H. N. Isa, J.-M. Isac, M. Isi, T. Isogai, Y. Itoh, B. R. Iyer, K. Izumi, T. Jacqmin, K. Jani, P. Jaranowski, S. Jawahar, F. Jiménez-Forteza, W. W. Johnson, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, J. Junker, T. Kagawa, T. Kajita, M. Kakizaki, C. V. Kalaghatgi, V. Kalogera, M. Kamiizumi, N. Kanda, S. Kandhasamy, S. Kanemura, M. Kaneyama, G. Kang, J. B. Kanner, S. Karki, K. S. Karvinen, M. Kasprzack, Y. Kataoka, E. Katsavounidis, W. Katzman, S. Kaufer, T. Kaur, K. Kawabe, N. Kawai, S. Kawamura, F. Kéfélian, D. Keitel, D. B. Kelley, R. Kennedy, J. S. Key, F. Y. Khalili, I. Khan, S. Khan, Z. Khan, E. A. Khazanov, N. Kijbunchoo, C. Kim, H. Kim, J. C. Kim, J. Kim, W. Kim, Y.-M. Kim, S. J. Kimbrell, N. Kimura, E. J. King, P. J. King, R. Kirchhoff, J. S. Kissel, B. Klein, L. Kleybolte, S. Klimenko, P. Koch, S. M. Koehlenbeck, Y. Kojima, K. Kokeyama, S. Koley, K. Komori, V. Kondrashov, A. Kontos, M. Korobko, W. Z. Korth, K. Kotake, I. Kowalska, D. B. Kozak, C. Krämer, V. Kringel, B. Krishnan, A. Królak, G. Kuehn, P. Kumar, Rahul Kumar, Rakesh Kumar, L. Kuo, K. Kuroda, A. Kutynia, Y. Kuwahara, B. D. Lackey, M. Landry, R. N. Lang, J. Lange, B. Lantz, R. K. Lanza, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, E. O. Lebigot, C. H. Lee, H. K. Lee, H. M. Lee, H. W. Lee, K. Lee, J. Lehmann, A. Lenon, M. Leonardi, J. R. Leong, N. Leroy, N. Letendre, Y. Levin, T. G. F. Li, A. Libson, T. B. Littenberg, J. Liu, N. A. Lockerbie, A. L. Lombardi, L. T. London, J. E. Lord, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, H. Lück, A. P. Lundgren, R. Lynch, Y. Ma, S. Macfoy, B. Machenschalk, M. MacInnis, D. M. Macleod, F. Magaña-Sandoval, E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, V. Mandic, V. Mangano, S. Mano, G. L. Mansell, M. Manske, M. Mantovani, F. Marchesoni, M. Marchio, F. Marion, S. Márka, Z. Márka, A. S. Markosyan, E. Maros, F. Martelli, L. Martellini, I. W. Martin, D. V. Martynov, K. Mason, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, F. Matichard, L. Matone, N. Matsumoto, F. Matsushima, N. Mavalvala, N. Mazumder, R. McCarthy, D. E. McClelland, S. McCormick, C. McGrath, S. C. McGuire, G. McIntyre, J. McIver, D. J. McManus, T. McRae, S. T. McWilliams, D. Meacher, G. D. Meadors, J. Meidam, A. Melatos, G. Mendell, D. Mendoza-Gandara, R. A. Mercer, E. L. Merilh, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, R. Metzdorff, P. M. Meyers, F. Mezzani, H. Miao, C. Michel, Y. Michimura, H. Middleton, E. E. Mikhailov, L. Milano, A. L. Miller, A. Miller, B. B. Miller, J. Miller, M. Millhouse, Y. Minenkov, J. Ming, S. Mirshekari, C. Mishra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa, A. Miyamoto, T. Miyamoto, S. Miyoki, A. Moggi, M. Mohan, S. R. P. Mohapatra, M. Montani, B. C. Moore, C. J. Moore, D. Moraru, G. Moreno, W. Morii, S. Morisaki, Y. Moriwaki, S. R. Morriss, B. Mours, C. M. Mow-Lowry, G. Mueller, A. W. Muir, Arunava Mukherjee, D. Mukherjee, S. Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. M. Muniz, P. G. Murray, A. Mytidis, S. Nagano, K. Nakamura, T. Nakamura, H. Nakano, Masaya Nakano, Masayuki Nakano, K. Nakao, K. Napier, I. Nardecchia, T. Narikawa, L. Naticchioni, G. Nelemans, T. J. N. Nelson, M. Neri, M. Nery, A. Neunzert, J. M. Newport, G. Newton, T. T. Nguyen, W.-T. Ni, A. B. Nielsen, S. Nissanke, A. Nitz, A. Noack, F. Nocera, D. Nolting, M. E. N. Normandin, L. K. Nuttall, J. Oberling, E. Ochsner, E. Oelker, G. H. Ogin, J. J. Oh, S. H. Oh, M. Ohashi, N. Ohishi, M. Ohkawa, F. Ohme, K. Okutomi, M. Oliver, K. Ono, Y. Ono, K. Oohara, P. Oppermann, Richard J. Oram, B. O’Reilly, R. O’Shaughnessy, D. J. Ottaway, H. Overmier, B. J. Owen, A. E. Pace, J. Page, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, A. Pal-Singh, H. Pan, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, M. A. Papa, H. R. Paris, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, B. Patricelli, B. L. Pearlstone, M. Pedraza, R. Pedurand, L. Pekowsky, A. Pele, F. E. Peña Arellano, S. Penn, C. J. Perez, A. Perreca, L. M. Perri, H. P. Pfeiffer, M. Phelps, O. J. Piccinni, M. Pichot, F. Piergiovanni, V. Pierro, G. Pillant, L. Pinard, I. M. Pinto, M. Pitkin, M. Poe, R. Poggiani, P. Popolizio, A. Post, J. Powell, J. Prasad, J. W. W. Pratt, V. Predoi, T. Prestegard, M. Prijatelj, M. Principe, S. Privitera, G. A. Prodi, L. G. Prokhorov, O. Puncken, M. Punturo, P. Puppo, M. Pürrer, H. Qi, J. Qin, S. Qiu, V. Quetschke, E. A. Quintero, R. Quitzow-James, F. J. Raab, D. S. Rabeling, H. Radkins, P. Raffai, S. Raja, C. Rajan, M. Rakhmanov, P. Rapagnani, V. Raymond, M. Razzano, V. Re, J. Read, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, H. Rew, S. D. Reyes, E. Rhoades, F. Ricci, K. Riles, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, L. Rolland, J. G. Rollins, V. J. Roma, R. Romano, J. H. Romie, D. Rosińska, S. Rowan, A. Rüdiger, P. Ruggi, K. Ryan, S. Sachdev, T. Sadecki, L. Sadeghian, N. Sago, M. Saijo, Y. Saito, K. Sakai, M. Sakellariadou, L. Salconi, M. Saleem, F. Salemi, A. Samajdar, L. Sammut, L. M. Sampson, E. J. Sanchez, V. Sandberg, J. R. Sanders, Y. Sasaki, B. Sassolas, B. S. Sathyaprakash, S. Sato, T. Sato, P. R. Saulson, O. Sauter, R. L. Savage, A. Sawadsky, P. Schale, J. Scheuer, E. Schmidt, J. Schmidt, P. Schmidt, R. Schnabel, R. M. S. Schofield, A. Schönbeck, E. Schreiber, D. Schuette, B. F. Schutz, S. G. Schwalbe, J. Scott, S. M. Scott, T. Sekiguchi, Y. Sekiguchi, D. Sellers, A. S. Sengupta, D. Sentenac, V. Sequino, A. Sergeev, Y. Setyawati, D. A. Shaddock, T. J. Shaffer, M. S. Shahriar, B. Shapiro, P. Shawhan, A. Sheperd, M. Shibata, Y. Shikano, T. Shimoda, A. Shoda, D. H. Shoemaker, D. M. Shoemaker, K. Siellez, X. Siemens, M. Sieniawska, D. Sigg, A. D. Silva, A. Singer, L. P. Singer, A. Singh, R. Singh, A. Singhal, A. M. Sintes, B. J. J. Slagmolen, B. Smith, J. R. Smith, R. J. E. Smith, K. Somiya, E. J. Son, B. Sorazu, F. Sorrentino, T. Souradeep, A. P. Spencer, A. K. Srivastava, A. Staley, M. Steinke, J. Steinlechner, S. Steinlechner, D. Steinmeyer, B. C. Stephens, S. P. Stevenson, R. Stone, K. A. Strain, N. Straniero, G. Stratta, S. E. Strigin, R. Sturani, A. L. Stuver, Y. Sugimoto, T. Z. Summerscales, L. Sun, S. Sunil, P. J. Sutton, T. Suzuki, B. L. Swinkels, M. J. Szczepańczyk, M. Tacca, H. Tagoshi, S. Takada, H. Takahashi, R. Takahashi, A. Takamori, D. Talukder, H. Tanaka, K. Tanaka, T. Tanaka, D. B. Tanner, M. Tápai, A. Taracchini, D. Tatsumi, R. Taylor, S. Telada, T. Theeg, E. G. Thomas, M. Thomas, P. Thomas, K. A. Thorne, E. Thrane, T. Tippens, S. Tiwari, V. Tiwari, K. V. Tokmakov, K. Toland, T. Tomaru, C. Tomlinson, M. Tonelli, Z. Tornasi, C. I. Torrie, D. Töyrä, F. Travasso, G. Traylor, D. Trifirò, J. Trinastic, M. C. Tringali, L. Trozzo, M. Tse, R. Tso, K. Tsubono, T. Tsuzuki, M. Turconi, D. Tuyenbayev, T. Uchiyama, T. Uehara, S. Ueki, K. Ueno, D. Ugolini, C. S. Unnikrishnan, A. L. Urban, T. Ushiba, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, L. van der Schaaf, J. V. van Heijningen, M. H. P. M. van Putten, A. A. van Veggel, M. Vardaro, V. Varma, S. Vass, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, G. Venugopalan, D. Verkindt, F. Vetrano, A. Viceré, A. D. Viets, S. Vinciguerra, D. J. Vine, J.-Y. Vinet, S. Vitale, T. Vo, H. Vocca, C. Vorvick, D. V. Voss, W. D. Vousden, S. P. Vyatchanin, A. R. Wade, L. E. Wade, M. Wade, T. Wakamatsu, M. Walker, L. Wallace, S. Walsh, G. Wang, H. Wang, M. Wang, Y. Wang, R. L. Ward, J. Warner, M. Was, J. Watchi, B. Weaver, L.-W. Wei, M. Weinert, A. J. Weinstein, R. Weiss, L. Wen, P. Weßels, T. Westphal, K. Wette, J. T. Whelan, B. F. Whiting, C. Whittle, D. Williams, R. D. Williams, A. R. Williamson, J. L. Willis, B. Willke, M. H. Wimmer, W. Winkler, C. C. Wipf, H. Wittel, G. Woan, J. Woehler, J. Worden, J. L. Wright, D. S. Wu, G. Wu, W. Yam, H. Yamamoto, K. Yamamoto, T. Yamamoto, C. C. Yancey, K. Yano, M. J. Yap, J. Yokoyama, T. Yokozawa, T. H. Yoon, Hang Yu, Haocun Yu, H. Yuzurihara, M. Yvert, A. Zadrożny, L. Zangrando, M. Zanolin, S. Zeidler, J.-P. Zendri, M. Zevin, L. Zhang, M. Zhang, T. Zhang, Y. Zhang, C. Zhao, M. Zhou, Z. Zhou, S. J. Zhu, X. J. Zhu, M. E. Zucker, J. Zweizig, KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and (90%) credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–(20~mathrm {deg}^2) requires at least three detectors of sensitivity within a factor of (sim 2) of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

我们提出了未来十年先进LIGO、先进Virgo和KAGRA引力波探测器可能的观测方案,旨在为天文学界提供信息,以促进引力波多信使天文学的规划。我们估计了网络对瞬态引力波信号的灵敏度,并研究了网络确定源的天空位置的能力。我们报告了我们对引力波瞬变的发现,特别关注来自双中子星系统的引力波信号,这是多信使天文学最有希望的目标。定位探测到的信号源的能力取决于探测器的地理分布和它们的相对灵敏度,当只有两个敏感探测器在工作时,(90%)可信区域可以大到数千平方度。要确定很大一部分探测信号在5 - (20~mathrm {deg}^2)范围内的天空位置,需要至少三个灵敏度在(sim 2)因子内的探测器,并且具有较宽的频率带宽。当包括KAGRA和印度第三个LIGO探测器在内的所有探测器达到设计灵敏度时,仅通过引力波观测就可以将很大一部分引力波信号定位到几平方度的范围内。
{"title":"Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA","authors":"B. P. Abbott,&nbsp;R. Abbott,&nbsp;T. D. Abbott,&nbsp;M. R. Abernathy,&nbsp;F. Acernese,&nbsp;K. Ackley,&nbsp;C. Adams,&nbsp;T. Adams,&nbsp;P. Addesso,&nbsp;R. X. Adhikari,&nbsp;V. B. Adya,&nbsp;C. Affeldt,&nbsp;M. Agathos,&nbsp;K. Agatsuma,&nbsp;N. Aggarwal,&nbsp;O. D. Aguiar,&nbsp;L. Aiello,&nbsp;A. Ain,&nbsp;P. Ajith,&nbsp;T. Akutsu,&nbsp;B. Allen,&nbsp;A. Allocca,&nbsp;P. A. Altin,&nbsp;A. Ananyeva,&nbsp;S. B. Anderson,&nbsp;W. G. Anderson,&nbsp;M. Ando,&nbsp;S. Appert,&nbsp;K. Arai,&nbsp;A. Araya,&nbsp;M. C. Araya,&nbsp;J. S. Areeda,&nbsp;N. Arnaud,&nbsp;K. G. Arun,&nbsp;H. Asada,&nbsp;S. Ascenzi,&nbsp;G. Ashton,&nbsp;Y. Aso,&nbsp;M. Ast,&nbsp;S. M. Aston,&nbsp;P. Astone,&nbsp;S. Atsuta,&nbsp;P. Aufmuth,&nbsp;C. Aulbert,&nbsp;A. Avila-Alvarez,&nbsp;K. Awai,&nbsp;S. Babak,&nbsp;P. Bacon,&nbsp;M. K. M. Bader,&nbsp;L. Baiotti,&nbsp;P. T. Baker,&nbsp;F. Baldaccini,&nbsp;G. Ballardin,&nbsp;S. W. Ballmer,&nbsp;J. C. Barayoga,&nbsp;S. E. Barclay,&nbsp;B. C. Barish,&nbsp;D. Barker,&nbsp;F. Barone,&nbsp;B. Barr,&nbsp;L. Barsotti,&nbsp;M. Barsuglia,&nbsp;D. Barta,&nbsp;J. Bartlett,&nbsp;M. A. Barton,&nbsp;I. Bartos,&nbsp;R. Bassiri,&nbsp;A. Basti,&nbsp;J. C. Batch,&nbsp;C. Baune,&nbsp;V. Bavigadda,&nbsp;M. Bazzan,&nbsp;B. Bécsy,&nbsp;C. Beer,&nbsp;M. Bejger,&nbsp;I. Belahcene,&nbsp;M. Belgin,&nbsp;A. S. Bell,&nbsp;B. K. Berger,&nbsp;G. Bergmann,&nbsp;C. P. L. Berry,&nbsp;D. Bersanetti,&nbsp;A. Bertolini,&nbsp;J. Betzwieser,&nbsp;S. Bhagwat,&nbsp;R. Bhandare,&nbsp;I. A. Bilenko,&nbsp;G. Billingsley,&nbsp;C. R. Billman,&nbsp;J. Birch,&nbsp;R. Birney,&nbsp;O. Birnholtz,&nbsp;S. Biscans,&nbsp;A. Bisht,&nbsp;M. Bitossi,&nbsp;C. Biwer,&nbsp;M. A. Bizouard,&nbsp;J. K. Blackburn,&nbsp;J. Blackman,&nbsp;C. D. Blair,&nbsp;D. G. Blair,&nbsp;R. M. Blair,&nbsp;S. Bloemen,&nbsp;O. Bock,&nbsp;M. Boer,&nbsp;G. Bogaert,&nbsp;A. Bohe,&nbsp;F. Bondu,&nbsp;R. Bonnand,&nbsp;B. A. Boom,&nbsp;R. Bork,&nbsp;V. Boschi,&nbsp;S. Bose,&nbsp;Y. Bouffanais,&nbsp;A. Bozzi,&nbsp;C. Bradaschia,&nbsp;P. R. Brady,&nbsp;V. B. Braginsky,&nbsp;M. Branchesi,&nbsp;J. E. Brau,&nbsp;T. Briant,&nbsp;A. Brillet,&nbsp;M. Brinkmann,&nbsp;V. Brisson,&nbsp;P. Brockill,&nbsp;J. E. Broida,&nbsp;A. F. Brooks,&nbsp;D. A. Brown,&nbsp;D. D. Brown,&nbsp;N. M. Brown,&nbsp;S. Brunett,&nbsp;C. C. Buchanan,&nbsp;A. Buikema,&nbsp;T. Bulik,&nbsp;H. J. Bulten,&nbsp;A. Buonanno,&nbsp;D. Buskulic,&nbsp;C. Buy,&nbsp;R. L. Byer,&nbsp;M. Cabero,&nbsp;L. Cadonati,&nbsp;G. Cagnoli,&nbsp;C. Cahillane,&nbsp;J. Calderón Bustillo,&nbsp;T. A. Callister,&nbsp;E. Calloni,&nbsp;J. B. Camp,&nbsp;K. C. Cannon,&nbsp;H. Cao,&nbsp;J. Cao,&nbsp;C. D. Capano,&nbsp;E. Capocasa,&nbsp;F. Carbognani,&nbsp;S. Caride,&nbsp;J. Casanueva Diaz,&nbsp;C. Casentini,&nbsp;S. Caudill,&nbsp;M. Cavaglià,&nbsp;F. Cavalier,&nbsp;R. Cavalieri,&nbsp;G. Cella,&nbsp;C. B. Cepeda,&nbsp;L. Cerboni Baiardi,&nbsp;G. Cerretani,&nbsp;E. Cesarini,&nbsp;S. J. Chamberlin,&nbsp;M. Chan,&nbsp;S. Chao,&nbsp;P. Charlton,&nbsp;E. Chassande-Mottin,&nbsp;B. D. Cheeseboro,&nbsp;H. Y. Chen,&nbsp;Y. Chen,&nbsp;H.-P. Cheng,&nbsp;A. Chincarini,&nbsp;A. Chiummo,&nbsp;T. Chmiel,&nbsp;H. S. Cho,&nbsp;M. Cho,&nbsp;J. H. Chow,&nbsp;N. Christensen,&nbsp;Q. Chu,&nbsp;A. J. K. Chua,&nbsp;S. Chua,&nbsp;S. Chung,&nbsp;G. Ciani,&nbsp;F. Clara,&nbsp;J. A. Clark,&nbsp;F. Cleva,&nbsp;C. Cocchieri,&nbsp;E. Coccia,&nbsp;P.-F. Cohadon,&nbsp;A. Colla,&nbsp;C. G. Collette,&nbsp;L. Cominsky,&nbsp;M. Constancio Jr.,&nbsp;L. Conti,&nbsp;S. J. Cooper,&nbsp;T. R. Corbitt,&nbsp;N. Cornish,&nbsp;A. Corsi,&nbsp;S. Cortese,&nbsp;C. A. Costa,&nbsp;M. W. Coughlin,&nbsp;S. B. Coughlin,&nbsp;J.-P. Coulon,&nbsp;S. T. Countryman,&nbsp;P. Couvares,&nbsp;P. B. Covas,&nbsp;E. E. Cowan,&nbsp;D. M. Coward,&nbsp;M. J. Cowart,&nbsp;D. C. Coyne,&nbsp;R. Coyne,&nbsp;J. D. E. Creighton,&nbsp;T. D. Creighton,&nbsp;J. Cripe,&nbsp;S. G. Crowder,&nbsp;T. J. Cullen,&nbsp;A. Cumming,&nbsp;L. Cunningham,&nbsp;E. Cuoco,&nbsp;T. Dal Canton,&nbsp;S. L. Danilishin,&nbsp;S. D’Antonio,&nbsp;K. Danzmann,&nbsp;A. Dasgupta,&nbsp;C. F. Da Silva Costa,&nbsp;V. Dattilo,&nbsp;I. Dave,&nbsp;M. Davier,&nbsp;G. S. Davies,&nbsp;D. Davis,&nbsp;E. J. Daw,&nbsp;B. Day,&nbsp;R. Day,&nbsp;S. De,&nbsp;D. DeBra,&nbsp;G. Debreczeni,&nbsp;J. Degallaix,&nbsp;M. De Laurentis,&nbsp;S. Deléglise,&nbsp;W. Del Pozzo,&nbsp;T. Denker,&nbsp;T. Dent,&nbsp;V. Dergachev,&nbsp;R. De Rosa,&nbsp;R. T. DeRosa,&nbsp;R. DeSalvo,&nbsp;R. C. Devine,&nbsp;S. Dhurandhar,&nbsp;M. C. Díaz,&nbsp;L. Di Fiore,&nbsp;M. Di Giovanni,&nbsp;T. Di Girolamo,&nbsp;A. Di Lieto,&nbsp;S. Di Pace,&nbsp;I. Di Palma,&nbsp;A. Di Virgilio,&nbsp;Z. Doctor,&nbsp;K. Doi,&nbsp;V. Dolique,&nbsp;F. Donovan,&nbsp;K. L. Dooley,&nbsp;S. Doravari,&nbsp;I. Dorrington,&nbsp;R. Douglas,&nbsp;M. Dovale Álvarez,&nbsp;T. P. Downes,&nbsp;M. Drago,&nbsp;R. W. P. Drever,&nbsp;J. C. Driggers,&nbsp;Z. Du,&nbsp;M. Ducrot,&nbsp;S. E. Dwyer,&nbsp;K. Eda,&nbsp;T. B. Edo,&nbsp;M. C. Edwards,&nbsp;A. Effler,&nbsp;H.-B. Eggenstein,&nbsp;P. Ehrens,&nbsp;J. Eichholz,&nbsp;S. S. Eikenberry,&nbsp;R. A. Eisenstein,&nbsp;R. C. Essick,&nbsp;Z. Etienne,&nbsp;T. Etzel,&nbsp;M. Evans,&nbsp;T. M. Evans,&nbsp;R. Everett,&nbsp;M. Factourovich,&nbsp;V. Fafone,&nbsp;H. Fair,&nbsp;S. Fairhurst,&nbsp;X. Fan,&nbsp;S. Farinon,&nbsp;B. Farr,&nbsp;W. M. Farr,&nbsp;E. J. Fauchon-Jones,&nbsp;M. Favata,&nbsp;M. Fays,&nbsp;H. Fehrmann,&nbsp;M. M. Fejer,&nbsp;A. Fernández Galiana,&nbsp;I. Ferrante,&nbsp;E. C. Ferreira,&nbsp;F. Ferrini,&nbsp;F. Fidecaro,&nbsp;I. Fiori,&nbsp;D. Fiorucci,&nbsp;R. P. Fisher,&nbsp;R. Flaminio,&nbsp;M. Fletcher,&nbsp;H. Fong,&nbsp;S. S. Forsyth,&nbsp;J.-D. Fournier,&nbsp;S. Frasca,&nbsp;F. Frasconi,&nbsp;Z. Frei,&nbsp;A. Freise,&nbsp;R. Frey,&nbsp;V. Frey,&nbsp;E. M. Fries,&nbsp;P. Fritschel,&nbsp;V. V. Frolov,&nbsp;Y. Fujii,&nbsp;M.-K. Fujimoto,&nbsp;P. Fulda,&nbsp;M. Fyffe,&nbsp;H. Gabbard,&nbsp;B. U. Gadre,&nbsp;S. M. Gaebel,&nbsp;J. R. Gair,&nbsp;L. Gammaitoni,&nbsp;S. G. Gaonkar,&nbsp;F. Garufi,&nbsp;G. Gaur,&nbsp;V. Gayathri,&nbsp;N. Gehrels,&nbsp;G. Gemme,&nbsp;E. Genin,&nbsp;A. Gennai,&nbsp;J. George,&nbsp;L. Gergely,&nbsp;V. Germain,&nbsp;S. Ghonge,&nbsp;Abhirup Ghosh,&nbsp;Archisman Ghosh,&nbsp;S. Ghosh,&nbsp;J. A. Giaime,&nbsp;K. D. Giardina,&nbsp;A. Giazotto,&nbsp;K. Gill,&nbsp;A. Glaefke,&nbsp;E. Goetz,&nbsp;R. Goetz,&nbsp;L. Gondan,&nbsp;G. González,&nbsp;J. M. Gonzalez Castro,&nbsp;A. Gopakumar,&nbsp;M. L. Gorodetsky,&nbsp;S. E. Gossan,&nbsp;M. Gosselin,&nbsp;R. Gouaty,&nbsp;A. Grado,&nbsp;C. Graef,&nbsp;M. Granata,&nbsp;A. Grant,&nbsp;S. Gras,&nbsp;C. Gray,&nbsp;G. Greco,&nbsp;A. C. Green,&nbsp;P. Groot,&nbsp;H. Grote,&nbsp;S. Grunewald,&nbsp;G. M. Guidi,&nbsp;X. Guo,&nbsp;A. Gupta,&nbsp;M. K. Gupta,&nbsp;K. E. Gushwa,&nbsp;E. K. Gustafson,&nbsp;R. Gustafson,&nbsp;J. J. Hacker,&nbsp;A. Hagiwara,&nbsp;B. R. Hall,&nbsp;E. D. Hall,&nbsp;G. Hammond,&nbsp;M. Haney,&nbsp;M. M. Hanke,&nbsp;J. Hanks,&nbsp;C. Hanna,&nbsp;M. D. Hannam,&nbsp;J. Hanson,&nbsp;T. Hardwick,&nbsp;J. Harms,&nbsp;G. M. Harry,&nbsp;I. W. Harry,&nbsp;M. J. Hart,&nbsp;M. T. Hartman,&nbsp;C.-J. Haster,&nbsp;K. Haughian,&nbsp;K. Hayama,&nbsp;J. Healy,&nbsp;A. Heidmann,&nbsp;M. C. Heintze,&nbsp;H. Heitmann,&nbsp;P. Hello,&nbsp;G. Hemming,&nbsp;M. Hendry,&nbsp;I. S. Heng,&nbsp;J. Hennig,&nbsp;J. Henry,&nbsp;A. W. Heptonstall,&nbsp;M. Heurs,&nbsp;S. Hild,&nbsp;E. Hirose,&nbsp;D. Hoak,&nbsp;D. Hofman,&nbsp;K. Holt,&nbsp;D. E. Holz,&nbsp;P. Hopkins,&nbsp;J. Hough,&nbsp;E. A. Houston,&nbsp;E. J. Howell,&nbsp;Y. M. Hu,&nbsp;E. A. Huerta,&nbsp;D. Huet,&nbsp;B. Hughey,&nbsp;S. Husa,&nbsp;S. H. Huttner,&nbsp;T. Huynh-Dinh,&nbsp;N. Indik,&nbsp;D. R. Ingram,&nbsp;R. Inta,&nbsp;K. Ioka,&nbsp;H. N. Isa,&nbsp;J.-M. Isac,&nbsp;M. Isi,&nbsp;T. Isogai,&nbsp;Y. Itoh,&nbsp;B. R. Iyer,&nbsp;K. Izumi,&nbsp;T. Jacqmin,&nbsp;K. Jani,&nbsp;P. Jaranowski,&nbsp;S. Jawahar,&nbsp;F. Jiménez-Forteza,&nbsp;W. W. Johnson,&nbsp;D. I. Jones,&nbsp;R. Jones,&nbsp;R. J. G. Jonker,&nbsp;L. Ju,&nbsp;J. Junker,&nbsp;T. Kagawa,&nbsp;T. Kajita,&nbsp;M. Kakizaki,&nbsp;C. V. Kalaghatgi,&nbsp;V. Kalogera,&nbsp;M. Kamiizumi,&nbsp;N. Kanda,&nbsp;S. Kandhasamy,&nbsp;S. Kanemura,&nbsp;M. Kaneyama,&nbsp;G. Kang,&nbsp;J. B. Kanner,&nbsp;S. Karki,&nbsp;K. S. Karvinen,&nbsp;M. Kasprzack,&nbsp;Y. Kataoka,&nbsp;E. Katsavounidis,&nbsp;W. Katzman,&nbsp;S. Kaufer,&nbsp;T. Kaur,&nbsp;K. Kawabe,&nbsp;N. Kawai,&nbsp;S. Kawamura,&nbsp;F. Kéfélian,&nbsp;D. Keitel,&nbsp;D. B. Kelley,&nbsp;R. Kennedy,&nbsp;J. S. Key,&nbsp;F. Y. Khalili,&nbsp;I. Khan,&nbsp;S. Khan,&nbsp;Z. Khan,&nbsp;E. A. Khazanov,&nbsp;N. Kijbunchoo,&nbsp;C. Kim,&nbsp;H. Kim,&nbsp;J. C. Kim,&nbsp;J. Kim,&nbsp;W. Kim,&nbsp;Y.-M. Kim,&nbsp;S. J. Kimbrell,&nbsp;N. Kimura,&nbsp;E. J. King,&nbsp;P. J. King,&nbsp;R. Kirchhoff,&nbsp;J. S. Kissel,&nbsp;B. Klein,&nbsp;L. Kleybolte,&nbsp;S. Klimenko,&nbsp;P. Koch,&nbsp;S. M. Koehlenbeck,&nbsp;Y. Kojima,&nbsp;K. Kokeyama,&nbsp;S. Koley,&nbsp;K. Komori,&nbsp;V. Kondrashov,&nbsp;A. Kontos,&nbsp;M. Korobko,&nbsp;W. Z. Korth,&nbsp;K. Kotake,&nbsp;I. Kowalska,&nbsp;D. B. Kozak,&nbsp;C. Krämer,&nbsp;V. Kringel,&nbsp;B. Krishnan,&nbsp;A. Królak,&nbsp;G. Kuehn,&nbsp;P. Kumar,&nbsp;Rahul Kumar,&nbsp;Rakesh Kumar,&nbsp;L. Kuo,&nbsp;K. Kuroda,&nbsp;A. Kutynia,&nbsp;Y. Kuwahara,&nbsp;B. D. Lackey,&nbsp;M. Landry,&nbsp;R. N. Lang,&nbsp;J. Lange,&nbsp;B. Lantz,&nbsp;R. K. Lanza,&nbsp;A. Lartaux-Vollard,&nbsp;P. D. Lasky,&nbsp;M. Laxen,&nbsp;A. Lazzarini,&nbsp;C. Lazzaro,&nbsp;P. Leaci,&nbsp;S. Leavey,&nbsp;E. O. Lebigot,&nbsp;C. H. Lee,&nbsp;H. K. Lee,&nbsp;H. M. Lee,&nbsp;H. W. Lee,&nbsp;K. Lee,&nbsp;J. Lehmann,&nbsp;A. Lenon,&nbsp;M. Leonardi,&nbsp;J. R. Leong,&nbsp;N. Leroy,&nbsp;N. Letendre,&nbsp;Y. Levin,&nbsp;T. G. F. Li,&nbsp;A. Libson,&nbsp;T. B. Littenberg,&nbsp;J. Liu,&nbsp;N. A. Lockerbie,&nbsp;A. L. Lombardi,&nbsp;L. T. London,&nbsp;J. E. Lord,&nbsp;M. Lorenzini,&nbsp;V. Loriette,&nbsp;M. Lormand,&nbsp;G. Losurdo,&nbsp;J. D. Lough,&nbsp;C. O. Lousto,&nbsp;G. Lovelace,&nbsp;H. Lück,&nbsp;A. P. Lundgren,&nbsp;R. Lynch,&nbsp;Y. Ma,&nbsp;S. Macfoy,&nbsp;B. Machenschalk,&nbsp;M. MacInnis,&nbsp;D. M. Macleod,&nbsp;F. Magaña-Sandoval,&nbsp;E. Majorana,&nbsp;I. Maksimovic,&nbsp;V. Malvezzi,&nbsp;N. Man,&nbsp;V. Mandic,&nbsp;V. Mangano,&nbsp;S. Mano,&nbsp;G. L. Mansell,&nbsp;M. Manske,&nbsp;M. Mantovani,&nbsp;F. Marchesoni,&nbsp;M. Marchio,&nbsp;F. Marion,&nbsp;S. Márka,&nbsp;Z. Márka,&nbsp;A. S. Markosyan,&nbsp;E. Maros,&nbsp;F. Martelli,&nbsp;L. Martellini,&nbsp;I. W. Martin,&nbsp;D. V. Martynov,&nbsp;K. Mason,&nbsp;A. Masserot,&nbsp;T. J. Massinger,&nbsp;M. Masso-Reid,&nbsp;S. Mastrogiovanni,&nbsp;F. Matichard,&nbsp;L. Matone,&nbsp;N. Matsumoto,&nbsp;F. Matsushima,&nbsp;N. Mavalvala,&nbsp;N. Mazumder,&nbsp;R. McCarthy,&nbsp;D. E. McClelland,&nbsp;S. McCormick,&nbsp;C. McGrath,&nbsp;S. C. McGuire,&nbsp;G. McIntyre,&nbsp;J. McIver,&nbsp;D. J. McManus,&nbsp;T. McRae,&nbsp;S. T. McWilliams,&nbsp;D. Meacher,&nbsp;G. D. Meadors,&nbsp;J. Meidam,&nbsp;A. Melatos,&nbsp;G. Mendell,&nbsp;D. Mendoza-Gandara,&nbsp;R. A. Mercer,&nbsp;E. L. Merilh,&nbsp;M. Merzougui,&nbsp;S. Meshkov,&nbsp;C. Messenger,&nbsp;C. Messick,&nbsp;R. Metzdorff,&nbsp;P. M. Meyers,&nbsp;F. Mezzani,&nbsp;H. Miao,&nbsp;C. Michel,&nbsp;Y. Michimura,&nbsp;H. Middleton,&nbsp;E. E. Mikhailov,&nbsp;L. Milano,&nbsp;A. L. Miller,&nbsp;A. Miller,&nbsp;B. B. Miller,&nbsp;J. Miller,&nbsp;M. Millhouse,&nbsp;Y. Minenkov,&nbsp;J. Ming,&nbsp;S. Mirshekari,&nbsp;C. Mishra,&nbsp;V. P. Mitrofanov,&nbsp;G. Mitselmakher,&nbsp;R. Mittleman,&nbsp;O. Miyakawa,&nbsp;A. Miyamoto,&nbsp;T. Miyamoto,&nbsp;S. Miyoki,&nbsp;A. Moggi,&nbsp;M. Mohan,&nbsp;S. R. P. Mohapatra,&nbsp;M. Montani,&nbsp;B. C. Moore,&nbsp;C. J. Moore,&nbsp;D. Moraru,&nbsp;G. Moreno,&nbsp;W. Morii,&nbsp;S. Morisaki,&nbsp;Y. Moriwaki,&nbsp;S. R. Morriss,&nbsp;B. Mours,&nbsp;C. M. Mow-Lowry,&nbsp;G. Mueller,&nbsp;A. W. Muir,&nbsp;Arunava Mukherjee,&nbsp;D. Mukherjee,&nbsp;S. Mukherjee,&nbsp;N. Mukund,&nbsp;A. Mullavey,&nbsp;J. Munch,&nbsp;E. A. M. Muniz,&nbsp;P. G. Murray,&nbsp;A. Mytidis,&nbsp;S. Nagano,&nbsp;K. Nakamura,&nbsp;T. Nakamura,&nbsp;H. Nakano,&nbsp;Masaya Nakano,&nbsp;Masayuki Nakano,&nbsp;K. Nakao,&nbsp;K. Napier,&nbsp;I. Nardecchia,&nbsp;T. Narikawa,&nbsp;L. Naticchioni,&nbsp;G. Nelemans,&nbsp;T. J. N. Nelson,&nbsp;M. Neri,&nbsp;M. Nery,&nbsp;A. Neunzert,&nbsp;J. M. Newport,&nbsp;G. Newton,&nbsp;T. T. Nguyen,&nbsp;W.-T. Ni,&nbsp;A. B. Nielsen,&nbsp;S. Nissanke,&nbsp;A. Nitz,&nbsp;A. Noack,&nbsp;F. Nocera,&nbsp;D. Nolting,&nbsp;M. E. N. Normandin,&nbsp;L. K. Nuttall,&nbsp;J. Oberling,&nbsp;E. Ochsner,&nbsp;E. Oelker,&nbsp;G. H. Ogin,&nbsp;J. J. Oh,&nbsp;S. H. Oh,&nbsp;M. Ohashi,&nbsp;N. Ohishi,&nbsp;M. Ohkawa,&nbsp;F. Ohme,&nbsp;K. Okutomi,&nbsp;M. Oliver,&nbsp;K. Ono,&nbsp;Y. Ono,&nbsp;K. Oohara,&nbsp;P. Oppermann,&nbsp;Richard J. Oram,&nbsp;B. O’Reilly,&nbsp;R. O’Shaughnessy,&nbsp;D. J. Ottaway,&nbsp;H. Overmier,&nbsp;B. J. Owen,&nbsp;A. E. Pace,&nbsp;J. Page,&nbsp;A. Pai,&nbsp;S. A. Pai,&nbsp;J. R. Palamos,&nbsp;O. Palashov,&nbsp;C. Palomba,&nbsp;A. Pal-Singh,&nbsp;H. Pan,&nbsp;C. Pankow,&nbsp;F. Pannarale,&nbsp;B. C. Pant,&nbsp;F. Paoletti,&nbsp;A. Paoli,&nbsp;M. A. Papa,&nbsp;H. R. Paris,&nbsp;W. Parker,&nbsp;D. Pascucci,&nbsp;A. Pasqualetti,&nbsp;R. Passaquieti,&nbsp;D. Passuello,&nbsp;B. Patricelli,&nbsp;B. L. Pearlstone,&nbsp;M. Pedraza,&nbsp;R. Pedurand,&nbsp;L. Pekowsky,&nbsp;A. Pele,&nbsp;F. E. Peña Arellano,&nbsp;S. Penn,&nbsp;C. J. Perez,&nbsp;A. Perreca,&nbsp;L. M. Perri,&nbsp;H. P. Pfeiffer,&nbsp;M. Phelps,&nbsp;O. J. Piccinni,&nbsp;M. Pichot,&nbsp;F. Piergiovanni,&nbsp;V. Pierro,&nbsp;G. Pillant,&nbsp;L. Pinard,&nbsp;I. M. Pinto,&nbsp;M. Pitkin,&nbsp;M. Poe,&nbsp;R. Poggiani,&nbsp;P. Popolizio,&nbsp;A. Post,&nbsp;J. Powell,&nbsp;J. Prasad,&nbsp;J. W. W. Pratt,&nbsp;V. Predoi,&nbsp;T. Prestegard,&nbsp;M. Prijatelj,&nbsp;M. Principe,&nbsp;S. Privitera,&nbsp;G. A. Prodi,&nbsp;L. G. Prokhorov,&nbsp;O. Puncken,&nbsp;M. Punturo,&nbsp;P. Puppo,&nbsp;M. Pürrer,&nbsp;H. Qi,&nbsp;J. Qin,&nbsp;S. Qiu,&nbsp;V. Quetschke,&nbsp;E. A. Quintero,&nbsp;R. Quitzow-James,&nbsp;F. J. Raab,&nbsp;D. S. Rabeling,&nbsp;H. Radkins,&nbsp;P. Raffai,&nbsp;S. Raja,&nbsp;C. Rajan,&nbsp;M. Rakhmanov,&nbsp;P. Rapagnani,&nbsp;V. Raymond,&nbsp;M. Razzano,&nbsp;V. Re,&nbsp;J. Read,&nbsp;T. Regimbau,&nbsp;L. Rei,&nbsp;S. Reid,&nbsp;D. H. Reitze,&nbsp;H. Rew,&nbsp;S. D. Reyes,&nbsp;E. Rhoades,&nbsp;F. Ricci,&nbsp;K. Riles,&nbsp;M. Rizzo,&nbsp;N. A. Robertson,&nbsp;R. Robie,&nbsp;F. Robinet,&nbsp;A. Rocchi,&nbsp;L. Rolland,&nbsp;J. G. Rollins,&nbsp;V. J. Roma,&nbsp;R. Romano,&nbsp;J. H. Romie,&nbsp;D. Rosińska,&nbsp;S. Rowan,&nbsp;A. Rüdiger,&nbsp;P. Ruggi,&nbsp;K. Ryan,&nbsp;S. Sachdev,&nbsp;T. Sadecki,&nbsp;L. Sadeghian,&nbsp;N. Sago,&nbsp;M. Saijo,&nbsp;Y. Saito,&nbsp;K. Sakai,&nbsp;M. Sakellariadou,&nbsp;L. Salconi,&nbsp;M. Saleem,&nbsp;F. Salemi,&nbsp;A. Samajdar,&nbsp;L. Sammut,&nbsp;L. M. Sampson,&nbsp;E. J. Sanchez,&nbsp;V. Sandberg,&nbsp;J. R. Sanders,&nbsp;Y. Sasaki,&nbsp;B. Sassolas,&nbsp;B. S. Sathyaprakash,&nbsp;S. Sato,&nbsp;T. Sato,&nbsp;P. R. Saulson,&nbsp;O. Sauter,&nbsp;R. L. Savage,&nbsp;A. Sawadsky,&nbsp;P. Schale,&nbsp;J. Scheuer,&nbsp;E. Schmidt,&nbsp;J. Schmidt,&nbsp;P. Schmidt,&nbsp;R. Schnabel,&nbsp;R. M. S. Schofield,&nbsp;A. Schönbeck,&nbsp;E. Schreiber,&nbsp;D. Schuette,&nbsp;B. F. Schutz,&nbsp;S. G. Schwalbe,&nbsp;J. Scott,&nbsp;S. M. Scott,&nbsp;T. Sekiguchi,&nbsp;Y. Sekiguchi,&nbsp;D. Sellers,&nbsp;A. S. Sengupta,&nbsp;D. Sentenac,&nbsp;V. Sequino,&nbsp;A. Sergeev,&nbsp;Y. Setyawati,&nbsp;D. A. Shaddock,&nbsp;T. J. Shaffer,&nbsp;M. S. Shahriar,&nbsp;B. Shapiro,&nbsp;P. Shawhan,&nbsp;A. Sheperd,&nbsp;M. Shibata,&nbsp;Y. Shikano,&nbsp;T. Shimoda,&nbsp;A. Shoda,&nbsp;D. H. Shoemaker,&nbsp;D. M. Shoemaker,&nbsp;K. Siellez,&nbsp;X. Siemens,&nbsp;M. Sieniawska,&nbsp;D. Sigg,&nbsp;A. D. Silva,&nbsp;A. Singer,&nbsp;L. P. Singer,&nbsp;A. Singh,&nbsp;R. Singh,&nbsp;A. Singhal,&nbsp;A. M. Sintes,&nbsp;B. J. J. Slagmolen,&nbsp;B. Smith,&nbsp;J. R. Smith,&nbsp;R. J. E. Smith,&nbsp;K. Somiya,&nbsp;E. J. Son,&nbsp;B. Sorazu,&nbsp;F. Sorrentino,&nbsp;T. Souradeep,&nbsp;A. P. Spencer,&nbsp;A. K. Srivastava,&nbsp;A. Staley,&nbsp;M. Steinke,&nbsp;J. Steinlechner,&nbsp;S. Steinlechner,&nbsp;D. Steinmeyer,&nbsp;B. C. Stephens,&nbsp;S. P. Stevenson,&nbsp;R. Stone,&nbsp;K. A. Strain,&nbsp;N. Straniero,&nbsp;G. Stratta,&nbsp;S. E. Strigin,&nbsp;R. Sturani,&nbsp;A. L. Stuver,&nbsp;Y. Sugimoto,&nbsp;T. Z. Summerscales,&nbsp;L. Sun,&nbsp;S. Sunil,&nbsp;P. J. Sutton,&nbsp;T. Suzuki,&nbsp;B. L. Swinkels,&nbsp;M. J. Szczepańczyk,&nbsp;M. Tacca,&nbsp;H. Tagoshi,&nbsp;S. Takada,&nbsp;H. Takahashi,&nbsp;R. Takahashi,&nbsp;A. Takamori,&nbsp;D. Talukder,&nbsp;H. Tanaka,&nbsp;K. Tanaka,&nbsp;T. Tanaka,&nbsp;D. B. Tanner,&nbsp;M. Tápai,&nbsp;A. Taracchini,&nbsp;D. Tatsumi,&nbsp;R. Taylor,&nbsp;S. Telada,&nbsp;T. Theeg,&nbsp;E. G. Thomas,&nbsp;M. Thomas,&nbsp;P. Thomas,&nbsp;K. A. Thorne,&nbsp;E. Thrane,&nbsp;T. Tippens,&nbsp;S. Tiwari,&nbsp;V. Tiwari,&nbsp;K. V. Tokmakov,&nbsp;K. Toland,&nbsp;T. Tomaru,&nbsp;C. Tomlinson,&nbsp;M. Tonelli,&nbsp;Z. Tornasi,&nbsp;C. I. Torrie,&nbsp;D. Töyrä,&nbsp;F. Travasso,&nbsp;G. Traylor,&nbsp;D. Trifirò,&nbsp;J. Trinastic,&nbsp;M. C. Tringali,&nbsp;L. Trozzo,&nbsp;M. Tse,&nbsp;R. Tso,&nbsp;K. Tsubono,&nbsp;T. Tsuzuki,&nbsp;M. Turconi,&nbsp;D. Tuyenbayev,&nbsp;T. Uchiyama,&nbsp;T. Uehara,&nbsp;S. Ueki,&nbsp;K. Ueno,&nbsp;D. Ugolini,&nbsp;C. S. Unnikrishnan,&nbsp;A. L. Urban,&nbsp;T. Ushiba,&nbsp;S. A. Usman,&nbsp;H. Vahlbruch,&nbsp;G. Vajente,&nbsp;G. Valdes,&nbsp;N. van Bakel,&nbsp;M. van Beuzekom,&nbsp;J. F. J. van den Brand,&nbsp;C. Van Den Broeck,&nbsp;D. C. Vander-Hyde,&nbsp;L. van der Schaaf,&nbsp;J. V. van Heijningen,&nbsp;M. H. P. M. van Putten,&nbsp;A. A. van Veggel,&nbsp;M. Vardaro,&nbsp;V. Varma,&nbsp;S. Vass,&nbsp;M. Vasúth,&nbsp;A. Vecchio,&nbsp;G. Vedovato,&nbsp;J. Veitch,&nbsp;P. J. Veitch,&nbsp;K. Venkateswara,&nbsp;G. Venugopalan,&nbsp;D. Verkindt,&nbsp;F. Vetrano,&nbsp;A. Viceré,&nbsp;A. D. Viets,&nbsp;S. Vinciguerra,&nbsp;D. J. Vine,&nbsp;J.-Y. Vinet,&nbsp;S. Vitale,&nbsp;T. Vo,&nbsp;H. Vocca,&nbsp;C. Vorvick,&nbsp;D. V. Voss,&nbsp;W. D. Vousden,&nbsp;S. P. Vyatchanin,&nbsp;A. R. Wade,&nbsp;L. E. Wade,&nbsp;M. Wade,&nbsp;T. Wakamatsu,&nbsp;M. Walker,&nbsp;L. Wallace,&nbsp;S. Walsh,&nbsp;G. Wang,&nbsp;H. Wang,&nbsp;M. Wang,&nbsp;Y. Wang,&nbsp;R. L. Ward,&nbsp;J. Warner,&nbsp;M. Was,&nbsp;J. Watchi,&nbsp;B. Weaver,&nbsp;L.-W. Wei,&nbsp;M. Weinert,&nbsp;A. J. Weinstein,&nbsp;R. Weiss,&nbsp;L. Wen,&nbsp;P. Weßels,&nbsp;T. Westphal,&nbsp;K. Wette,&nbsp;J. T. Whelan,&nbsp;B. F. Whiting,&nbsp;C. Whittle,&nbsp;D. Williams,&nbsp;R. D. Williams,&nbsp;A. R. Williamson,&nbsp;J. L. Willis,&nbsp;B. Willke,&nbsp;M. H. Wimmer,&nbsp;W. Winkler,&nbsp;C. C. Wipf,&nbsp;H. Wittel,&nbsp;G. Woan,&nbsp;J. Woehler,&nbsp;J. Worden,&nbsp;J. L. Wright,&nbsp;D. S. Wu,&nbsp;G. Wu,&nbsp;W. Yam,&nbsp;H. Yamamoto,&nbsp;K. Yamamoto,&nbsp;T. Yamamoto,&nbsp;C. C. Yancey,&nbsp;K. Yano,&nbsp;M. J. Yap,&nbsp;J. Yokoyama,&nbsp;T. Yokozawa,&nbsp;T. H. Yoon,&nbsp;Hang Yu,&nbsp;Haocun Yu,&nbsp;H. Yuzurihara,&nbsp;M. Yvert,&nbsp;A. Zadrożny,&nbsp;L. Zangrando,&nbsp;M. Zanolin,&nbsp;S. Zeidler,&nbsp;J.-P. Zendri,&nbsp;M. Zevin,&nbsp;L. Zhang,&nbsp;M. Zhang,&nbsp;T. Zhang,&nbsp;Y. Zhang,&nbsp;C. Zhao,&nbsp;M. Zhou,&nbsp;Z. Zhou,&nbsp;S. J. Zhu,&nbsp;X. J. Zhu,&nbsp;M. E. Zucker,&nbsp;J. Zweizig,&nbsp;KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration","doi":"10.1007/s41114-018-0012-9","DOIUrl":"https://doi.org/10.1007/s41114-018-0012-9","url":null,"abstract":"<p>We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and <span>(90%)</span> credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–<span>(20~mathrm {deg}^2)</span> requires at least three detectors of sensitivity within a factor of <span>(sim 2)</span> of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0012-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4993364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1119
Cosmology and fundamental physics with the Euclid satellite 宇宙学和基础物理学与欧几里得卫星
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-04-12 DOI: 10.1007/s41114-017-0010-3
Luca Amendola, Stephen Appleby, Anastasios Avgoustidis, David Bacon, Tessa Baker, Marco Baldi, Nicola Bartolo, Alain Blanchard, Camille Bonvin, Stefano Borgani, Enzo Branchini, Clare Burrage, Stefano Camera, Carmelita Carbone, Luciano Casarini, Mark Cropper, Claudia de Rham, Jörg P. Dietrich, Cinzia Di Porto, Ruth Durrer, Anne Ealet, Pedro G. Ferreira, Fabio Finelli, Juan García-Bellido, Tommaso Giannantonio, Luigi Guzzo, Alan Heavens, Lavinia Heisenberg, Catherine Heymans, Henk Hoekstra, Lukas Hollenstein, Rory Holmes, Zhiqi Hwang, Knud Jahnke, Thomas D. Kitching, Tomi Koivisto, Martin Kunz, Giuseppe La Vacca, Eric Linder, Marisa March, Valerio Marra, Carlos Martins, Elisabetta Majerotto, Dida Markovic, David Marsh, Federico Marulli, Richard Massey, Yannick Mellier, Francesco Montanari, David F. Mota, Nelson J. Nunes, Will Percival, Valeria Pettorino, Cristiano Porciani, Claudia Quercellini, Justin Read, Massimiliano Rinaldi, Domenico Sapone, Ignacy Sawicki, Roberto Scaramella, Constantinos Skordis, Fergus Simpson, Andy Taylor, Shaun Thomas, Roberto Trotta, Licia Verde, Filippo Vernizzi, Adrian Vollmer, Yun Wang, Jochen Weller, Tom Zlosnik, The Euclid Theory Working Group

Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

欧几里得是欧洲航天局的一项中型任务,根据2015-2025年宇宙愿景计划,将于2020年发射。欧几里得的主要目标是理解宇宙加速膨胀的起源。欧几里得将通过测量星系的形状和红移以及星系团在大部分天空中的分布来探索宇宙的膨胀历史和宇宙结构的演变。虽然欧几里得的主要驱动力是暗能量的本质,但欧几里得科学涵盖了从宇宙学到星系演化再到行星研究的广泛主题。在这篇综述中,我们关注宇宙学和基础物理学,并着重强调当前标准模型之外的科学。我们讨论了五大主题:暗能量和修正引力、暗物质、初始条件、基本假设和数据分析中的方法论问题。这项审查是在欧几里得理论工作组内计划和实施的,旨在为欧几里得任务准备期间该小组活动的科学主题提供指导。
{"title":"Cosmology and fundamental physics with the Euclid satellite","authors":"Luca Amendola,&nbsp;Stephen Appleby,&nbsp;Anastasios Avgoustidis,&nbsp;David Bacon,&nbsp;Tessa Baker,&nbsp;Marco Baldi,&nbsp;Nicola Bartolo,&nbsp;Alain Blanchard,&nbsp;Camille Bonvin,&nbsp;Stefano Borgani,&nbsp;Enzo Branchini,&nbsp;Clare Burrage,&nbsp;Stefano Camera,&nbsp;Carmelita Carbone,&nbsp;Luciano Casarini,&nbsp;Mark Cropper,&nbsp;Claudia de Rham,&nbsp;Jörg P. Dietrich,&nbsp;Cinzia Di Porto,&nbsp;Ruth Durrer,&nbsp;Anne Ealet,&nbsp;Pedro G. Ferreira,&nbsp;Fabio Finelli,&nbsp;Juan García-Bellido,&nbsp;Tommaso Giannantonio,&nbsp;Luigi Guzzo,&nbsp;Alan Heavens,&nbsp;Lavinia Heisenberg,&nbsp;Catherine Heymans,&nbsp;Henk Hoekstra,&nbsp;Lukas Hollenstein,&nbsp;Rory Holmes,&nbsp;Zhiqi Hwang,&nbsp;Knud Jahnke,&nbsp;Thomas D. Kitching,&nbsp;Tomi Koivisto,&nbsp;Martin Kunz,&nbsp;Giuseppe La Vacca,&nbsp;Eric Linder,&nbsp;Marisa March,&nbsp;Valerio Marra,&nbsp;Carlos Martins,&nbsp;Elisabetta Majerotto,&nbsp;Dida Markovic,&nbsp;David Marsh,&nbsp;Federico Marulli,&nbsp;Richard Massey,&nbsp;Yannick Mellier,&nbsp;Francesco Montanari,&nbsp;David F. Mota,&nbsp;Nelson J. Nunes,&nbsp;Will Percival,&nbsp;Valeria Pettorino,&nbsp;Cristiano Porciani,&nbsp;Claudia Quercellini,&nbsp;Justin Read,&nbsp;Massimiliano Rinaldi,&nbsp;Domenico Sapone,&nbsp;Ignacy Sawicki,&nbsp;Roberto Scaramella,&nbsp;Constantinos Skordis,&nbsp;Fergus Simpson,&nbsp;Andy Taylor,&nbsp;Shaun Thomas,&nbsp;Roberto Trotta,&nbsp;Licia Verde,&nbsp;Filippo Vernizzi,&nbsp;Adrian Vollmer,&nbsp;Yun Wang,&nbsp;Jochen Weller,&nbsp;Tom Zlosnik,&nbsp;The Euclid Theory Working Group","doi":"10.1007/s41114-017-0010-3","DOIUrl":"https://doi.org/10.1007/s41114-017-0010-3","url":null,"abstract":"<p>Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-017-0010-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4479853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 799
Tests of chameleon gravity 变色龙重力测试
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-03-16 DOI: 10.1007/s41114-018-0011-x
Clare Burrage, Jeremy Sakstein

Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f(R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.

修正引力理论,其中具有非平凡自相互作用和与物质非最小耦合的光标量-变色龙和对称理论-动态地抑制了太阳系中广义相对论的偏差。在其他尺度上,筛选的环境性质意味着这些尺度可能是相关的。筛选机制的高度非线性性质意味着它们可以避开经典的五力搜索,因此人们一直在努力设计新的和新颖的测试来探测它们,无论是在实验室还是使用天体物理对象,以及通过重新解释现有数据集。这些搜索的结果通常使用不同的参数化来表示,这使得比较来自不同探测的约束变得困难。本综述的目的是总结目前对与物质耦合的筛选标量的最新搜索,并将当前的界限转化为单个参数化来调查模型的状态。目前,通常研究的变色龙模型具有良好的约束,但较少研究的模型具有较大的参数空间区域。对称模型很好地受到天体物理学和实验室测试的约束,但在模型不受约束的两个尺度之间存在一个沙漠。变色龙与光子的耦合受到严格限制,但对称耦合尚未得到探索。我们还总结了f(R)模型的当前边界,这些模型显示变色龙机制(Hu和Sawicki模型)。其中最简单的模型受到天体物理探测器的约束,但目前很少有更高r次方的理论的约束。本文最后讨论了利用即将到来的和计划中的实验进一步约束筛选后的修正重力模型的未来前景。
{"title":"Tests of chameleon gravity","authors":"Clare Burrage,&nbsp;Jeremy Sakstein","doi":"10.1007/s41114-018-0011-x","DOIUrl":"https://doi.org/10.1007/s41114-018-0011-x","url":null,"abstract":"<p>Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on <i>f</i>(<i>R</i>) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of <i>R</i>. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0011-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4652018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 231
Rotating stars in relativity 相对论中的旋转恒星
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2017-11-29 DOI: 10.1007/s41114-017-0008-x
Vasileios Paschalidis, Nikolaos Stergioulas

Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f-modes and r-modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

近年来,旋转的相对论性恒星在理论上和观测上都得到了广泛的研究,因为它们可能提供关于极高密度下物质状态方程的信息,而且它们被认为是引力波的有希望的来源。这篇更新的文章回顾了相对论中关于旋转恒星的最新理论认识。更新了平衡特性和非轴对称振荡以及f模态和r模态的不稳定性部分。增加了几个新的部分,包括修正引力理论中的平衡,近似通用关系,单臂螺旋不稳定性,外时空的解析解,lmxb中的旋转恒星,旋转的奇异恒星,以及数值相对论中的旋转恒星,包括这些物体的流体力学和磁流体力学研究。
{"title":"Rotating stars in relativity","authors":"Vasileios Paschalidis,&nbsp;Nikolaos Stergioulas","doi":"10.1007/s41114-017-0008-x","DOIUrl":"https://doi.org/10.1007/s41114-017-0008-x","url":null,"abstract":"<p>Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in <i>f</i>-modes and <i>r</i>-modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"20 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2017-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-017-0008-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5126109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 182
期刊
Living Reviews in Relativity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1