首页 > 最新文献

Living Reviews in Relativity最新文献

英文 中文
The causal set approach to quantum gravity 量子引力的因果集方法
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2019-09-27 DOI: 10.1007/s41114-019-0023-1
Sumati Surya

The causal set theory (CST) approach to quantum gravity postulates that at the most fundamental level, spacetime is discrete, with the spacetime continuum replaced by locally finite posets or “causal sets”. The partial order on a causal set represents a proto-causality relation while local finiteness encodes an intrinsic discreteness. In the continuum approximation the former corresponds to the spacetime causality relation and the latter to a fundamental spacetime atomicity, so that finite volume regions in the continuum contain only a finite number of causal set elements. CST is deeply rooted in the Lorentzian character of spacetime, where a primary role is played by the causal structure poset. Importantly, the assumption of a fundamental discreteness in CST does not violate local Lorentz invariance in the continuum approximation. On the other hand, the combination of discreteness and Lorentz invariance gives rise to a characteristic non-locality which distinguishes CST from most other approaches to quantum gravity. In this review we give a broad, semi-pedagogical introduction to CST, highlighting key results as well as some of the key open questions. This review is intended both for the beginner student in quantum gravity as well as more seasoned researchers in the field.

量子引力的因果集理论(CST)方法假设,在最基本的层面上,时空是离散的,时空连续体被局部有限的偏序集或“因果集”所取代。因果集上的偏序表示原因果关系,局部有限表示内在的离散性。在连续统近似中,前者对应于时空因果关系,后者对应于基本的时空原子性,因此连续统中的有限体积区域只包含有限数量的因果集元素。CST深深植根于时空的洛伦兹特征,其中因果结构偏置起了主要作用。重要的是,CST中基本离散性的假设并不违反连续统近似中的局部洛伦兹不变性。另一方面,离散性和洛伦兹不变性的结合产生了一种非局部性特征,使CST与大多数其他量子引力方法区别开来。在这篇综述中,我们对CST进行了广泛的、半教学性的介绍,突出了关键的结果以及一些关键的开放性问题。这篇综述既适用于量子引力的初学者,也适用于该领域的资深研究人员。
{"title":"The causal set approach to quantum gravity","authors":"Sumati Surya","doi":"10.1007/s41114-019-0023-1","DOIUrl":"https://doi.org/10.1007/s41114-019-0023-1","url":null,"abstract":"<p>The causal set theory (CST) approach to quantum gravity postulates that at the most fundamental level, spacetime is discrete, with the spacetime continuum replaced by locally finite posets or “causal sets”. The partial order on a causal set represents a proto-causality relation while local finiteness encodes an intrinsic discreteness. In the continuum approximation the former corresponds to the spacetime causality relation and the latter to a fundamental spacetime atomicity, so that finite volume regions in the continuum contain only a finite number of causal set elements. CST is deeply rooted in the Lorentzian character of spacetime, where a primary role is played by the causal structure poset. Importantly, the assumption of a fundamental discreteness in CST does not violate local Lorentz invariance in the continuum approximation. On the other hand, the combination of discreteness and Lorentz invariance gives rise to a characteristic non-locality which distinguishes CST from most other approaches to quantum gravity. In this review we give a broad, semi-pedagogical introduction to CST, highlighting key results as well as some of the key open questions. This review is intended both for the beginner student in quantum gravity as well as more seasoned researchers in the field.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"22 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0023-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5063679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 80
Testing the nature of dark compact objects: a status report 测试暗致密物体的性质:状态报告
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2019-07-08 DOI: 10.1007/s41114-019-0020-4
Vitor Cardoso, Paolo Pani

Very compact objects probe extreme gravitational fields and may be the key to understand outstanding puzzles in fundamental physics. These include the nature of dark matter, the fate of spacetime singularities, or the loss of unitarity in Hawking evaporation. The standard astrophysical description of collapsing objects tells us that massive, dark and compact objects are black holes. Any observation suggesting otherwise would be an indication of beyond-the-standard-model physics. Null results strengthen and quantify the Kerr black hole paradigm. The advent of gravitational-wave astronomy and precise measurements with very long baseline interferometry allow one to finally probe into such foundational issues. We overview the physics of exotic dark compact objects and their observational status, including the observational evidence for black holes with current and future experiments.

非常紧凑的物体探测到极端引力场,可能是理解基础物理学中突出难题的关键。这些问题包括暗物质的本质,时空奇点的命运,或者霍金蒸发的单一性丧失。坍缩物体的标准天体物理学描述告诉我们,大质量的、黑暗的、致密的物体是黑洞。任何与此相反的观察结果都是超越标准模型物理学的迹象。Null结果强化并量化了Kerr黑洞范式。引力波天文学的出现,以及用超长基线干涉测量法进行的精确测量,使人们最终能够探索这些基础问题。本文综述了奇异暗致密天体的物理学及其观测现状,包括目前和未来实验中黑洞的观测证据。
{"title":"Testing the nature of dark compact objects: a status report","authors":"Vitor Cardoso,&nbsp;Paolo Pani","doi":"10.1007/s41114-019-0020-4","DOIUrl":"https://doi.org/10.1007/s41114-019-0020-4","url":null,"abstract":"<p>Very compact objects probe extreme gravitational fields and may be the key to understand outstanding puzzles in fundamental physics. These include the nature of dark matter, the fate of spacetime singularities, or the loss of unitarity in Hawking evaporation. The standard astrophysical description of collapsing objects tells us that massive, dark and compact objects are black holes. Any observation suggesting otherwise would be an indication of beyond-the-standard-model physics. Null results strengthen and quantify the Kerr black hole paradigm. The advent of gravitational-wave astronomy and precise measurements with very long baseline interferometry allow one to finally probe into such foundational issues. We overview the physics of exotic dark compact objects and their observational status, including the observational evidence for black holes with current and future experiments.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"22 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0020-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4657647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Lorentzian causality theory 洛伦兹因果理论
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2019-06-03 DOI: 10.1007/s41114-019-0019-x
E. Minguzzi

I review Lorentzian causality theory paying particular attention to the optimality and generality of the presented results. I include complete proofs of some foundational results that are otherwise difficult to find in the literature (e.g. equivalence of some Lorentzian length definitions, upper semi-continuity of the length functional, corner regularization, etc.). The paper is almost self-contained thanks to a systematic logical exposition of the many different topics that compose the theory. It contains new results on classical concepts such as maximizing curves, achronal sets, edges, horismos, domains of dependence, Lorentzian distance. The treatment of causally pathological spacetimes requires the development of some new versatile causality notions, among which I found particularly convenient to introduce: biviability, chronal equivalence, araying sets, and causal versions of horismos and trapped sets. Their usefulness becomes apparent in the treatment of the classical singularity theorems, which is here considerably expanded in the exploration of some variations and alternatives.

我回顾洛伦兹的因果关系理论,特别注意所提出的结果的最优性和一般性。我包括一些在其他文献中很难找到的基本结果的完整证明(例如一些洛伦兹长度定义的等价,长度泛函的上半连续性,角正则化等)。由于对构成该理论的许多不同主题进行了系统的逻辑阐述,该论文几乎是独立的。它包含了经典概念的新结果,如最大化曲线,无时向集,边,视界,依赖域,洛伦兹距离。因果病态时空的处理需要发展一些新的通用因果关系概念,其中我发现特别方便介绍:双性性,时间等效,排列集,以及horismos和trapped集的因果版本。它们的有用性在处理经典奇点定理时变得明显,在探索一些变体和替代方案时,它在这里得到了相当大的扩展。
{"title":"Lorentzian causality theory","authors":"E. Minguzzi","doi":"10.1007/s41114-019-0019-x","DOIUrl":"https://doi.org/10.1007/s41114-019-0019-x","url":null,"abstract":"<p>I review Lorentzian causality theory paying particular attention to the optimality and generality of the presented results. I include complete proofs of some foundational results that are otherwise difficult to find in the literature (e.g. equivalence of some Lorentzian length definitions, upper semi-continuity of the length functional, corner regularization, etc.). The paper is almost self-contained thanks to a systematic logical exposition of the many different topics that compose the theory. It contains new results on classical concepts such as maximizing curves, achronal sets, edges, horismos, domains of dependence, Lorentzian distance. The treatment of causally pathological spacetimes requires the development of some new versatile causality notions, among which I found particularly convenient to introduce: biviability, chronal equivalence, araying sets, and causal versions of horismos and trapped sets. Their usefulness becomes apparent in the treatment of the classical singularity theorems, which is here considerably expanded in the exploration of some variations and alternatives.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"22 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0019-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4129179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 85
Advanced quantum techniques for future gravitational-wave detectors 未来引力波探测器的先进量子技术
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2019-04-29 DOI: 10.1007/s41114-019-0018-y
Stefan L. Danilishin, Farid Ya. Khalili, Haixing Miao

Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article (Danilishin and Khalili in Living Rev Relativ 15:5, 2012), we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.

光的量子涨落限制了先进激光干涉引力波探测器的灵敏度。这是通往下一代引力波天文台的主要障碍之一。设想的探测器灵敏度的显著提高需要使用量子非拆除测量和反作用规避技术,这使我们能够绕过海森堡测不准原理施加的灵敏度限制。在我们之前的综述文章(Danilishin and Khalili In Living Rev Relativ 15:5, 2012)中,我们奠定了量子测量理论的基本原理,并提供了分析干涉仪量子噪声的框架。本文的范围是回顾近年来提出的新的量子噪声抑制技术,并将它们放在同一个框架中。我们对干涉测量方案和拓扑结构的描述是为了帮助下一代引力波天文台选择设计的过程。
{"title":"Advanced quantum techniques for future gravitational-wave detectors","authors":"Stefan L. Danilishin,&nbsp;Farid Ya. Khalili,&nbsp;Haixing Miao","doi":"10.1007/s41114-019-0018-y","DOIUrl":"https://doi.org/10.1007/s41114-019-0018-y","url":null,"abstract":"<p>Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article (Danilishin and Khalili in Living Rev Relativ 15:5, 2012), we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"22 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0018-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5103861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Testing general relativity in cosmology 在宇宙学中检验广义相对论
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-12-18 DOI: 10.1007/s41114-018-0017-4
Mustapha Ishak

We review recent developments and results in testing general relativity (GR) at cosmological scales. The subject has witnessed rapid growth during the last two decades with the aim of addressing the question of cosmic acceleration and the dark energy associated with it. However, with the advent of precision cosmology, it has also become a well-motivated endeavor by itself to test gravitational physics at cosmic scales. We overview cosmological probes of gravity, formalisms and parameterizations for testing deviations from GR at cosmological scales, selected modified gravity (MG) theories, gravitational screening mechanisms, and computer codes developed for these tests. We then provide summaries of recent cosmological constraints on MG parameters and selected MG models. We supplement these cosmological constraints with a summary of implications from the recent binary neutron star merger event. Next, we summarize some results on MG parameter forecasts with and without astrophysical systematics that will dominate the uncertainties. The review aims at providing an overall picture of the subject and an entry point to students and researchers interested in joining the field. It can also serve as a quick reference to recent results and constraints on testing gravity at cosmological scales.

我们回顾了在宇宙尺度上检验广义相对论(GR)的最新进展和结果。在过去的二十年里,为了解决宇宙加速和与之相关的暗能量的问题,这一学科得到了迅速的发展。然而,随着精确宇宙学的出现,在宇宙尺度上测试引力物理本身也成为了一项有充分动机的努力。我们概述了宇宙重力探测器,在宇宙尺度上测试GR偏差的形式和参数化,选定的修正重力(MG)理论,重力筛选机制以及为这些测试开发的计算机代码。然后,我们总结了最近对MG参数和所选MG模型的宇宙学约束。我们补充了这些宇宙学上的限制,总结了最近的双中子星合并事件的影响。接下来,我们总结了一些有天体物理系统和没有天体物理系统的MG参数预测结果,这些结果将主导不确定性。该评论旨在提供主题的整体图景,并为有兴趣加入该领域的学生和研究人员提供切入点。它还可以作为在宇宙尺度上测试重力的最新结果和限制的快速参考。
{"title":"Testing general relativity in cosmology","authors":"Mustapha Ishak","doi":"10.1007/s41114-018-0017-4","DOIUrl":"https://doi.org/10.1007/s41114-018-0017-4","url":null,"abstract":"<p>We review recent developments and results in testing general relativity (GR) at cosmological scales. The subject has witnessed rapid growth during the last two decades with the aim of addressing the question of cosmic acceleration and the dark energy associated with it. However, with the advent of precision cosmology, it has also become a well-motivated endeavor by itself to test gravitational physics at cosmic scales. We overview cosmological probes of gravity, formalisms and parameterizations for testing deviations from GR at cosmological scales, selected modified gravity (MG) theories, gravitational screening mechanisms, and computer codes developed for these tests. We then provide summaries of recent cosmological constraints on MG parameters and selected MG models. We supplement these cosmological constraints with a summary of implications from the recent binary neutron star merger event. Next, we summarize some results on MG parameter forecasts with and without astrophysical systematics that will dominate the uncertainties. The review aims at providing an overall picture of the subject and an entry point to students and researchers interested in joining the field. It can also serve as a quick reference to recent results and constraints on testing gravity at cosmological scales.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"22 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0017-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4711447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 267
Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries 广义相对论的哈密顿公式和紧双星的后牛顿动力学
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-08-31 DOI: 10.1007/s41114-018-0016-5
Gerhard Schäfer, Piotr Jaranowski

Hamiltonian formalisms provide powerful tools for the computation of approximate analytic solutions of the Einstein field equations. The post-Newtonian computations of the explicit analytic dynamics and motion of compact binaries are discussed within the most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous Hamiltonians is achieved by the transition to Routhians. Order reduction of higher derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of general relativity is introduced for the tackling of compact binaries with spinning components. Configurations are treated where the absolute values of the spin vectors can be considered constant. Compact objects are modeled by use of Dirac delta functions and their derivatives. Consistency is achieved through transition to d-dimensional space and application of dimensional regularization. At the fourth post-Newtonian level, tail contributions to the binding energy show up. The conservative spin-dependent dynamics finds explicit presentation in Hamiltonian form through next-to-next-to-leading-order spin–orbit and spin1–spin2 couplings and to leading-order in the cubic and quartic in spin interactions. The radiation reaction dynamics is presented explicitly through the third-and-half post-Newtonian order for spinless objects, and, for spinning bodies, to leading-order in the spin–orbit and spin1–spin2 couplings. The most important historical issues get pointed out.

哈密顿形式为计算爱因斯坦场方程的近似解析解提供了强有力的工具。在最常用的Arnowitt-Deser-Misner形式主义中讨论了紧双星的显式解析动力学和运动的后牛顿计算。自治汉密尔顿人的关注是通过向罗西亚人的过渡而实现的。高阶导数哈密顿量的降阶得到标准哈密顿量。引入广义相对论的四分体表示来处理具有自旋分量的紧二进制。处理构型时,自旋矢量的绝对值可以被认为是常数。用狄拉克函数及其导数对紧致物体进行建模。一致性是通过转换到d维空间和应用维度正则化来实现的。在后牛顿能级,尾巴对结合能的贡献出现了。保守的自旋依赖动力学通过次至次至先序自旋轨道和自旋1 -自旋2耦合以及自旋相互作用中的三次和四次的先序得到哈密顿形式的明确表示。辐射反应动力学是通过third-and-half提出明确的后牛顿spinless对象,,旋转的身体,按顺序在自旋轨道和spin1-spin2耦合。最重要的历史问题被指出来。
{"title":"Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries","authors":"Gerhard Schäfer,&nbsp;Piotr Jaranowski","doi":"10.1007/s41114-018-0016-5","DOIUrl":"https://doi.org/10.1007/s41114-018-0016-5","url":null,"abstract":"<p>Hamiltonian formalisms provide powerful tools for the computation of approximate analytic solutions of the Einstein field equations. The post-Newtonian computations of the explicit analytic dynamics and motion of compact binaries are discussed within the most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous Hamiltonians is achieved by the transition to Routhians. Order reduction of higher derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of general relativity is introduced for the tackling of compact binaries with spinning components. Configurations are treated where the absolute values of the spin vectors can be considered constant. Compact objects are modeled by use of Dirac delta functions and their derivatives. Consistency is achieved through transition to <i>d</i>-dimensional space and application of dimensional regularization. At the fourth post-Newtonian level, tail contributions to the binding energy show up. The conservative spin-dependent dynamics finds explicit presentation in Hamiltonian form through next-to-next-to-leading-order spin–orbit and spin1–spin2 couplings and to leading-order in the cubic and quartic in spin interactions. The radiation reaction dynamics is presented explicitly through the third-and-half post-Newtonian order for spinless objects, and, for spinning bodies, to leading-order in the spin–orbit and spin1–spin2 couplings. The most important historical issues get pointed out.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0016-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5174159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 99
Computer algebra in gravity research 重力研究中的计算机代数
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-08-20 DOI: 10.1007/s41114-018-0015-6
Malcolm A. H. MacCallum

The complicated nature of calculations in general relativity was one of the driving forces in the early development of computer algebra (CA). CA has become widely used in gravity research (GR) and its use can be expected to grow further. Here the general nature of computer algebra is discussed, along with some aspects of CA system design; features particular to GR’s requirements are considered; information on packages for CA in GR is provided, both for those packages currently available and for their predecessors; and applications of CA in GR are outlined.

广义相对论中计算的复杂性是计算机代数(CA)早期发展的驱动力之一。CA在重力研究中得到了广泛的应用,其应用前景广阔。这里讨论了计算机代数的一般性质,以及CA系统设计的一些方面;考虑到GR要求的特殊特征;提供了GR中用于CA的包的信息,包括当前可用的包和它们的前身;概述了CA在GR中的应用。
{"title":"Computer algebra in gravity research","authors":"Malcolm A. H. MacCallum","doi":"10.1007/s41114-018-0015-6","DOIUrl":"https://doi.org/10.1007/s41114-018-0015-6","url":null,"abstract":"<p>The complicated nature of calculations in general relativity was one of the driving forces in the early development of computer algebra (CA). CA has become widely used in gravity research (GR) and its use can be expected to grow further. Here the general nature of computer algebra is discussed, along with some aspects of CA system design; features particular to GR’s requirements are considered; information on packages for CA in GR is provided, both for those packages currently available and for their predecessors; and applications of CA in GR are outlined.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0015-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5077976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Geometrical inequalities bounding angular momentum and charges in General Relativity 广义相对论中包含角动量和电荷的几何不等式
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-07-05 DOI: 10.1007/s41114-018-0014-7
Sergio Dain, María Eugenia Gabach-Clement

Geometrical inequalities show how certain parameters of a physical system set restrictions on other parameters. For instance, a black hole of given mass can not rotate too fast, or an ordinary object of given size can not have too much electric charge. In this article, we are interested in bounds on the angular momentum and electromagnetic charges, in terms of total mass and size. We are mainly concerned with inequalities for black holes and ordinary objects. The former are the most studied systems in this context in General Relativity, and where most results have been found. Ordinary objects, on the other hand, present numerous challenges and many basic questions concerning geometrical estimates for them are still unanswered. We present the many results in these areas. We make emphasis in identifying the mathematical conditions that lead to such estimates, both for black holes and ordinary objects.

几何不等式表明物理系统的某些参数如何对其他参数设置限制。例如,一个给定质量的黑洞不能旋转得太快,或者一个给定大小的普通物体不能有太多的电荷。在这篇文章中,我们感兴趣的是角动量和电磁电荷的边界,根据总质量和大小。我们主要关注黑洞和普通物体的不等式。前者是广义相对论中研究最多的系统,也是发现最多结果的系统。另一方面,普通物体提出了许多挑战,许多关于它们几何估计的基本问题仍然没有答案。我们介绍了这些领域的许多结果。我们强调指出导致这种估计的数学条件,对黑洞和普通物体都是如此。
{"title":"Geometrical inequalities bounding angular momentum and charges in General Relativity","authors":"Sergio Dain,&nbsp;María Eugenia Gabach-Clement","doi":"10.1007/s41114-018-0014-7","DOIUrl":"https://doi.org/10.1007/s41114-018-0014-7","url":null,"abstract":"<p>Geometrical inequalities show how certain parameters of a physical system set restrictions on other parameters. For instance, a black hole of given mass can not rotate too fast, or an ordinary object of given size can not have too much electric charge. In this article, we are interested in bounds on the angular momentum and electromagnetic charges, in terms of total mass and size. We are mainly concerned with inequalities for black holes and ordinary objects. The former are the most studied systems in this context in General Relativity, and where most results have been found. Ordinary objects, on the other hand, present numerous challenges and many basic questions concerning geometrical estimates for them are still unanswered. We present the many results in these areas. We make emphasis in identifying the mathematical conditions that lead to such estimates, both for black holes and ordinary objects.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0014-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4214131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Relativistic dynamics and extreme mass ratio inspirals 相对论动力学和极端质量比吸气
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-05-15 DOI: 10.1007/s41114-018-0013-8
Pau Amaro-Seoane

It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes—how some of them grow by orders of magnitude in mass—lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes “eat” stars that happen to be near them.

现在已经确定,银河系中心潜伏着一个黑暗、致密的物体,很可能是一个质量约为400万太阳质量的巨大黑洞(MBH)。虽然人们对超大质量黑洞(质量大于10亿个太阳质量)的起源和增长已经达成共识,但质量较小的黑洞,比如我们银河系中心的黑洞,仍然没有得到充分的研究,而且是个谜。了解这些黑洞的关键在于了解银河系附近恒星的动力学,了解其中一些黑洞的质量是如何以数量级增长的。恒星与中央MBH的相互作用主要是通过它们的逐渐吸入,这是由于引力辐射的发射。恒星也会产生气体,这些气体随后会被MBH通过碰撞和由强大的中心潮汐场带来的破坏而吸积。这些过程对MBH的质量有很大的贡献,理解它们的进展需要理论工作,为未来的引力辐射毫赫任务和x射线天文台做准备。特别地,对这些区域的一个独特探测是引力辐射,它是由一些非常接近黑洞的致密恒星发出的,可以通过毫赫引力波干涉仪进行测量,该干涉仪仔细检查质量范围,对理解超大质量黑洞的起源和生长至关重要。通过提取引力辐射所携带的信息,我们可以以前所未有的精度确定中心MBH的质量和旋转,我们可以确定黑洞是如何“吃掉”碰巧在它们附近的恒星的。
{"title":"Relativistic dynamics and extreme mass ratio inspirals","authors":"Pau Amaro-Seoane","doi":"10.1007/s41114-018-0013-8","DOIUrl":"https://doi.org/10.1007/s41114-018-0013-8","url":null,"abstract":"<p>It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes—how some of them grow by orders of magnitude in mass—lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes “eat” stars that happen to be near them.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0013-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4620127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 86
Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 先进LIGO、先进Virgo和KAGRA对引力波瞬态观测和定位的展望
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2018-04-26 DOI: 10.1007/s41114-018-0012-9
B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, B. Allen, A. Allocca, P. A. Altin, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. Appert, K. Arai, A. Araya, M. C. Araya, J. S. Areeda, N. Arnaud, K. G. Arun, H. Asada, S. Ascenzi, G. Ashton, Y. Aso, M. Ast, S. M. Aston, P. Astone, S. Atsuta, P. Aufmuth, C. Aulbert, A. Avila-Alvarez, K. Awai, S. Babak, P. Bacon, M. K. M. Bader, L. Baiotti, P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, J. C. Batch, C. Baune, V. Bavigadda, M. Bazzan, B. Bécsy, C. Beer, M. Bejger, I. Belahcene, M. Belgin, A. S. Bell, B. K. Berger, G. Bergmann, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, S. Bhagwat, R. Bhandare, I. A. Bilenko, G. Billingsley, C. R. Billman, J. Birch, R. Birney, O. Birnholtz, S. Biscans, A. Bisht, M. Bitossi, C. Biwer, M. A. Bizouard, J. K. Blackburn, J. Blackman, C. D. Blair, D. G. Blair, R. M. Blair, S. Bloemen, O. Bock, M. Boer, G. Bogaert, A. Bohe, F. Bondu, R. Bonnand, B. A. Boom, R. Bork, V. Boschi, S. Bose, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, V. B. Braginsky, M. Branchesi, J. E. Brau, T. Briant, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, J. E. Broida, A. F. Brooks, D. A. Brown, D. D. Brown, N. M. Brown, S. Brunett, C. C. Buchanan, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic, C. Buy, R. L. Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, T. A. Callister, E. Calloni, J. B. Camp, K. C. Cannon, H. Cao, J. Cao, C. D. Capano, E. Capocasa, F. Carbognani, S. Caride, J. Casanueva Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, C. B. Cepeda, L. Cerboni Baiardi, G. Cerretani, E. Cesarini, S. J. Chamberlin, M. Chan, S. Chao, P. Charlton, E. Chassande-Mottin, B. D. Cheeseboro, H. Y. Chen, Y. Chen, H.-P. Cheng, A. Chincarini, A. Chiummo, T. Chmiel, H. S. Cho, M. Cho, J. H. Chow, N. Christensen, Q. Chu, A. J. K. Chua, S. Chua, S. Chung, G. Ciani, F. Clara, J. A. Clark, F. Cleva, C. Cocchieri, E. Coccia, P.-F. Cohadon, A. Colla, C. G. Collette, L. Cominsky, M. Constancio Jr., L. Conti, S. J. Cooper, T. R. Corbitt, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, M. W. Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, P. B. Covas, E. E. Cowan, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, J. Cripe, S. G. Crowder, T. J. Cullen, A. Cumming, L. Cunningham, E. Cuoco, T. Dal Canton, S. L. Danilishin, S. D’Antonio, K. Danzmann, A. Dasgupta, C. F. Da Silva Costa, V. Dattilo, I. Dave, M. Davier, G. S. Davies, D. Davis, E. J. Daw, B. Day, R. Day, S. De, D. DeBra, G. Debreczeni, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, T. Denker, T. Dent, V. Dergachev, R. De Rosa, R. T. DeRosa, R. DeSalvo, R. C. Devine, S. Dhurandhar, M. C. Díaz, L. Di Fiore, M. Di Giovanni, T. Di Girolamo, A. Di Lieto, S. Di Pace, I. Di Palma, A. Di Virgilio, Z. Doctor, K. Doi, V. Dolique, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, R. Douglas, M. Dovale Álvarez, T. P. Downes, M. Drago, R. W. P. Drever, J. C. Driggers, Z. Du, M. Ducrot, S. E. Dwyer, K. Eda, T. B. Edo, M. C. Edwards, A. Effler, H.-B. Eggenstein, P. Ehrens, J. Eichholz, S. S. Eikenberry, R. A. Eisenstein, R. C. Essick, Z. Etienne, T. Etzel, M. Evans, T. M. Evans, R. Everett, M. Factourovich, V. Fafone, H. Fair, S. Fairhurst, X. Fan, S. Farinon, B. Farr, W. M. Farr, E. J. Fauchon-Jones, M. Favata, M. Fays, H. Fehrmann, M. M. Fejer, A. Fernández Galiana, I. Ferrante, E. C. Ferreira, F. Ferrini, F. Fidecaro, I. Fiori, D. Fiorucci, R. P. Fisher, R. Flaminio, M. Fletcher, H. Fong, S. S. Forsyth, J.-D. Fournier, S. Frasca, F. Frasconi, Z. Frei, A. Freise, R. Frey, V. Frey, E. M. Fries, P. Fritschel, V. V. Frolov, Y. Fujii, M.-K. Fujimoto, P. Fulda, M. Fyffe, H. Gabbard, B. U. Gadre, S. M. Gaebel, J. R. Gair, L. Gammaitoni, S. G. Gaonkar, F. Garufi, G. Gaur, V. Gayathri, N. Gehrels, G. Gemme, E. Genin, A. Gennai, J. George, L. Gergely, V. Germain, S. Ghonge, Abhirup Ghosh, Archisman Ghosh, S. Ghosh, J. A. Giaime, K. D. Giardina, A. Giazotto, K. Gill, A. Glaefke, E. Goetz, R. Goetz, L. Gondan, G. González, J. M. Gonzalez Castro, A. Gopakumar, M. L. Gorodetsky, S. E. Gossan, M. Gosselin, R. Gouaty, A. Grado, C. Graef, M. Granata, A. Grant, S. Gras, C. Gray, G. Greco, A. C. Green, P. Groot, H. Grote, S. Grunewald, G. M. Guidi, X. Guo, A. Gupta, M. K. Gupta, K. E. Gushwa, E. K. Gustafson, R. Gustafson, J. J. Hacker, A. Hagiwara, B. R. Hall, E. D. Hall, G. Hammond, M. Haney, M. M. Hanke, J. Hanks, C. Hanna, M. D. Hannam, J. Hanson, T. Hardwick, J. Harms, G. M. Harry, I. W. Harry, M. J. Hart, M. T. Hartman, C.-J. Haster, K. Haughian, K. Hayama, J. Healy, A. Heidmann, M. C. Heintze, H. Heitmann, P. Hello, G. Hemming, M. Hendry, I. S. Heng, J. Hennig, J. Henry, A. W. Heptonstall, M. Heurs, S. Hild, E. Hirose, D. Hoak, D. Hofman, K. Holt, D. E. Holz, P. Hopkins, J. Hough, E. A. Houston, E. J. Howell, Y. M. Hu, E. A. Huerta, D. Huet, B. Hughey, S. Husa, S. H. Huttner, T. Huynh-Dinh, N. Indik, D. R. Ingram, R. Inta, K. Ioka, H. N. Isa, J.-M. Isac, M. Isi, T. Isogai, Y. Itoh, B. R. Iyer, K. Izumi, T. Jacqmin, K. Jani, P. Jaranowski, S. Jawahar, F. Jiménez-Forteza, W. W. Johnson, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, J. Junker, T. Kagawa, T. Kajita, M. Kakizaki, C. V. Kalaghatgi, V. Kalogera, M. Kamiizumi, N. Kanda, S. Kandhasamy, S. Kanemura, M. Kaneyama, G. Kang, J. B. Kanner, S. Karki, K. S. Karvinen, M. Kasprzack, Y. Kataoka, E. Katsavounidis, W. Katzman, S. Kaufer, T. Kaur, K. Kawabe, N. Kawai, S. Kawamura, F. Kéfélian, D. Keitel, D. B. Kelley, R. Kennedy, J. S. Key, F. Y. Khalili, I. Khan, S. Khan, Z. Khan, E. A. Khazanov, N. Kijbunchoo, C. Kim, H. Kim, J. C. Kim, J. Kim, W. Kim, Y.-M. Kim, S. J. Kimbrell, N. Kimura, E. J. King, P. J. King, R. Kirchhoff, J. S. Kissel, B. Klein, L. Kleybolte, S. Klimenko, P. Koch, S. M. Koehlenbeck, Y. Kojima, K. Kokeyama, S. Koley, K. Komori, V. Kondrashov, A. Kontos, M. Korobko, W. Z. Korth, K. Kotake, I. Kowalska, D. B. Kozak, C. Krämer, V. Kringel, B. Krishnan, A. Królak, G. Kuehn, P. Kumar, Rahul Kumar, Rakesh Kumar, L. Kuo, K. Kuroda, A. Kutynia, Y. Kuwahara, B. D. Lackey, M. Landry, R. N. Lang, J. Lange, B. Lantz, R. K. Lanza, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, E. O. Lebigot, C. H. Lee, H. K. Lee, H. M. Lee, H. W. Lee, K. Lee, J. Lehmann, A. Lenon, M. Leonardi, J. R. Leong, N. Leroy, N. Letendre, Y. Levin, T. G. F. Li, A. Libson, T. B. Littenberg, J. Liu, N. A. Lockerbie, A. L. Lombardi, L. T. London, J. E. Lord, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, H. Lück, A. P. Lundgren, R. Lynch, Y. Ma, S. Macfoy, B. Machenschalk, M. MacInnis, D. M. Macleod, F. Magaña-Sandoval, E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, V. Mandic, V. Mangano, S. Mano, G. L. Mansell, M. Manske, M. Mantovani, F. Marchesoni, M. Marchio, F. Marion, S. Márka, Z. Márka, A. S. Markosyan, E. Maros, F. Martelli, L. Martellini, I. W. Martin, D. V. Martynov, K. Mason, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, F. Matichard, L. Matone, N. Matsumoto, F. Matsushima, N. Mavalvala, N. Mazumder, R. McCarthy, D. E. McClelland, S. McCormick, C. McGrath, S. C. McGuire, G. McIntyre, J. McIver, D. J. McManus, T. McRae, S. T. McWilliams, D. Meacher, G. D. Meadors, J. Meidam, A. Melatos, G. Mendell, D. Mendoza-Gandara, R. A. Mercer, E. L. Merilh, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, R. Metzdorff, P. M. Meyers, F. Mezzani, H. Miao, C. Michel, Y. Michimura, H. Middleton, E. E. Mikhailov, L. Milano, A. L. Miller, A. Miller, B. B. Miller, J. Miller, M. Millhouse, Y. Minenkov, J. Ming, S. Mirshekari, C. Mishra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa, A. Miyamoto, T. Miyamoto, S. Miyoki, A. Moggi, M. Mohan, S. R. P. Mohapatra, M. Montani, B. C. Moore, C. J. Moore, D. Moraru, G. Moreno, W. Morii, S. Morisaki, Y. Moriwaki, S. R. Morriss, B. Mours, C. M. Mow-Lowry, G. Mueller, A. W. Muir, Arunava Mukherjee, D. Mukherjee, S. Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. M. Muniz, P. G. Murray, A. Mytidis, S. Nagano, K. Nakamura, T. Nakamura, H. Nakano, Masaya Nakano, Masayuki Nakano, K. Nakao, K. Napier, I. Nardecchia, T. Narikawa, L. Naticchioni, G. Nelemans, T. J. N. Nelson, M. Neri, M. Nery, A. Neunzert, J. M. Newport, G. Newton, T. T. Nguyen, W.-T. Ni, A. B. Nielsen, S. Nissanke, A. Nitz, A. Noack, F. Nocera, D. Nolting, M. E. N. Normandin, L. K. Nuttall, J. Oberling, E. Ochsner, E. Oelker, G. H. Ogin, J. J. Oh, S. H. Oh, M. Ohashi, N. Ohishi, M. Ohkawa, F. Ohme, K. Okutomi, M. Oliver, K. Ono, Y. Ono, K. Oohara, P. Oppermann, Richard J. Oram, B. O’Reilly, R. O’Shaughnessy, D. J. Ottaway, H. Overmier, B. J. Owen, A. E. Pace, J. Page, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, A. Pal-Singh, H. Pan, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, M. A. Papa, H. R. Paris, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, B. Patricelli, B. L. Pearlstone, M. Pedraza, R. Pedurand, L. Pekowsky, A. Pele, F. E. Peña Arellano, S. Penn, C. J. Perez, A. Perreca, L. M. Perri, H. P. Pfeiffer, M. Phelps, O. J. Piccinni, M. Pichot, F. Piergiovanni, V. Pierro, G. Pillant, L. Pinard, I. M. Pinto, M. Pitkin, M. Poe, R. Poggiani, P. Popolizio, A. Post, J. Powell, J. Prasad, J. W. W. Pratt, V. Predoi, T. Prestegard, M. Prijatelj, M. Principe, S. Privitera, G. A. Prodi, L. G. Prokhorov, O. Puncken, M. Punturo, P. Puppo, M. Pürrer, H. Qi, J. Qin, S. Qiu, V. Quetschke, E. A. Quintero, R. Quitzow-James, F. J. Raab, D. S. Rabeling, H. Radkins, P. Raffai, S. Raja, C. Rajan, M. Rakhmanov, P. Rapagnani, V. Raymond, M. Razzano, V. Re, J. Read, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, H. Rew, S. D. Reyes, E. Rhoades, F. Ricci, K. Riles, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, L. Rolland, J. G. Rollins, V. J. Roma, R. Romano, J. H. Romie, D. Rosińska, S. Rowan, A. Rüdiger, P. Ruggi, K. Ryan, S. Sachdev, T. Sadecki, L. Sadeghian, N. Sago, M. Saijo, Y. Saito, K. Sakai, M. Sakellariadou, L. Salconi, M. Saleem, F. Salemi, A. Samajdar, L. Sammut, L. M. Sampson, E. J. Sanchez, V. Sandberg, J. R. Sanders, Y. Sasaki, B. Sassolas, B. S. Sathyaprakash, S. Sato, T. Sato, P. R. Saulson, O. Sauter, R. L. Savage, A. Sawadsky, P. Schale, J. Scheuer, E. Schmidt, J. Schmidt, P. Schmidt, R. Schnabel, R. M. S. Schofield, A. Schönbeck, E. Schreiber, D. Schuette, B. F. Schutz, S. G. Schwalbe, J. Scott, S. M. Scott, T. Sekiguchi, Y. Sekiguchi, D. Sellers, A. S. Sengupta, D. Sentenac, V. Sequino, A. Sergeev, Y. Setyawati, D. A. Shaddock, T. J. Shaffer, M. S. Shahriar, B. Shapiro, P. Shawhan, A. Sheperd, M. Shibata, Y. Shikano, T. Shimoda, A. Shoda, D. H. Shoemaker, D. M. Shoemaker, K. Siellez, X. Siemens, M. Sieniawska, D. Sigg, A. D. Silva, A. Singer, L. P. Singer, A. Singh, R. Singh, A. Singhal, A. M. Sintes, B. J. J. Slagmolen, B. Smith, J. R. Smith, R. J. E. Smith, K. Somiya, E. J. Son, B. Sorazu, F. Sorrentino, T. Souradeep, A. P. Spencer, A. K. Srivastava, A. Staley, M. Steinke, J. Steinlechner, S. Steinlechner, D. Steinmeyer, B. C. Stephens, S. P. Stevenson, R. Stone, K. A. Strain, N. Straniero, G. Stratta, S. E. Strigin, R. Sturani, A. L. Stuver, Y. Sugimoto, T. Z. Summerscales, L. Sun, S. Sunil, P. J. Sutton, T. Suzuki, B. L. Swinkels, M. J. Szczepańczyk, M. Tacca, H. Tagoshi, S. Takada, H. Takahashi, R. Takahashi, A. Takamori, D. Talukder, H. Tanaka, K. Tanaka, T. Tanaka, D. B. Tanner, M. Tápai, A. Taracchini, D. Tatsumi, R. Taylor, S. Telada, T. Theeg, E. G. Thomas, M. Thomas, P. Thomas, K. A. Thorne, E. Thrane, T. Tippens, S. Tiwari, V. Tiwari, K. V. Tokmakov, K. Toland, T. Tomaru, C. Tomlinson, M. Tonelli, Z. Tornasi, C. I. Torrie, D. Töyrä, F. Travasso, G. Traylor, D. Trifirò, J. Trinastic, M. C. Tringali, L. Trozzo, M. Tse, R. Tso, K. Tsubono, T. Tsuzuki, M. Turconi, D. Tuyenbayev, T. Uchiyama, T. Uehara, S. Ueki, K. Ueno, D. Ugolini, C. S. Unnikrishnan, A. L. Urban, T. Ushiba, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, L. van der Schaaf, J. V. van Heijningen, M. H. P. M. van Putten, A. A. van Veggel, M. Vardaro, V. Varma, S. Vass, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, G. Venugopalan, D. Verkindt, F. Vetrano, A. Viceré, A. D. Viets, S. Vinciguerra, D. J. Vine, J.-Y. Vinet, S. Vitale, T. Vo, H. Vocca, C. Vorvick, D. V. Voss, W. D. Vousden, S. P. Vyatchanin, A. R. Wade, L. E. Wade, M. Wade, T. Wakamatsu, M. Walker, L. Wallace, S. Walsh, G. Wang, H. Wang, M. Wang, Y. Wang, R. L. Ward, J. Warner, M. Was, J. Watchi, B. Weaver, L.-W. Wei, M. Weinert, A. J. Weinstein, R. Weiss, L. Wen, P. Weßels, T. Westphal, K. Wette, J. T. Whelan, B. F. Whiting, C. Whittle, D. Williams, R. D. Williams, A. R. Williamson, J. L. Willis, B. Willke, M. H. Wimmer, W. Winkler, C. C. Wipf, H. Wittel, G. Woan, J. Woehler, J. Worden, J. L. Wright, D. S. Wu, G. Wu, W. Yam, H. Yamamoto, K. Yamamoto, T. Yamamoto, C. C. Yancey, K. Yano, M. J. Yap, J. Yokoyama, T. Yokozawa, T. H. Yoon, Hang Yu, Haocun Yu, H. Yuzurihara, M. Yvert, A. Zadrożny, L. Zangrando, M. Zanolin, S. Zeidler, J.-P. Zendri, M. Zevin, L. Zhang, M. Zhang, T. Zhang, Y. Zhang, C. Zhao, M. Zhou, Z. Zhou, S. J. Zhu, X. J. Zhu, M. E. Zucker, J. Zweizig, KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and (90%) credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–(20~mathrm {deg}^2) requires at least three detectors of sensitivity within a factor of (sim 2) of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

我们提出了未来十年先进LIGO、先进Virgo和KAGRA引力波探测器可能的观测方案,旨在为天文学界提供信息,以促进引力波多信使天文学的规划。我们估计了网络对瞬态引力波信号的灵敏度,并研究了网络确定源的天空位置的能力。我们报告了我们对引力波瞬变的发现,特别关注来自双中子星系统的引力波信号,这是多信使天文学最有希望的目标。定位探测到的信号源的能力取决于探测器的地理分布和它们的相对灵敏度,当只有两个敏感探测器在工作时,(90%)可信区域可以大到数千平方度。要确定很大一部分探测信号在5 - (20~mathrm {deg}^2)范围内的天空位置,需要至少三个灵敏度在(sim 2)因子内的探测器,并且具有较宽的频率带宽。当包括KAGRA和印度第三个LIGO探测器在内的所有探测器达到设计灵敏度时,仅通过引力波观测就可以将很大一部分引力波信号定位到几平方度的范围内。
{"title":"Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA","authors":"B. P. Abbott,&nbsp;R. Abbott,&nbsp;T. D. Abbott,&nbsp;M. R. Abernathy,&nbsp;F. Acernese,&nbsp;K. Ackley,&nbsp;C. Adams,&nbsp;T. Adams,&nbsp;P. Addesso,&nbsp;R. X. Adhikari,&nbsp;V. B. Adya,&nbsp;C. Affeldt,&nbsp;M. Agathos,&nbsp;K. Agatsuma,&nbsp;N. Aggarwal,&nbsp;O. D. Aguiar,&nbsp;L. Aiello,&nbsp;A. Ain,&nbsp;P. Ajith,&nbsp;T. Akutsu,&nbsp;B. Allen,&nbsp;A. Allocca,&nbsp;P. A. Altin,&nbsp;A. Ananyeva,&nbsp;S. B. Anderson,&nbsp;W. G. Anderson,&nbsp;M. Ando,&nbsp;S. Appert,&nbsp;K. Arai,&nbsp;A. Araya,&nbsp;M. C. Araya,&nbsp;J. S. Areeda,&nbsp;N. Arnaud,&nbsp;K. G. Arun,&nbsp;H. Asada,&nbsp;S. Ascenzi,&nbsp;G. Ashton,&nbsp;Y. Aso,&nbsp;M. Ast,&nbsp;S. M. Aston,&nbsp;P. Astone,&nbsp;S. Atsuta,&nbsp;P. Aufmuth,&nbsp;C. Aulbert,&nbsp;A. Avila-Alvarez,&nbsp;K. Awai,&nbsp;S. Babak,&nbsp;P. Bacon,&nbsp;M. K. M. Bader,&nbsp;L. Baiotti,&nbsp;P. T. Baker,&nbsp;F. Baldaccini,&nbsp;G. Ballardin,&nbsp;S. W. Ballmer,&nbsp;J. C. Barayoga,&nbsp;S. E. Barclay,&nbsp;B. C. Barish,&nbsp;D. Barker,&nbsp;F. Barone,&nbsp;B. Barr,&nbsp;L. Barsotti,&nbsp;M. Barsuglia,&nbsp;D. Barta,&nbsp;J. Bartlett,&nbsp;M. A. Barton,&nbsp;I. Bartos,&nbsp;R. Bassiri,&nbsp;A. Basti,&nbsp;J. C. Batch,&nbsp;C. Baune,&nbsp;V. Bavigadda,&nbsp;M. Bazzan,&nbsp;B. Bécsy,&nbsp;C. Beer,&nbsp;M. Bejger,&nbsp;I. Belahcene,&nbsp;M. Belgin,&nbsp;A. S. Bell,&nbsp;B. K. Berger,&nbsp;G. Bergmann,&nbsp;C. P. L. Berry,&nbsp;D. Bersanetti,&nbsp;A. Bertolini,&nbsp;J. Betzwieser,&nbsp;S. Bhagwat,&nbsp;R. Bhandare,&nbsp;I. A. Bilenko,&nbsp;G. Billingsley,&nbsp;C. R. Billman,&nbsp;J. Birch,&nbsp;R. Birney,&nbsp;O. Birnholtz,&nbsp;S. Biscans,&nbsp;A. Bisht,&nbsp;M. Bitossi,&nbsp;C. Biwer,&nbsp;M. A. Bizouard,&nbsp;J. K. Blackburn,&nbsp;J. Blackman,&nbsp;C. D. Blair,&nbsp;D. G. Blair,&nbsp;R. M. Blair,&nbsp;S. Bloemen,&nbsp;O. Bock,&nbsp;M. Boer,&nbsp;G. Bogaert,&nbsp;A. Bohe,&nbsp;F. Bondu,&nbsp;R. Bonnand,&nbsp;B. A. Boom,&nbsp;R. Bork,&nbsp;V. Boschi,&nbsp;S. Bose,&nbsp;Y. Bouffanais,&nbsp;A. Bozzi,&nbsp;C. Bradaschia,&nbsp;P. R. Brady,&nbsp;V. B. Braginsky,&nbsp;M. Branchesi,&nbsp;J. E. Brau,&nbsp;T. Briant,&nbsp;A. Brillet,&nbsp;M. Brinkmann,&nbsp;V. Brisson,&nbsp;P. Brockill,&nbsp;J. E. Broida,&nbsp;A. F. Brooks,&nbsp;D. A. Brown,&nbsp;D. D. Brown,&nbsp;N. M. Brown,&nbsp;S. Brunett,&nbsp;C. C. Buchanan,&nbsp;A. Buikema,&nbsp;T. Bulik,&nbsp;H. J. Bulten,&nbsp;A. Buonanno,&nbsp;D. Buskulic,&nbsp;C. Buy,&nbsp;R. L. Byer,&nbsp;M. Cabero,&nbsp;L. Cadonati,&nbsp;G. Cagnoli,&nbsp;C. Cahillane,&nbsp;J. Calderón Bustillo,&nbsp;T. A. Callister,&nbsp;E. Calloni,&nbsp;J. B. Camp,&nbsp;K. C. Cannon,&nbsp;H. Cao,&nbsp;J. Cao,&nbsp;C. D. Capano,&nbsp;E. Capocasa,&nbsp;F. Carbognani,&nbsp;S. Caride,&nbsp;J. Casanueva Diaz,&nbsp;C. Casentini,&nbsp;S. Caudill,&nbsp;M. Cavaglià,&nbsp;F. Cavalier,&nbsp;R. Cavalieri,&nbsp;G. Cella,&nbsp;C. B. Cepeda,&nbsp;L. Cerboni Baiardi,&nbsp;G. Cerretani,&nbsp;E. Cesarini,&nbsp;S. J. Chamberlin,&nbsp;M. Chan,&nbsp;S. Chao,&nbsp;P. Charlton,&nbsp;E. Chassande-Mottin,&nbsp;B. D. Cheeseboro,&nbsp;H. Y. Chen,&nbsp;Y. Chen,&nbsp;H.-P. Cheng,&nbsp;A. Chincarini,&nbsp;A. Chiummo,&nbsp;T. Chmiel,&nbsp;H. S. Cho,&nbsp;M. Cho,&nbsp;J. H. Chow,&nbsp;N. Christensen,&nbsp;Q. Chu,&nbsp;A. J. K. Chua,&nbsp;S. Chua,&nbsp;S. Chung,&nbsp;G. Ciani,&nbsp;F. Clara,&nbsp;J. A. Clark,&nbsp;F. Cleva,&nbsp;C. Cocchieri,&nbsp;E. Coccia,&nbsp;P.-F. Cohadon,&nbsp;A. Colla,&nbsp;C. G. Collette,&nbsp;L. Cominsky,&nbsp;M. Constancio Jr.,&nbsp;L. Conti,&nbsp;S. J. Cooper,&nbsp;T. R. Corbitt,&nbsp;N. Cornish,&nbsp;A. Corsi,&nbsp;S. Cortese,&nbsp;C. A. Costa,&nbsp;M. W. Coughlin,&nbsp;S. B. Coughlin,&nbsp;J.-P. Coulon,&nbsp;S. T. Countryman,&nbsp;P. Couvares,&nbsp;P. B. Covas,&nbsp;E. E. Cowan,&nbsp;D. M. Coward,&nbsp;M. J. Cowart,&nbsp;D. C. Coyne,&nbsp;R. Coyne,&nbsp;J. D. E. Creighton,&nbsp;T. D. Creighton,&nbsp;J. Cripe,&nbsp;S. G. Crowder,&nbsp;T. J. Cullen,&nbsp;A. Cumming,&nbsp;L. Cunningham,&nbsp;E. Cuoco,&nbsp;T. Dal Canton,&nbsp;S. L. Danilishin,&nbsp;S. D’Antonio,&nbsp;K. Danzmann,&nbsp;A. Dasgupta,&nbsp;C. F. Da Silva Costa,&nbsp;V. Dattilo,&nbsp;I. Dave,&nbsp;M. Davier,&nbsp;G. S. Davies,&nbsp;D. Davis,&nbsp;E. J. Daw,&nbsp;B. Day,&nbsp;R. Day,&nbsp;S. De,&nbsp;D. DeBra,&nbsp;G. Debreczeni,&nbsp;J. Degallaix,&nbsp;M. De Laurentis,&nbsp;S. Deléglise,&nbsp;W. Del Pozzo,&nbsp;T. Denker,&nbsp;T. Dent,&nbsp;V. Dergachev,&nbsp;R. De Rosa,&nbsp;R. T. DeRosa,&nbsp;R. DeSalvo,&nbsp;R. C. Devine,&nbsp;S. Dhurandhar,&nbsp;M. C. Díaz,&nbsp;L. Di Fiore,&nbsp;M. Di Giovanni,&nbsp;T. Di Girolamo,&nbsp;A. Di Lieto,&nbsp;S. Di Pace,&nbsp;I. Di Palma,&nbsp;A. Di Virgilio,&nbsp;Z. Doctor,&nbsp;K. Doi,&nbsp;V. Dolique,&nbsp;F. Donovan,&nbsp;K. L. Dooley,&nbsp;S. Doravari,&nbsp;I. Dorrington,&nbsp;R. Douglas,&nbsp;M. Dovale Álvarez,&nbsp;T. P. Downes,&nbsp;M. Drago,&nbsp;R. W. P. Drever,&nbsp;J. C. Driggers,&nbsp;Z. Du,&nbsp;M. Ducrot,&nbsp;S. E. Dwyer,&nbsp;K. Eda,&nbsp;T. B. Edo,&nbsp;M. C. Edwards,&nbsp;A. Effler,&nbsp;H.-B. Eggenstein,&nbsp;P. Ehrens,&nbsp;J. Eichholz,&nbsp;S. S. Eikenberry,&nbsp;R. A. Eisenstein,&nbsp;R. C. Essick,&nbsp;Z. Etienne,&nbsp;T. Etzel,&nbsp;M. Evans,&nbsp;T. M. Evans,&nbsp;R. Everett,&nbsp;M. Factourovich,&nbsp;V. Fafone,&nbsp;H. Fair,&nbsp;S. Fairhurst,&nbsp;X. Fan,&nbsp;S. Farinon,&nbsp;B. Farr,&nbsp;W. M. Farr,&nbsp;E. J. Fauchon-Jones,&nbsp;M. Favata,&nbsp;M. Fays,&nbsp;H. Fehrmann,&nbsp;M. M. Fejer,&nbsp;A. Fernández Galiana,&nbsp;I. Ferrante,&nbsp;E. C. Ferreira,&nbsp;F. Ferrini,&nbsp;F. Fidecaro,&nbsp;I. Fiori,&nbsp;D. Fiorucci,&nbsp;R. P. Fisher,&nbsp;R. Flaminio,&nbsp;M. Fletcher,&nbsp;H. Fong,&nbsp;S. S. Forsyth,&nbsp;J.-D. Fournier,&nbsp;S. Frasca,&nbsp;F. Frasconi,&nbsp;Z. Frei,&nbsp;A. Freise,&nbsp;R. Frey,&nbsp;V. Frey,&nbsp;E. M. Fries,&nbsp;P. Fritschel,&nbsp;V. V. Frolov,&nbsp;Y. Fujii,&nbsp;M.-K. Fujimoto,&nbsp;P. Fulda,&nbsp;M. Fyffe,&nbsp;H. Gabbard,&nbsp;B. U. Gadre,&nbsp;S. M. Gaebel,&nbsp;J. R. Gair,&nbsp;L. Gammaitoni,&nbsp;S. G. Gaonkar,&nbsp;F. Garufi,&nbsp;G. Gaur,&nbsp;V. Gayathri,&nbsp;N. Gehrels,&nbsp;G. Gemme,&nbsp;E. Genin,&nbsp;A. Gennai,&nbsp;J. George,&nbsp;L. Gergely,&nbsp;V. Germain,&nbsp;S. Ghonge,&nbsp;Abhirup Ghosh,&nbsp;Archisman Ghosh,&nbsp;S. Ghosh,&nbsp;J. A. Giaime,&nbsp;K. D. Giardina,&nbsp;A. Giazotto,&nbsp;K. Gill,&nbsp;A. Glaefke,&nbsp;E. Goetz,&nbsp;R. Goetz,&nbsp;L. Gondan,&nbsp;G. González,&nbsp;J. M. Gonzalez Castro,&nbsp;A. Gopakumar,&nbsp;M. L. Gorodetsky,&nbsp;S. E. Gossan,&nbsp;M. Gosselin,&nbsp;R. Gouaty,&nbsp;A. Grado,&nbsp;C. Graef,&nbsp;M. Granata,&nbsp;A. Grant,&nbsp;S. Gras,&nbsp;C. Gray,&nbsp;G. Greco,&nbsp;A. C. Green,&nbsp;P. Groot,&nbsp;H. Grote,&nbsp;S. Grunewald,&nbsp;G. M. Guidi,&nbsp;X. Guo,&nbsp;A. Gupta,&nbsp;M. K. Gupta,&nbsp;K. E. Gushwa,&nbsp;E. K. Gustafson,&nbsp;R. Gustafson,&nbsp;J. J. Hacker,&nbsp;A. Hagiwara,&nbsp;B. R. Hall,&nbsp;E. D. Hall,&nbsp;G. Hammond,&nbsp;M. Haney,&nbsp;M. M. Hanke,&nbsp;J. Hanks,&nbsp;C. Hanna,&nbsp;M. D. Hannam,&nbsp;J. Hanson,&nbsp;T. Hardwick,&nbsp;J. Harms,&nbsp;G. M. Harry,&nbsp;I. W. Harry,&nbsp;M. J. Hart,&nbsp;M. T. Hartman,&nbsp;C.-J. Haster,&nbsp;K. Haughian,&nbsp;K. Hayama,&nbsp;J. Healy,&nbsp;A. Heidmann,&nbsp;M. C. Heintze,&nbsp;H. Heitmann,&nbsp;P. Hello,&nbsp;G. Hemming,&nbsp;M. Hendry,&nbsp;I. S. Heng,&nbsp;J. Hennig,&nbsp;J. Henry,&nbsp;A. W. Heptonstall,&nbsp;M. Heurs,&nbsp;S. Hild,&nbsp;E. Hirose,&nbsp;D. Hoak,&nbsp;D. Hofman,&nbsp;K. Holt,&nbsp;D. E. Holz,&nbsp;P. Hopkins,&nbsp;J. Hough,&nbsp;E. A. Houston,&nbsp;E. J. Howell,&nbsp;Y. M. Hu,&nbsp;E. A. Huerta,&nbsp;D. Huet,&nbsp;B. Hughey,&nbsp;S. Husa,&nbsp;S. H. Huttner,&nbsp;T. Huynh-Dinh,&nbsp;N. Indik,&nbsp;D. R. Ingram,&nbsp;R. Inta,&nbsp;K. Ioka,&nbsp;H. N. Isa,&nbsp;J.-M. Isac,&nbsp;M. Isi,&nbsp;T. Isogai,&nbsp;Y. Itoh,&nbsp;B. R. Iyer,&nbsp;K. Izumi,&nbsp;T. Jacqmin,&nbsp;K. Jani,&nbsp;P. Jaranowski,&nbsp;S. Jawahar,&nbsp;F. Jiménez-Forteza,&nbsp;W. W. Johnson,&nbsp;D. I. Jones,&nbsp;R. Jones,&nbsp;R. J. G. Jonker,&nbsp;L. Ju,&nbsp;J. Junker,&nbsp;T. Kagawa,&nbsp;T. Kajita,&nbsp;M. Kakizaki,&nbsp;C. V. Kalaghatgi,&nbsp;V. Kalogera,&nbsp;M. Kamiizumi,&nbsp;N. Kanda,&nbsp;S. Kandhasamy,&nbsp;S. Kanemura,&nbsp;M. Kaneyama,&nbsp;G. Kang,&nbsp;J. B. Kanner,&nbsp;S. Karki,&nbsp;K. S. Karvinen,&nbsp;M. Kasprzack,&nbsp;Y. Kataoka,&nbsp;E. Katsavounidis,&nbsp;W. Katzman,&nbsp;S. Kaufer,&nbsp;T. Kaur,&nbsp;K. Kawabe,&nbsp;N. Kawai,&nbsp;S. Kawamura,&nbsp;F. Kéfélian,&nbsp;D. Keitel,&nbsp;D. B. Kelley,&nbsp;R. Kennedy,&nbsp;J. S. Key,&nbsp;F. Y. Khalili,&nbsp;I. Khan,&nbsp;S. Khan,&nbsp;Z. Khan,&nbsp;E. A. Khazanov,&nbsp;N. Kijbunchoo,&nbsp;C. Kim,&nbsp;H. Kim,&nbsp;J. C. Kim,&nbsp;J. Kim,&nbsp;W. Kim,&nbsp;Y.-M. Kim,&nbsp;S. J. Kimbrell,&nbsp;N. Kimura,&nbsp;E. J. King,&nbsp;P. J. King,&nbsp;R. Kirchhoff,&nbsp;J. S. Kissel,&nbsp;B. Klein,&nbsp;L. Kleybolte,&nbsp;S. Klimenko,&nbsp;P. Koch,&nbsp;S. M. Koehlenbeck,&nbsp;Y. Kojima,&nbsp;K. Kokeyama,&nbsp;S. Koley,&nbsp;K. Komori,&nbsp;V. Kondrashov,&nbsp;A. Kontos,&nbsp;M. Korobko,&nbsp;W. Z. Korth,&nbsp;K. Kotake,&nbsp;I. Kowalska,&nbsp;D. B. Kozak,&nbsp;C. Krämer,&nbsp;V. Kringel,&nbsp;B. Krishnan,&nbsp;A. Królak,&nbsp;G. Kuehn,&nbsp;P. Kumar,&nbsp;Rahul Kumar,&nbsp;Rakesh Kumar,&nbsp;L. Kuo,&nbsp;K. Kuroda,&nbsp;A. Kutynia,&nbsp;Y. Kuwahara,&nbsp;B. D. Lackey,&nbsp;M. Landry,&nbsp;R. N. Lang,&nbsp;J. Lange,&nbsp;B. Lantz,&nbsp;R. K. Lanza,&nbsp;A. Lartaux-Vollard,&nbsp;P. D. Lasky,&nbsp;M. Laxen,&nbsp;A. Lazzarini,&nbsp;C. Lazzaro,&nbsp;P. Leaci,&nbsp;S. Leavey,&nbsp;E. O. Lebigot,&nbsp;C. H. Lee,&nbsp;H. K. Lee,&nbsp;H. M. Lee,&nbsp;H. W. Lee,&nbsp;K. Lee,&nbsp;J. Lehmann,&nbsp;A. Lenon,&nbsp;M. Leonardi,&nbsp;J. R. Leong,&nbsp;N. Leroy,&nbsp;N. Letendre,&nbsp;Y. Levin,&nbsp;T. G. F. Li,&nbsp;A. Libson,&nbsp;T. B. Littenberg,&nbsp;J. Liu,&nbsp;N. A. Lockerbie,&nbsp;A. L. Lombardi,&nbsp;L. T. London,&nbsp;J. E. Lord,&nbsp;M. Lorenzini,&nbsp;V. Loriette,&nbsp;M. Lormand,&nbsp;G. Losurdo,&nbsp;J. D. Lough,&nbsp;C. O. Lousto,&nbsp;G. Lovelace,&nbsp;H. Lück,&nbsp;A. P. Lundgren,&nbsp;R. Lynch,&nbsp;Y. Ma,&nbsp;S. Macfoy,&nbsp;B. Machenschalk,&nbsp;M. MacInnis,&nbsp;D. M. Macleod,&nbsp;F. Magaña-Sandoval,&nbsp;E. Majorana,&nbsp;I. Maksimovic,&nbsp;V. Malvezzi,&nbsp;N. Man,&nbsp;V. Mandic,&nbsp;V. Mangano,&nbsp;S. Mano,&nbsp;G. L. Mansell,&nbsp;M. Manske,&nbsp;M. Mantovani,&nbsp;F. Marchesoni,&nbsp;M. Marchio,&nbsp;F. Marion,&nbsp;S. Márka,&nbsp;Z. Márka,&nbsp;A. S. Markosyan,&nbsp;E. Maros,&nbsp;F. Martelli,&nbsp;L. Martellini,&nbsp;I. W. Martin,&nbsp;D. V. Martynov,&nbsp;K. Mason,&nbsp;A. Masserot,&nbsp;T. J. Massinger,&nbsp;M. Masso-Reid,&nbsp;S. Mastrogiovanni,&nbsp;F. Matichard,&nbsp;L. Matone,&nbsp;N. Matsumoto,&nbsp;F. Matsushima,&nbsp;N. Mavalvala,&nbsp;N. Mazumder,&nbsp;R. McCarthy,&nbsp;D. E. McClelland,&nbsp;S. McCormick,&nbsp;C. McGrath,&nbsp;S. C. McGuire,&nbsp;G. McIntyre,&nbsp;J. McIver,&nbsp;D. J. McManus,&nbsp;T. McRae,&nbsp;S. T. McWilliams,&nbsp;D. Meacher,&nbsp;G. D. Meadors,&nbsp;J. Meidam,&nbsp;A. Melatos,&nbsp;G. Mendell,&nbsp;D. Mendoza-Gandara,&nbsp;R. A. Mercer,&nbsp;E. L. Merilh,&nbsp;M. Merzougui,&nbsp;S. Meshkov,&nbsp;C. Messenger,&nbsp;C. Messick,&nbsp;R. Metzdorff,&nbsp;P. M. Meyers,&nbsp;F. Mezzani,&nbsp;H. Miao,&nbsp;C. Michel,&nbsp;Y. Michimura,&nbsp;H. Middleton,&nbsp;E. E. Mikhailov,&nbsp;L. Milano,&nbsp;A. L. Miller,&nbsp;A. Miller,&nbsp;B. B. Miller,&nbsp;J. Miller,&nbsp;M. Millhouse,&nbsp;Y. Minenkov,&nbsp;J. Ming,&nbsp;S. Mirshekari,&nbsp;C. Mishra,&nbsp;V. P. Mitrofanov,&nbsp;G. Mitselmakher,&nbsp;R. Mittleman,&nbsp;O. Miyakawa,&nbsp;A. Miyamoto,&nbsp;T. Miyamoto,&nbsp;S. Miyoki,&nbsp;A. Moggi,&nbsp;M. Mohan,&nbsp;S. R. P. Mohapatra,&nbsp;M. Montani,&nbsp;B. C. Moore,&nbsp;C. J. Moore,&nbsp;D. Moraru,&nbsp;G. Moreno,&nbsp;W. Morii,&nbsp;S. Morisaki,&nbsp;Y. Moriwaki,&nbsp;S. R. Morriss,&nbsp;B. Mours,&nbsp;C. M. Mow-Lowry,&nbsp;G. Mueller,&nbsp;A. W. Muir,&nbsp;Arunava Mukherjee,&nbsp;D. Mukherjee,&nbsp;S. Mukherjee,&nbsp;N. Mukund,&nbsp;A. Mullavey,&nbsp;J. Munch,&nbsp;E. A. M. Muniz,&nbsp;P. G. Murray,&nbsp;A. Mytidis,&nbsp;S. Nagano,&nbsp;K. Nakamura,&nbsp;T. Nakamura,&nbsp;H. Nakano,&nbsp;Masaya Nakano,&nbsp;Masayuki Nakano,&nbsp;K. Nakao,&nbsp;K. Napier,&nbsp;I. Nardecchia,&nbsp;T. Narikawa,&nbsp;L. Naticchioni,&nbsp;G. Nelemans,&nbsp;T. J. N. Nelson,&nbsp;M. Neri,&nbsp;M. Nery,&nbsp;A. Neunzert,&nbsp;J. M. Newport,&nbsp;G. Newton,&nbsp;T. T. Nguyen,&nbsp;W.-T. Ni,&nbsp;A. B. Nielsen,&nbsp;S. Nissanke,&nbsp;A. Nitz,&nbsp;A. Noack,&nbsp;F. Nocera,&nbsp;D. Nolting,&nbsp;M. E. N. Normandin,&nbsp;L. K. Nuttall,&nbsp;J. Oberling,&nbsp;E. Ochsner,&nbsp;E. Oelker,&nbsp;G. H. Ogin,&nbsp;J. J. Oh,&nbsp;S. H. Oh,&nbsp;M. Ohashi,&nbsp;N. Ohishi,&nbsp;M. Ohkawa,&nbsp;F. Ohme,&nbsp;K. Okutomi,&nbsp;M. Oliver,&nbsp;K. Ono,&nbsp;Y. Ono,&nbsp;K. Oohara,&nbsp;P. Oppermann,&nbsp;Richard J. Oram,&nbsp;B. O’Reilly,&nbsp;R. O’Shaughnessy,&nbsp;D. J. Ottaway,&nbsp;H. Overmier,&nbsp;B. J. Owen,&nbsp;A. E. Pace,&nbsp;J. Page,&nbsp;A. Pai,&nbsp;S. A. Pai,&nbsp;J. R. Palamos,&nbsp;O. Palashov,&nbsp;C. Palomba,&nbsp;A. Pal-Singh,&nbsp;H. Pan,&nbsp;C. Pankow,&nbsp;F. Pannarale,&nbsp;B. C. Pant,&nbsp;F. Paoletti,&nbsp;A. Paoli,&nbsp;M. A. Papa,&nbsp;H. R. Paris,&nbsp;W. Parker,&nbsp;D. Pascucci,&nbsp;A. Pasqualetti,&nbsp;R. Passaquieti,&nbsp;D. Passuello,&nbsp;B. Patricelli,&nbsp;B. L. Pearlstone,&nbsp;M. Pedraza,&nbsp;R. Pedurand,&nbsp;L. Pekowsky,&nbsp;A. Pele,&nbsp;F. E. Peña Arellano,&nbsp;S. Penn,&nbsp;C. J. Perez,&nbsp;A. Perreca,&nbsp;L. M. Perri,&nbsp;H. P. Pfeiffer,&nbsp;M. Phelps,&nbsp;O. J. Piccinni,&nbsp;M. Pichot,&nbsp;F. Piergiovanni,&nbsp;V. Pierro,&nbsp;G. Pillant,&nbsp;L. Pinard,&nbsp;I. M. Pinto,&nbsp;M. Pitkin,&nbsp;M. Poe,&nbsp;R. Poggiani,&nbsp;P. Popolizio,&nbsp;A. Post,&nbsp;J. Powell,&nbsp;J. Prasad,&nbsp;J. W. W. Pratt,&nbsp;V. Predoi,&nbsp;T. Prestegard,&nbsp;M. Prijatelj,&nbsp;M. Principe,&nbsp;S. Privitera,&nbsp;G. A. Prodi,&nbsp;L. G. Prokhorov,&nbsp;O. Puncken,&nbsp;M. Punturo,&nbsp;P. Puppo,&nbsp;M. Pürrer,&nbsp;H. Qi,&nbsp;J. Qin,&nbsp;S. Qiu,&nbsp;V. Quetschke,&nbsp;E. A. Quintero,&nbsp;R. Quitzow-James,&nbsp;F. J. Raab,&nbsp;D. S. Rabeling,&nbsp;H. Radkins,&nbsp;P. Raffai,&nbsp;S. Raja,&nbsp;C. Rajan,&nbsp;M. Rakhmanov,&nbsp;P. Rapagnani,&nbsp;V. Raymond,&nbsp;M. Razzano,&nbsp;V. Re,&nbsp;J. Read,&nbsp;T. Regimbau,&nbsp;L. Rei,&nbsp;S. Reid,&nbsp;D. H. Reitze,&nbsp;H. Rew,&nbsp;S. D. Reyes,&nbsp;E. Rhoades,&nbsp;F. Ricci,&nbsp;K. Riles,&nbsp;M. Rizzo,&nbsp;N. A. Robertson,&nbsp;R. Robie,&nbsp;F. Robinet,&nbsp;A. Rocchi,&nbsp;L. Rolland,&nbsp;J. G. Rollins,&nbsp;V. J. Roma,&nbsp;R. Romano,&nbsp;J. H. Romie,&nbsp;D. Rosińska,&nbsp;S. Rowan,&nbsp;A. Rüdiger,&nbsp;P. Ruggi,&nbsp;K. Ryan,&nbsp;S. Sachdev,&nbsp;T. Sadecki,&nbsp;L. Sadeghian,&nbsp;N. Sago,&nbsp;M. Saijo,&nbsp;Y. Saito,&nbsp;K. Sakai,&nbsp;M. Sakellariadou,&nbsp;L. Salconi,&nbsp;M. Saleem,&nbsp;F. Salemi,&nbsp;A. Samajdar,&nbsp;L. Sammut,&nbsp;L. M. Sampson,&nbsp;E. J. Sanchez,&nbsp;V. Sandberg,&nbsp;J. R. Sanders,&nbsp;Y. Sasaki,&nbsp;B. Sassolas,&nbsp;B. S. Sathyaprakash,&nbsp;S. Sato,&nbsp;T. Sato,&nbsp;P. R. Saulson,&nbsp;O. Sauter,&nbsp;R. L. Savage,&nbsp;A. Sawadsky,&nbsp;P. Schale,&nbsp;J. Scheuer,&nbsp;E. Schmidt,&nbsp;J. Schmidt,&nbsp;P. Schmidt,&nbsp;R. Schnabel,&nbsp;R. M. S. Schofield,&nbsp;A. Schönbeck,&nbsp;E. Schreiber,&nbsp;D. Schuette,&nbsp;B. F. Schutz,&nbsp;S. G. Schwalbe,&nbsp;J. Scott,&nbsp;S. M. Scott,&nbsp;T. Sekiguchi,&nbsp;Y. Sekiguchi,&nbsp;D. Sellers,&nbsp;A. S. Sengupta,&nbsp;D. Sentenac,&nbsp;V. Sequino,&nbsp;A. Sergeev,&nbsp;Y. Setyawati,&nbsp;D. A. Shaddock,&nbsp;T. J. Shaffer,&nbsp;M. S. Shahriar,&nbsp;B. Shapiro,&nbsp;P. Shawhan,&nbsp;A. Sheperd,&nbsp;M. Shibata,&nbsp;Y. Shikano,&nbsp;T. Shimoda,&nbsp;A. Shoda,&nbsp;D. H. Shoemaker,&nbsp;D. M. Shoemaker,&nbsp;K. Siellez,&nbsp;X. Siemens,&nbsp;M. Sieniawska,&nbsp;D. Sigg,&nbsp;A. D. Silva,&nbsp;A. Singer,&nbsp;L. P. Singer,&nbsp;A. Singh,&nbsp;R. Singh,&nbsp;A. Singhal,&nbsp;A. M. Sintes,&nbsp;B. J. J. Slagmolen,&nbsp;B. Smith,&nbsp;J. R. Smith,&nbsp;R. J. E. Smith,&nbsp;K. Somiya,&nbsp;E. J. Son,&nbsp;B. Sorazu,&nbsp;F. Sorrentino,&nbsp;T. Souradeep,&nbsp;A. P. Spencer,&nbsp;A. K. Srivastava,&nbsp;A. Staley,&nbsp;M. Steinke,&nbsp;J. Steinlechner,&nbsp;S. Steinlechner,&nbsp;D. Steinmeyer,&nbsp;B. C. Stephens,&nbsp;S. P. Stevenson,&nbsp;R. Stone,&nbsp;K. A. Strain,&nbsp;N. Straniero,&nbsp;G. Stratta,&nbsp;S. E. Strigin,&nbsp;R. Sturani,&nbsp;A. L. Stuver,&nbsp;Y. Sugimoto,&nbsp;T. Z. Summerscales,&nbsp;L. Sun,&nbsp;S. Sunil,&nbsp;P. J. Sutton,&nbsp;T. Suzuki,&nbsp;B. L. Swinkels,&nbsp;M. J. Szczepańczyk,&nbsp;M. Tacca,&nbsp;H. Tagoshi,&nbsp;S. Takada,&nbsp;H. Takahashi,&nbsp;R. Takahashi,&nbsp;A. Takamori,&nbsp;D. Talukder,&nbsp;H. Tanaka,&nbsp;K. Tanaka,&nbsp;T. Tanaka,&nbsp;D. B. Tanner,&nbsp;M. Tápai,&nbsp;A. Taracchini,&nbsp;D. Tatsumi,&nbsp;R. Taylor,&nbsp;S. Telada,&nbsp;T. Theeg,&nbsp;E. G. Thomas,&nbsp;M. Thomas,&nbsp;P. Thomas,&nbsp;K. A. Thorne,&nbsp;E. Thrane,&nbsp;T. Tippens,&nbsp;S. Tiwari,&nbsp;V. Tiwari,&nbsp;K. V. Tokmakov,&nbsp;K. Toland,&nbsp;T. Tomaru,&nbsp;C. Tomlinson,&nbsp;M. Tonelli,&nbsp;Z. Tornasi,&nbsp;C. I. Torrie,&nbsp;D. Töyrä,&nbsp;F. Travasso,&nbsp;G. Traylor,&nbsp;D. Trifirò,&nbsp;J. Trinastic,&nbsp;M. C. Tringali,&nbsp;L. Trozzo,&nbsp;M. Tse,&nbsp;R. Tso,&nbsp;K. Tsubono,&nbsp;T. Tsuzuki,&nbsp;M. Turconi,&nbsp;D. Tuyenbayev,&nbsp;T. Uchiyama,&nbsp;T. Uehara,&nbsp;S. Ueki,&nbsp;K. Ueno,&nbsp;D. Ugolini,&nbsp;C. S. Unnikrishnan,&nbsp;A. L. Urban,&nbsp;T. Ushiba,&nbsp;S. A. Usman,&nbsp;H. Vahlbruch,&nbsp;G. Vajente,&nbsp;G. Valdes,&nbsp;N. van Bakel,&nbsp;M. van Beuzekom,&nbsp;J. F. J. van den Brand,&nbsp;C. Van Den Broeck,&nbsp;D. C. Vander-Hyde,&nbsp;L. van der Schaaf,&nbsp;J. V. van Heijningen,&nbsp;M. H. P. M. van Putten,&nbsp;A. A. van Veggel,&nbsp;M. Vardaro,&nbsp;V. Varma,&nbsp;S. Vass,&nbsp;M. Vasúth,&nbsp;A. Vecchio,&nbsp;G. Vedovato,&nbsp;J. Veitch,&nbsp;P. J. Veitch,&nbsp;K. Venkateswara,&nbsp;G. Venugopalan,&nbsp;D. Verkindt,&nbsp;F. Vetrano,&nbsp;A. Viceré,&nbsp;A. D. Viets,&nbsp;S. Vinciguerra,&nbsp;D. J. Vine,&nbsp;J.-Y. Vinet,&nbsp;S. Vitale,&nbsp;T. Vo,&nbsp;H. Vocca,&nbsp;C. Vorvick,&nbsp;D. V. Voss,&nbsp;W. D. Vousden,&nbsp;S. P. Vyatchanin,&nbsp;A. R. Wade,&nbsp;L. E. Wade,&nbsp;M. Wade,&nbsp;T. Wakamatsu,&nbsp;M. Walker,&nbsp;L. Wallace,&nbsp;S. Walsh,&nbsp;G. Wang,&nbsp;H. Wang,&nbsp;M. Wang,&nbsp;Y. Wang,&nbsp;R. L. Ward,&nbsp;J. Warner,&nbsp;M. Was,&nbsp;J. Watchi,&nbsp;B. Weaver,&nbsp;L.-W. Wei,&nbsp;M. Weinert,&nbsp;A. J. Weinstein,&nbsp;R. Weiss,&nbsp;L. Wen,&nbsp;P. Weßels,&nbsp;T. Westphal,&nbsp;K. Wette,&nbsp;J. T. Whelan,&nbsp;B. F. Whiting,&nbsp;C. Whittle,&nbsp;D. Williams,&nbsp;R. D. Williams,&nbsp;A. R. Williamson,&nbsp;J. L. Willis,&nbsp;B. Willke,&nbsp;M. H. Wimmer,&nbsp;W. Winkler,&nbsp;C. C. Wipf,&nbsp;H. Wittel,&nbsp;G. Woan,&nbsp;J. Woehler,&nbsp;J. Worden,&nbsp;J. L. Wright,&nbsp;D. S. Wu,&nbsp;G. Wu,&nbsp;W. Yam,&nbsp;H. Yamamoto,&nbsp;K. Yamamoto,&nbsp;T. Yamamoto,&nbsp;C. C. Yancey,&nbsp;K. Yano,&nbsp;M. J. Yap,&nbsp;J. Yokoyama,&nbsp;T. Yokozawa,&nbsp;T. H. Yoon,&nbsp;Hang Yu,&nbsp;Haocun Yu,&nbsp;H. Yuzurihara,&nbsp;M. Yvert,&nbsp;A. Zadrożny,&nbsp;L. Zangrando,&nbsp;M. Zanolin,&nbsp;S. Zeidler,&nbsp;J.-P. Zendri,&nbsp;M. Zevin,&nbsp;L. Zhang,&nbsp;M. Zhang,&nbsp;T. Zhang,&nbsp;Y. Zhang,&nbsp;C. Zhao,&nbsp;M. Zhou,&nbsp;Z. Zhou,&nbsp;S. J. Zhu,&nbsp;X. J. Zhu,&nbsp;M. E. Zucker,&nbsp;J. Zweizig,&nbsp;KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration","doi":"10.1007/s41114-018-0012-9","DOIUrl":"https://doi.org/10.1007/s41114-018-0012-9","url":null,"abstract":"<p>We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and <span>(90%)</span> credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–<span>(20~mathrm {deg}^2)</span> requires at least three detectors of sensitivity within a factor of <span>(sim 2)</span> of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"21 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0012-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4993364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1119
期刊
Living Reviews in Relativity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1