首页 > 最新文献

Living Reviews in Relativity最新文献

英文 中文
Kilonovae Kilonovae
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2017-05-16 DOI: 10.1007/s41114-017-0006-z
Brian D. Metzger

The mergers of double neutron star (NS–NS) and black hole (BH)–NS binaries are promising gravitational wave (GW) sources for Advanced LIGO and future GW detectors. The neutron-rich ejecta from such merger events undergoes rapid neutron capture (r-process) nucleosynthesis, enriching our Galaxy with rare heavy elements like gold and platinum. The radioactive decay of these unstable nuclei also powers a rapidly evolving, supernova-like transient known as a “kilonova” (also known as “macronova”). Kilonovae are an approximately isotropic electromagnetic counterpart to the GW signal, which also provides a unique and direct probe of an important, if not dominant, r-process site. I review the history and physics of kilonovae, leading to the current paradigm of week-long emission with a spectral peak at near-infrared wavelengths. Using a simple light curve model to illustrate the basic physics, I introduce potentially important variations on this canonical picture, including: (sim )day-long optical (“blue”) emission from lanthanide-free components of the ejecta; (sim )hour-long precursor UV/blue emission, powered by the decay of free neutrons in the outermost ejecta layers; and enhanced emission due to energy input from a long-lived central engine, such as an accreting BH or millisecond magnetar. I assess the prospects of kilonova detection following future GW detections of NS–NS/BH–NS mergers in light of the recent follow-up campaign of the LIGO binary BH–BH mergers.

双中子星(NS-NS)和黑洞(BH) -NS双星的合并是先进的LIGO和未来的GW探测器有希望的引力波(GW)源。这种合并事件产生的富含中子的抛射物经历了快中子捕获(r-过程)核合成,使我们的银河系丰富了稀有的重元素,如金和铂。这些不稳定原子核的放射性衰变也为一种快速演化的、类似超新星的瞬变现象提供了动力,这种现象被称为“千新星”(也被称为“宏新星”)。Kilonovae是GW信号的近似各向同性电磁对应物,它也提供了一个重要的(如果不是主导的)r过程位点的独特和直接探测。我回顾了千新星的历史和物理,导致目前的范例,为期一周的发射与近红外波长的光谱峰值。我使用一个简单的光曲线模型来说明基本的物理原理,介绍了这幅经典图像的潜在重要变化,包括:(sim )从喷出物中不含镧元素的成分发出的全天光学(“蓝色”)辐射;(sim )一小时的前体紫外线/蓝色发射,由最外层喷射层的自由中子衰变提供动力;以及由于长寿命的中心引擎(如吸积黑洞或毫秒磁星)的能量输入而增强的发射。根据最近LIGO双子星BH-BH合并的后续活动,我评估了在未来对NS-NS / BH-NS合并进行GW探测之后千新星探测的前景。
{"title":"Kilonovae","authors":"Brian D. Metzger","doi":"10.1007/s41114-017-0006-z","DOIUrl":"https://doi.org/10.1007/s41114-017-0006-z","url":null,"abstract":"<p>The mergers of double neutron star (NS–NS) and black hole (BH)–NS binaries are promising gravitational wave (GW) sources for Advanced LIGO and future GW detectors. The neutron-rich ejecta from such merger events undergoes rapid neutron capture (<i>r</i>-process) nucleosynthesis, enriching our Galaxy with rare heavy elements like gold and platinum. The radioactive decay of these unstable nuclei also powers a rapidly evolving, supernova-like transient known as a “kilonova” (also known as “macronova”). Kilonovae are an approximately isotropic electromagnetic counterpart to the GW signal, which also provides a unique and direct probe of an important, if not dominant, <i>r</i>-process site. I review the history and physics of kilonovae, leading to the current paradigm of week-long emission with a spectral peak at near-infrared wavelengths. Using a simple light curve model to illustrate the basic physics, I introduce potentially important variations on this canonical picture, including: <span>(sim )</span>day-long optical (“blue”) emission from lanthanide-free components of the ejecta; <span>(sim )</span>hour-long precursor UV/blue emission, powered by the decay of free neutrons in the outermost ejecta layers; and enhanced emission due to energy input from a long-lived central engine, such as an accreting BH or millisecond magnetar. I assess the prospects of kilonova detection following future GW detections of NS–NS/BH–NS mergers in light of the recent follow-up campaign of the LIGO binary BH–BH mergers.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-017-0006-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4657916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 247
Detection methods for stochastic gravitational-wave backgrounds: a unified treatment 随机引力波背景的探测方法:统一处理
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2017-04-04 DOI: 10.1007/s41114-017-0004-1
Joseph D. Romano, Neil. J. Cornish

We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field.

我们回顾了目前正在使用的或已经提出的用于寻找引力辐射随机背景的检测方法。我们考虑贝叶斯和频率搜索使用地基和天基激光干涉仪,航天器多普勒跟踪和脉冲星定时阵列;我们允许各向异性,非高斯性和非标准极化状态。我们的重点是相关的数据分析问题,而不是特定的天体物理学或早期宇宙来源,可能会产生这样的背景。我们在检测器响应函数、检测灵敏度曲线,更一般地说,在似然函数的水平上对这些搜索提供了统一的处理,因为信号和噪声模型的选择以及先验概率分布实际上定义了搜索。只要有可能,就会给出教学实例来比较和对比不同的方法。我们试图使文章尽可能独立和全面,针对研究生和新的研究人员希望进入这个领域。
{"title":"Detection methods for stochastic gravitational-wave backgrounds: a unified treatment","authors":"Joseph D. Romano,&nbsp;Neil. J. Cornish","doi":"10.1007/s41114-017-0004-1","DOIUrl":"https://doi.org/10.1007/s41114-017-0004-1","url":null,"abstract":"<p>We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-017-0004-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4146271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 304
The Kerr/CFT correspondence and its extensions Kerr/CFT对应及其扩展
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2017-02-27 DOI: 10.1007/s41114-017-0003-2
Geoffrey Compère

We present a first-principles derivation of the main results of the Kerr/CFT correspondence and its extensions using only tools from gravity and quantum field theory. Firstly, we review properties of extremal black holes with in particular the construction of an asymptotic Virasoro symmetry in the near-horizon limit. The entropy of extremal spinning or charged black holes is shown to match with a chiral half of Cardy’s formula. Secondly, we show how a thermal 2-dimensional conformal field theory (CFT) is relevant to reproduce the dynamics of near-superradiant probes around near-extremal black holes in the semi-classical limit. Thirdly, we review the hidden conformal symmetries of asymptotically-flat black holes away from extremality and present how the non-extremal entropy can be matched with Cardy’s formula. We follow an effective field theory approach and consider the Kerr–Newman black hole and its generalizations in various supergravity theories. The interpretation of these results by deformed dual conformal field theories is discussed and contrasted with properties of standard 2-dimensional CFTs. We conclude with a list of open problems.

我们给出了Kerr/CFT对应及其扩展的主要结果的第一性原理推导,仅使用重力和量子场论的工具。首先,我们回顾了极端黑洞的性质,特别是在近视界极限的渐近Virasoro对称的构造。极端旋转或带电黑洞的熵与Cardy公式的手性的一半相匹配。其次,我们展示了热二维共形场理论(CFT)如何在半经典极限下再现近极黑洞周围近超辐射探测器的动力学。第三,我们回顾了渐近平坦黑洞在远离极值处的隐共形对称性,并给出了非极值熵如何与Cardy公式匹配。我们遵循一种有效的场论方法,并考虑克尔-纽曼黑洞及其在各种超重力理论中的推广。讨论了变形对偶共形场理论对这些结果的解释,并与标准二维CFTs的性质进行了对比。最后,我们列出了一系列尚未解决的问题。
{"title":"The Kerr/CFT correspondence and its extensions","authors":"Geoffrey Compère","doi":"10.1007/s41114-017-0003-2","DOIUrl":"https://doi.org/10.1007/s41114-017-0003-2","url":null,"abstract":"<p>We present a first-principles derivation of the main results of the Kerr/CFT correspondence and its extensions using only tools from gravity and quantum field theory. Firstly, we review properties of extremal black holes with in particular the construction of an asymptotic Virasoro symmetry in the near-horizon limit. The entropy of extremal spinning or charged black holes is shown to match with a chiral half of Cardy’s formula. Secondly, we show how a thermal 2-dimensional conformal field theory (CFT) is relevant to reproduce the dynamics of near-superradiant probes around near-extremal black holes in the semi-classical limit. Thirdly, we review the hidden conformal symmetries of asymptotically-flat black holes away from extremality and present how the non-extremal entropy can be matched with Cardy’s formula. We follow an effective field theory approach and consider the Kerr–Newman black hole and its generalizations in various supergravity theories. The interpretation of these results by deformed dual conformal field theories is discussed and contrasted with properties of standard 2-dimensional CFTs. We conclude with a list of open problems.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2017-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-017-0003-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5036326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Interferometer techniques for gravitational-wave detection 引力波探测干涉仪技术
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2017-02-17 DOI: 10.1007/s41114-016-0002-8
Charlotte Bond, Daniel Brown, Andreas Freise, Kenneth A. Strain

Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.

世界上已经建造了几个公里尺度的引力波探测器。这些仪器结合了许多先进的技术,以推动精密长度测量的极限。核心器件是一种新型激光干涉仪;从经典的迈克尔逊拓扑发展,这些干涉仪集成了额外的光学元件,这显着改变了光学系统的性质。这些激光干涉仪的许多设计和分析可以使用众所周知的经典光学技术进行;然而,复杂的光学布局提供了一个新的挑战。在这篇综述中,我们以教科书式的方式介绍了理解现代引力波探测器以及其他高精度激光干涉仪所需的光学科学。此外,我们提供了一些免费的干涉仪模拟软件的例子,并鼓励读者使用这些例子来获得与讨论的光学方法的实践经验。
{"title":"Interferometer techniques for gravitational-wave detection","authors":"Charlotte Bond,&nbsp;Daniel Brown,&nbsp;Andreas Freise,&nbsp;Kenneth A. Strain","doi":"10.1007/s41114-016-0002-8","DOIUrl":"https://doi.org/10.1007/s41114-016-0002-8","url":null,"abstract":"<p>Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2017-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-016-0002-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4673903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 100
Extraction of gravitational waves in numerical relativity 数值相对论中引力波的提取
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2016-10-04 DOI: 10.1007/s41114-016-0001-9
Nigel T. Bishop, Luciano Rezzolla

A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to “extract” the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

一般来说,数值相对论计算得到爱因斯坦方程的一个解,其中也包括辐射部分,它实际上是在有限范围内计算的。由于引力辐射只有在零无穷大和合适的坐标系下才有适当的定义,因此对发射的引力波的精确估计是数值相对论中一个古老而重要的问题。多年来,已经开发了许多方法来从数值模拟中“提取”解决方案的辐射部分,其中包括:四极公式,量规不变度量摄动,Weyl标量和特征提取。我们将从理论背景和实现两方面对每种方法进行回顾和讨论。最后,我们对各种方法的优缺点进行了简要的比较。
{"title":"Extraction of gravitational waves in numerical relativity","authors":"Nigel T. Bishop,&nbsp;Luciano Rezzolla","doi":"10.1007/s41114-016-0001-9","DOIUrl":"https://doi.org/10.1007/s41114-016-0001-9","url":null,"abstract":"<p>A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to “extract” the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2016-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-016-0001-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4185208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Gravitational Wave Detection by Interferometry (Ground and Space) 干涉测量引力波探测(地面和空间)
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2016-08-23 DOI: 10.12942/lrr-2000-3
Sheila Rowan, Jim Hough

Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems being built around the world — LIGO (USA), VIRGO (Italy/France), TAMA 300 (Japan) and GEO 600 (Germany/UK) — and in LISA, a proposed space-borne interferometer.

近年来,引力波探测器的研制取得了重大进展。诸如合并致密双星系统、低质量x射线双星、恒星坍塌和脉冲星等源都是可能的探测对象。最有希望的引力波探测器的设计是使用相距很远的测试质量,并作为钟摆自由悬挂在地球上或太空中的无阻力飞行器上。本综述的主要主题是讨论世界各地正在建造的各种长基线系统- LIGO(美国),VIRGO(意大利/法国),TAMA 300(日本)和GEO 600(德国/英国)-以及拟议的星载干涉仪LISA中使用的机械和光学原理。
{"title":"Gravitational Wave Detection by Interferometry (Ground and Space)","authors":"Sheila Rowan,&nbsp;Jim Hough","doi":"10.12942/lrr-2000-3","DOIUrl":"https://doi.org/10.12942/lrr-2000-3","url":null,"abstract":"<p>Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems being built around the world — LIGO (USA), VIRGO (Italy/France), TAMA 300 (Japan) and GEO 600 (Germany/UK) — and in LISA, a proposed space-borne interferometer.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2016-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2000-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4880924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 115
Speeds of Propagation in Classical and Relativistic Extended Thermodynamics 经典和相对论扩展热力学中的传播速度
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2016-08-17 DOI: 10.12942/lrr-1999-1
Ingo Müller

The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than c. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds.

Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields — and further fields — are conveniently chosen from the moments of the kinetic theory of gases.

The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to c, the speed of light.

In extended thermodynamics symmetric hyperbolicity — and finite speeds — are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.

粘性导热流体的Navier-Stokes-Fourier理论提供了抛物方程,从而预测了无限脉冲速度。当然,这一特征使相对论热力学的理论失去了资格,相对论热力学必须坚持有限速度,而且必须坚持小于c的速度。对一种补救方法的尝试,已证明对一种新的系统的热力学类型——扩展热力学具有启发式的重要意义。这个新理论有对称双曲场方程,因此它提供了有限的脉冲速度。扩展热力学是一个完整的理论层次,当热力学过程的梯度和速率变得更陡峭和更快时,它的领域越来越多。这个层次的第一个阶段是14场理论,它可能已经是相对主义者在许多应用中的一个有用的工具。这14个场——以及更远的场——都是很方便地从气体运动论的矩中选择的。只有当字段的数量趋于无穷大时,层次结构才是完整的。在这种情况下,非相对论扩展热力学的脉冲速度趋于无穷大,而相对论扩展热力学的脉冲速度趋于c,即光速。在扩展热力学中,对称双曲性和有限速度是由熵密度的凹凸性隐含的。这在相对论热力学中对于特权熵密度仍然是正确的这是静止坐标系中非简并气体的熵密度。
{"title":"Speeds of Propagation in Classical and Relativistic Extended Thermodynamics","authors":"Ingo Müller","doi":"10.12942/lrr-1999-1","DOIUrl":"https://doi.org/10.12942/lrr-1999-1","url":null,"abstract":"<p>The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than <i>c</i>. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds.</p><p>Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields — and further fields — are conveniently chosen from the moments of the kinetic theory of gases.</p><p>The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to <i>c</i>, the speed of light.</p><p>In extended thermodynamics symmetric hyperbolicity — and finite speeds — are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-1999-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4668924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 67
Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo 利用先进LIGO和先进Virgo观测和定位引力波瞬态的前景
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2016-02-08 DOI: 10.1007/lrr-2016-1
B. P. Abbott, The LIGO Scientific Collaboration, Virgo Collaboration, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, A. Ain, P. Ajith, B. Allen, A. Allocca, P. A. Altin, D. V. Amariutei, S. B. Anderson, W. G. Anderson, K. Arai, M. C. Araya, C. C. Arceneaux, J. S. Areeda, N. Arnaud, K. G. Arun, G. Ashton, M. Ast, S. M. Aston, P. Astone, P. Aufmuth, C. Aulbert, S. Babak, P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, I. Bartos, R. Bassiri, A. Basti, J. C. Batch, C. Baune, V. Bavigadda, M. Bazzan, B. Behnke, M. Bejger, C. Belczynski, A. S. Bell, C. J. Bell, B. K. Berger, J. Bergman, G. Bergmann, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, S. Bhagwat, R. Bhandare, I. A. Bilenko, G. Billingsley, J. Birch, R. Birney, S. Biscans, A. Bisht, M. Bitossi, C. Biwer, M. A. Bizouard, J. K. Blackburn, C. D. Blair, D. Blair, R. M. Blair, S. Bloemen, O. Bock, T. P. Bodiya, M. Boer, G. Bogaert, C. Bogan, A. Bohe, P. Bojtos, C. Bond, F. Bondu, R. Bonnand, R. Bork, V. Boschi, S. Bose, A. Bozzi, C. Bradaschia, P. R. Brady, V. B. Braginsky, M. Branchesi, J. E. Brau, T. Briant, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, A. F. Brooks, D. A. Brown, D. D. Brown, N. M. Brown, C. C. Buchanan, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic, C. Buy, R. L. Byer, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, T. Callister, E. Calloni, J. B. Camp, K. C. Cannon, J. Cao, C. D. Capano, E. Capocasa, F. Carbognani, S. Caride, J. Casanueva Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, C. Cepeda, L. Cerboni Baiardi, G. Cerretani, E. Cesarini, R. Chakraborty, T. Chalermsongsak, S. J. Chamberlin, M. Chan, S. Chao, P. Charlton, E. Chassande-Mottin, H. Y. Chen, Y. Chen, C. Cheng, A. Chincarini, A. Chiummo, H. S. Cho, M. Cho, J. H. Chow, N. Christensen, Q. Chu, S. Chua, S. Chung, G. Ciani, F. Clara, J. A. Clark, F. Cleva, E. Coccia, P.-F. Cohadon, A. Colla, C. G. Collette, M. Constancio Jr., A. Conte, L. Conti, D. Cook, T. R. Corbitt, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, M. W. Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, K. Craig, J. D. E. Creighton, J. Cripe, S. G. Crowder, A. Cumming, L. Cunningham, E. Cuoco, T. Dal Canton, S. L. Danilishin, S. D’Antonio, K. Danzmann, N. S. Darman, V. Dattilo, I. Dave, H. P. Daveloza, M. Davier, G. S. Davies, E. J. Daw, R. Day, D. DeBra, G. Debreczeni, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, T. Denker, T. Dent, H. Dereli, V. Dergachev, R. DeRosa, R. De Rosa, R. DeSalvo, S. Dhurandhar, M. C. Díaz, L. Di Fiore, M. Di Giovanni, A. Di Lieto, I. Di Palma, A. Di Virgilio, G. Dojcinoski, V. Dolique, F. Donovan, K. L. Dooley, S. Doravari, R. Douglas, T. P. Downes, M. Drago, R. W. P. Drever, J. C. Driggers, Z. Du, M. Ducrot, S. E. Dwyer, T. B. Edo, M. C. Edwards, A. Effler, H.-B. Eggenstein, P. Ehrens, J. M. Eichholz, S. S. Eikenberry, W. Engels, R. C. Essick, T. Etzel, M. Evans, T. M. Evans, R. Everett, M. Factourovich, V. Fafone, H. Fair, S. Fairhurst, X. Fan, Q. Fang, S. Farinon, B. Farr, W. M. Farr, M. Favata, M. Fays, H. Fehrmann, M. M. Fejer, I. Ferrante, E. C. Ferreira, F. Ferrini, F. Fidecaro, I. Fiori, R. P. Fisher, R. Flaminio, M. Fletcher, J.-D. Fournier, S. Franco, S. Frasca, F. Frasconi, Z. Frei, A. Freise, R. Frey, T. T. Fricke, P. Fritschel, V. V. Frolov, P. Fulda, M. Fyffe, H. A. G. Gabbard, J. R. Gair, L. Gammaitoni, S. G. Gaonkar, F. Garufi, A. Gatto, G. Gaur, N. Gehrels, G. Gemme, B. Gendre, E. Genin, A. Gennai, J. George, L. Gergely, V. Germain, A. Ghosh, S. Ghosh, J. A. Giaime, K. D. Giardina, A. Giazotto, K. Gill, A. Glaefke, E. Goetz, R. Goetz, L. Gondan, G. González, J. M. Gonzalez Castro, A. Gopakumar, N. A. Gordon, M. L. Gorodetsky, S. E. Gossan, M. Gosselin, R. Gouaty, C. Graef, P. B. Graff, M. Granata, A. Grant, S. Gras, C. Gray, G. Greco, A. C. Green, P. Groot, H. Grote, S. Grunewald, G. M. Guidi, X. Guo, A. Gupta, M. K. Gupta, K. E. Gushwa, E. K. Gustafson, R. Gustafson, J. J. Hacker, B. R. Hall, E. D. Hall, G. Hammond, M. Haney, M. M. Hanke, J. Hanks, C. Hanna, M. D. Hannam, J. Hanson, T. Hardwick, J. Harms, G. M. Harry, I. W. Harry, M. J. Hart, M. T. Hartman, C.-J. Haster, K. Haughian, A. Heidmann, M. C. Heintze, H. Heitmann, P. Hello, G. Hemming, M. Hendry, I. S. Heng, J. Hennig, A. W. Heptonstall, M. Heurs, S. Hild, D. Hoak, K. A. Hodge, D. Hofman, S. E. Hollitt, K. Holt, D. E. Holz, P. Hopkins, D. J. Hosken, J. Hough, E. A. Houston, E. J. Howell, Y. M. Hu, S. Huang, E. A. Huerta, D. Huet, B. Hughey, S. Husa, S. H. Huttner, T. Huynh-Dinh, A. Idrisy, N. Indik, D. R. Ingram, R. Inta, H. N. Isa, J.-M. Isac, M. Isi, G. Islas, T. Isogai, B. R. Iyer, K. Izumi, T. Jacqmin, H. Jang, K. Jani, P. Jaranowski, S. Jawahar, F. Jiménez-Forteza, W. W. Johnson, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, K. Haris, C. V. Kalaghatgi, V. Kalogera, S. Kandhasamy, G. Kang, J. B. Kanner, S. Karki, M. Kasprzack, E. Katsavounidis, W. Katzman, S. Kaufer, T. Kaur, K. Kawabe, F. Kawazoe, F. Kéfélian, M. S. Kehl, D. Keitel, D. B. Kelley, W. Kells, R. Kennedy, J. S. Key, A. Khalaidovski, F. Y. Khalili, S. Khan, Z. Khan, E. A. Khazanov, N. Kijbunchoo, C. Kim, J. Kim, K. Kim, N. Kim, Y.-M. Kim, E. J. King, P. J. King, D. L. Kinzel, J. S. Kissel, L. Kleybolte, S. Klimenko, S. M. Koehlenbeck, K. Kokeyama, S. Koley, V. Kondrashov, A. Kontos, M. Korobko, W. Z. Korth, I. Kowalska, D. B. Kozak, V. Kringel, B. Krishnan, A. Królak, C. Krueger, G. Kuehn, P. Kumar, L. Kuo, A. Kutynia, B. D. Lackey, M. Landry, J. Lange, B. Lantz, P. D. Lasky, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, E. Lebigot, C. H. Lee, H. K. Lee, H. M. Lee, K. Lee, A. Lenon, M. Leonardi, J. R. Leong, N. Leroy, N. Letendre, Y. Levin, B. M. Levine, T. G. F. Li, A. Libson, T. B. Littenberg, N. A. Lockerbie, J. Logue, A. L. Lombardi, J. E. Lord, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, H. Lück, A. P. Lundgren, J. Luo, R. Lynch, Y. Ma, T. MacDonald, B. Machenschalk, M. MacInnis, D. M. Macleod, F. Magaña-Sandoval, R. M. Magee, M. Mageswaran, E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, I. Mandel, V. Mandic, V. Mangano, G. L. Mansell, M. Manske, M. Mantovani, F. Marchesoni, F. Marion, S. Márka, Z. Márka, A. S. Markosyan, E. Maros, F. Martelli, L. Martellini, I. W. Martin, R. M. Martin, D. V. Martynov, J. N. Marx, K. Mason, A. Masserot, T. J. Massinger, M. Masso-Reid, F. Matichard, L. Matone, N. Mavalvala, N. Mazumder, G. Mazzolo, R. McCarthy, D. E. McClelland, S. McCormick, S. C. McGuire, G. McIntyre, J. McIver, D. J. McManus, S. T. McWilliams, D. Meacher, G. D. Meadors, J. Meidam, A. Melatos, G. Mendell, D. Mendoza-Gandara, R. A. Mercer, E. Merilh, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, P. M. Meyers, F. Mezzani, H. Miao, C. Michel, H. Middleton, E. E. Mikhailov, L. Milano, J. Miller, M. Millhouse, Y. Minenkov, J. Ming, S. Mirshekari, C. Mishra, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, A. Moggi, M. Mohan, S. R. P. Mohapatra, M. Montani, B. C. Moore, C. J. Moore, D. Moraru, G. Moreno, S. R. Morriss, K. Mossavi, B. Mours, C. M. Mow-Lowry, C. L. Mueller, G. Mueller, A. W. Muir, Arunava Mukherjee, D. Mukherjee, S. Mukherjee, A. Mullavey, J. Munch, D. J. Murphy, P. G. Murray, A. Mytidis, I. Nardecchia, L. Naticchioni, R. K. Nayak, V. Necula, K. Nedkova, G. Nelemans, M. Neri, A. Neunzert, G. Newton, T. T. Nguyen, A. B. Nielsen, S. Nissanke, A. Nitz, F. Nocera, D. Nolting, M. E. N. Normandin, L. K. Nuttall, J. Oberling, E. Ochsner, J. O’Dell, E. Oelker, G. H. Ogin, J. J. Oh, S. H. Oh, F. Ohme, M. Oliver, P. Oppermann, R. J. Oram, B. O’Reilly, R. O’Shaughnessy, C. D. Ott, D. J. Ottaway, R. S. Ottens, H. Overmier, B. J. Owen, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, A. Pal-Singh, H. Pan, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, M. A. Papa, H. R. Paris, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, Z. Patrick, B. L. Pearlstone, M. Pedraza, R. Pedurand, L. Pekowsky, A. Pele, S. Penn, R. Pereira, A. Perreca, M. Phelps, O. Piccinni, M. Pichot, F. Piergiovanni, V. Pierro, G. Pillant, L. Pinard, I. M. Pinto, M. Pitkin, R. Poggiani, A. Post, J. Powell, J. Prasad, V. Predoi, S. S. Premachandra, T. Prestegard, L. R. Price, M. Prijatelj, M. Principe, S. Privitera, G. A. Prodi, L. Prokhorov, M. Punturo, P. Puppo, M. Pürrer, H. Qi, J. Qin, V. Quetschke, E. A. Quintero, R. Quitzow-James, F. J. Raab, D. S. Rabeling, H. Radkins, P. Raffai, S. Raja, M. Rakhmanov, P. Rapagnani, V. Raymond, M. Razzano, V. Re, J. Read, C. M. Reed, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, H. Rew, F. Ricci, K. Riles, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, L. Rolland, J. G. Rollins, V. J. Roma, J. D. Romano, R. Romano, G. Romanov, J. H. Romie, D. Rosińska, S. Rowan, A. Rüdiger, P. Ruggi, K. Ryan, S. Sachdev, T. Sadecki, L. Sadeghian, M. Saleem, F. Salemi, A. Samajdar, L. Sammut, E. J. Sanchez, V. Sandberg, B. Sandeen, J. R. Sanders, B. Sassolas, B. S. Sathyaprakash, P. R. Saulson, O. Sauter, R. L. Savage, A. Sawadsky, P. Schale, R. Schilling, J. Schmidt, P. Schmidt, R. Schnabel, R. M. S. Schofield, A. Schönbeck, E. Schreiber, D. Schuette, B. F. Schutz, J. Scott, S. M. Scott, D. Sellers, D. Sentenac, V. Sequino, A. Sergeev, G. Serna, Y. Setyawati, A. Sevigny, D. A. Shaddock, S. Shah, M. S. Shahriar, M. Shaltev, Z. Shao, B. Shapiro, P. Shawhan, A. Sheperd, D. H. Shoemaker, D. M. Shoemaker, K. Siellez, X. Siemens, D. Sigg, A. D. Silva, D. Simakov, A. Singer, L. P. Singer, A. Singh, R. Singh, A. M. Sintes, B. J. J. Slagmolen, J. R. Smith, N. D. Smith, R. J. E. Smith, E. J. Son, B. Sorazu, F. Sorrentino, T. Souradeep, A. K. Srivastava, A. Staley, M. Steinke, J. Steinlechner, S. Steinlechner, D. Steinmeyer, B. C. Stephens, R. Stone, K. A. Strain, N. Straniero, G. Stratta, N. A. Strauss, S. Strigin, R. Sturani, A. L. Stuver, T. Z. Summerscales, L. Sun, P. J. Sutton, B. L. Swinkels, M. J. Szczepanczyk, M. Tacca, D. Talukder, D. B. Tanner, M. Tápai, S. P. Tarabrin, A. Taracchini, R. Taylor, T. Theeg, M. P. Thirugnanasambandam, E. G. Thomas, M. Thomas, P. Thomas, K. A. Thorne, K. S. Thorne, E. Thrane, S. Tiwari, V. Tiwari, K. V. Tokmakov, C. Tomlinson, M. Tonelli, C. V. Torres, C. I. Torrie, D. Töyrä, F. Travasso, G. Traylor, D. Trifirò, M. C. Tringali, L. Trozzo, M. Tse, M. Turconi, D. Tuyenbayev, D. Ugolini, C. S. Unnikrishnan, A. L. Urban, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. van den Broeck, D. C. Vander-Hyde, L. van der Schaaf, M. V. van der Sluys, J. V. van Heijningen, A. A. van Veggel, M. Vardaro, S. Vass, M. Vasúth, R. Vaulin, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, D. Verkindt, F. Vetrano, A. Viceré, S. Vinciguerra, D. J. Vine, J.-Y. Vinet, S. Vitale, T. Vo, H. Vocca, C. Vorvick, W. D. Vousden, S. P. Vyatchanin, A. R. Wade, L. E. Wade, M. Wade, M. Walker, L. Wallace, S. Walsh, G. Wang, H. Wang, M. Wang, X. Wang, Y. Wang, R. L. Ward, J. Warner, M. Was, B. Weaver, L.-W. Wei, M. Weinert, A. J. Weinstein, R. Weiss, T. Welborn, L. Wen, P. Weßels, T. Westphal, K. Wette, J. T. Whelan, D. J. White, B. F. Whiting, R. D. Williams, A. R. Williamson, J. L. Willis, B. Willke, M. H. Wimmer, W. Winkler, C. C. Wipf, H. Wittel, G. Woan, J. Worden, J. L. Wright, G. Wu, J. Yablon, W. Yam, H. Yamamoto, C. C. Yancey, M. J. Yap, H. Yu, M. Yvert, A. Zadrożny, L. Zangrando, M. Zanolin, J.-P. Zendri, M. Zevin, F. Zhang, L. Zhang, M. Zhang, Y. Zhang, C. Zhao, M. Zhou, Z. Zhou, X. J. Zhu, M. E. Zucker, S. E. Zuraw, J. Zweizig

We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ~ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

我们提出了未来十年先进LIGO和先进处女座引力波探测器可能的观测方案,旨在为天文学界提供信息,以促进引力波多信使天文学的规划。我们确定了网络对瞬态引力波信号的期望灵敏度,并研究了网络确定源的天空位置的能力。我们报告了我们对引力波瞬变的发现,特别关注来自双中子星系统的引力波信号,这被认为是多信使天文学最有希望的。定位探测到的信号源的能力取决于探测器的地理分布和它们的相对灵敏度,当只有两个敏感探测器在工作时,90%的可信区域可以大到数千平方度。要确定很大一部分探测到的信号在5°2到20°2范围内的天空位置,需要至少三个灵敏度在彼此系数~ 2以内的探测器,并且具有宽的频率带宽。如果第三台LIGO探测器像预期的那样被安置到印度,那么仅通过引力波观测,就可以将很大一部分引力波信号定位到几平方度的范围内。
{"title":"Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo","authors":"B. P. Abbott,&nbsp;The LIGO Scientific Collaboration,&nbsp;Virgo Collaboration,&nbsp;R. Abbott,&nbsp;T. D. Abbott,&nbsp;M. R. Abernathy,&nbsp;F. Acernese,&nbsp;K. Ackley,&nbsp;C. Adams,&nbsp;T. Adams,&nbsp;P. Addesso,&nbsp;R. X. Adhikari,&nbsp;V. B. Adya,&nbsp;C. Affeldt,&nbsp;M. Agathos,&nbsp;K. Agatsuma,&nbsp;N. Aggarwal,&nbsp;O. D. Aguiar,&nbsp;A. Ain,&nbsp;P. Ajith,&nbsp;B. Allen,&nbsp;A. Allocca,&nbsp;P. A. Altin,&nbsp;D. V. Amariutei,&nbsp;S. B. Anderson,&nbsp;W. G. Anderson,&nbsp;K. Arai,&nbsp;M. C. Araya,&nbsp;C. C. Arceneaux,&nbsp;J. S. Areeda,&nbsp;N. Arnaud,&nbsp;K. G. Arun,&nbsp;G. Ashton,&nbsp;M. Ast,&nbsp;S. M. Aston,&nbsp;P. Astone,&nbsp;P. Aufmuth,&nbsp;C. Aulbert,&nbsp;S. Babak,&nbsp;P. T. Baker,&nbsp;F. Baldaccini,&nbsp;G. Ballardin,&nbsp;S. W. Ballmer,&nbsp;J. C. Barayoga,&nbsp;S. E. Barclay,&nbsp;B. C. Barish,&nbsp;D. Barker,&nbsp;F. Barone,&nbsp;B. Barr,&nbsp;L. Barsotti,&nbsp;M. Barsuglia,&nbsp;D. Barta,&nbsp;J. Bartlett,&nbsp;I. Bartos,&nbsp;R. Bassiri,&nbsp;A. Basti,&nbsp;J. C. Batch,&nbsp;C. Baune,&nbsp;V. Bavigadda,&nbsp;M. Bazzan,&nbsp;B. Behnke,&nbsp;M. Bejger,&nbsp;C. Belczynski,&nbsp;A. S. Bell,&nbsp;C. J. Bell,&nbsp;B. K. Berger,&nbsp;J. Bergman,&nbsp;G. Bergmann,&nbsp;C. P. L. Berry,&nbsp;D. Bersanetti,&nbsp;A. Bertolini,&nbsp;J. Betzwieser,&nbsp;S. Bhagwat,&nbsp;R. Bhandare,&nbsp;I. A. Bilenko,&nbsp;G. Billingsley,&nbsp;J. Birch,&nbsp;R. Birney,&nbsp;S. Biscans,&nbsp;A. Bisht,&nbsp;M. Bitossi,&nbsp;C. Biwer,&nbsp;M. A. Bizouard,&nbsp;J. K. Blackburn,&nbsp;C. D. Blair,&nbsp;D. Blair,&nbsp;R. M. Blair,&nbsp;S. Bloemen,&nbsp;O. Bock,&nbsp;T. P. Bodiya,&nbsp;M. Boer,&nbsp;G. Bogaert,&nbsp;C. Bogan,&nbsp;A. Bohe,&nbsp;P. Bojtos,&nbsp;C. Bond,&nbsp;F. Bondu,&nbsp;R. Bonnand,&nbsp;R. Bork,&nbsp;V. Boschi,&nbsp;S. Bose,&nbsp;A. Bozzi,&nbsp;C. Bradaschia,&nbsp;P. R. Brady,&nbsp;V. B. Braginsky,&nbsp;M. Branchesi,&nbsp;J. E. Brau,&nbsp;T. Briant,&nbsp;A. Brillet,&nbsp;M. Brinkmann,&nbsp;V. Brisson,&nbsp;P. Brockill,&nbsp;A. F. Brooks,&nbsp;D. A. Brown,&nbsp;D. D. Brown,&nbsp;N. M. Brown,&nbsp;C. C. Buchanan,&nbsp;A. Buikema,&nbsp;T. Bulik,&nbsp;H. J. Bulten,&nbsp;A. Buonanno,&nbsp;D. Buskulic,&nbsp;C. Buy,&nbsp;R. L. Byer,&nbsp;L. Cadonati,&nbsp;G. Cagnoli,&nbsp;C. Cahillane,&nbsp;J. Calderón Bustillo,&nbsp;T. Callister,&nbsp;E. Calloni,&nbsp;J. B. Camp,&nbsp;K. C. Cannon,&nbsp;J. Cao,&nbsp;C. D. Capano,&nbsp;E. Capocasa,&nbsp;F. Carbognani,&nbsp;S. Caride,&nbsp;J. Casanueva Diaz,&nbsp;C. Casentini,&nbsp;S. Caudill,&nbsp;M. Cavaglià,&nbsp;F. Cavalier,&nbsp;R. Cavalieri,&nbsp;G. Cella,&nbsp;C. Cepeda,&nbsp;L. Cerboni Baiardi,&nbsp;G. Cerretani,&nbsp;E. Cesarini,&nbsp;R. Chakraborty,&nbsp;T. Chalermsongsak,&nbsp;S. J. Chamberlin,&nbsp;M. Chan,&nbsp;S. Chao,&nbsp;P. Charlton,&nbsp;E. Chassande-Mottin,&nbsp;H. Y. Chen,&nbsp;Y. Chen,&nbsp;C. Cheng,&nbsp;A. Chincarini,&nbsp;A. Chiummo,&nbsp;H. S. Cho,&nbsp;M. Cho,&nbsp;J. H. Chow,&nbsp;N. Christensen,&nbsp;Q. Chu,&nbsp;S. Chua,&nbsp;S. Chung,&nbsp;G. Ciani,&nbsp;F. Clara,&nbsp;J. A. Clark,&nbsp;F. Cleva,&nbsp;E. Coccia,&nbsp;P.-F. Cohadon,&nbsp;A. Colla,&nbsp;C. G. Collette,&nbsp;M. Constancio Jr.,&nbsp;A. Conte,&nbsp;L. Conti,&nbsp;D. Cook,&nbsp;T. R. Corbitt,&nbsp;N. Cornish,&nbsp;A. Corsi,&nbsp;S. Cortese,&nbsp;C. A. Costa,&nbsp;M. W. Coughlin,&nbsp;S. B. Coughlin,&nbsp;J.-P. Coulon,&nbsp;S. T. Countryman,&nbsp;P. Couvares,&nbsp;D. M. Coward,&nbsp;M. J. Cowart,&nbsp;D. C. Coyne,&nbsp;R. Coyne,&nbsp;K. Craig,&nbsp;J. D. E. Creighton,&nbsp;J. Cripe,&nbsp;S. G. Crowder,&nbsp;A. Cumming,&nbsp;L. Cunningham,&nbsp;E. Cuoco,&nbsp;T. Dal Canton,&nbsp;S. L. Danilishin,&nbsp;S. D’Antonio,&nbsp;K. Danzmann,&nbsp;N. S. Darman,&nbsp;V. Dattilo,&nbsp;I. Dave,&nbsp;H. P. Daveloza,&nbsp;M. Davier,&nbsp;G. S. Davies,&nbsp;E. J. Daw,&nbsp;R. Day,&nbsp;D. DeBra,&nbsp;G. Debreczeni,&nbsp;J. Degallaix,&nbsp;M. De Laurentis,&nbsp;S. Deléglise,&nbsp;W. Del Pozzo,&nbsp;T. Denker,&nbsp;T. Dent,&nbsp;H. Dereli,&nbsp;V. Dergachev,&nbsp;R. DeRosa,&nbsp;R. De Rosa,&nbsp;R. DeSalvo,&nbsp;S. Dhurandhar,&nbsp;M. C. Díaz,&nbsp;L. Di Fiore,&nbsp;M. Di Giovanni,&nbsp;A. Di Lieto,&nbsp;I. Di Palma,&nbsp;A. Di Virgilio,&nbsp;G. Dojcinoski,&nbsp;V. Dolique,&nbsp;F. Donovan,&nbsp;K. L. Dooley,&nbsp;S. Doravari,&nbsp;R. Douglas,&nbsp;T. P. Downes,&nbsp;M. Drago,&nbsp;R. W. P. Drever,&nbsp;J. C. Driggers,&nbsp;Z. Du,&nbsp;M. Ducrot,&nbsp;S. E. Dwyer,&nbsp;T. B. Edo,&nbsp;M. C. Edwards,&nbsp;A. Effler,&nbsp;H.-B. Eggenstein,&nbsp;P. Ehrens,&nbsp;J. M. Eichholz,&nbsp;S. S. Eikenberry,&nbsp;W. Engels,&nbsp;R. C. Essick,&nbsp;T. Etzel,&nbsp;M. Evans,&nbsp;T. M. Evans,&nbsp;R. Everett,&nbsp;M. Factourovich,&nbsp;V. Fafone,&nbsp;H. Fair,&nbsp;S. Fairhurst,&nbsp;X. Fan,&nbsp;Q. Fang,&nbsp;S. Farinon,&nbsp;B. Farr,&nbsp;W. M. Farr,&nbsp;M. Favata,&nbsp;M. Fays,&nbsp;H. Fehrmann,&nbsp;M. M. Fejer,&nbsp;I. Ferrante,&nbsp;E. C. Ferreira,&nbsp;F. Ferrini,&nbsp;F. Fidecaro,&nbsp;I. Fiori,&nbsp;R. P. Fisher,&nbsp;R. Flaminio,&nbsp;M. Fletcher,&nbsp;J.-D. Fournier,&nbsp;S. Franco,&nbsp;S. Frasca,&nbsp;F. Frasconi,&nbsp;Z. Frei,&nbsp;A. Freise,&nbsp;R. Frey,&nbsp;T. T. Fricke,&nbsp;P. Fritschel,&nbsp;V. V. Frolov,&nbsp;P. Fulda,&nbsp;M. Fyffe,&nbsp;H. A. G. Gabbard,&nbsp;J. R. Gair,&nbsp;L. Gammaitoni,&nbsp;S. G. Gaonkar,&nbsp;F. Garufi,&nbsp;A. Gatto,&nbsp;G. Gaur,&nbsp;N. Gehrels,&nbsp;G. Gemme,&nbsp;B. Gendre,&nbsp;E. Genin,&nbsp;A. Gennai,&nbsp;J. George,&nbsp;L. Gergely,&nbsp;V. Germain,&nbsp;A. Ghosh,&nbsp;S. Ghosh,&nbsp;J. A. Giaime,&nbsp;K. D. Giardina,&nbsp;A. Giazotto,&nbsp;K. Gill,&nbsp;A. Glaefke,&nbsp;E. Goetz,&nbsp;R. Goetz,&nbsp;L. Gondan,&nbsp;G. González,&nbsp;J. M. Gonzalez Castro,&nbsp;A. Gopakumar,&nbsp;N. A. Gordon,&nbsp;M. L. Gorodetsky,&nbsp;S. E. Gossan,&nbsp;M. Gosselin,&nbsp;R. Gouaty,&nbsp;C. Graef,&nbsp;P. B. Graff,&nbsp;M. Granata,&nbsp;A. Grant,&nbsp;S. Gras,&nbsp;C. Gray,&nbsp;G. Greco,&nbsp;A. C. Green,&nbsp;P. Groot,&nbsp;H. Grote,&nbsp;S. Grunewald,&nbsp;G. M. Guidi,&nbsp;X. Guo,&nbsp;A. Gupta,&nbsp;M. K. Gupta,&nbsp;K. E. Gushwa,&nbsp;E. K. Gustafson,&nbsp;R. Gustafson,&nbsp;J. J. Hacker,&nbsp;B. R. Hall,&nbsp;E. D. Hall,&nbsp;G. Hammond,&nbsp;M. Haney,&nbsp;M. M. Hanke,&nbsp;J. Hanks,&nbsp;C. Hanna,&nbsp;M. D. Hannam,&nbsp;J. Hanson,&nbsp;T. Hardwick,&nbsp;J. Harms,&nbsp;G. M. Harry,&nbsp;I. W. Harry,&nbsp;M. J. Hart,&nbsp;M. T. Hartman,&nbsp;C.-J. Haster,&nbsp;K. Haughian,&nbsp;A. Heidmann,&nbsp;M. C. Heintze,&nbsp;H. Heitmann,&nbsp;P. Hello,&nbsp;G. Hemming,&nbsp;M. Hendry,&nbsp;I. S. Heng,&nbsp;J. Hennig,&nbsp;A. W. Heptonstall,&nbsp;M. Heurs,&nbsp;S. Hild,&nbsp;D. Hoak,&nbsp;K. A. Hodge,&nbsp;D. Hofman,&nbsp;S. E. Hollitt,&nbsp;K. Holt,&nbsp;D. E. Holz,&nbsp;P. Hopkins,&nbsp;D. J. Hosken,&nbsp;J. Hough,&nbsp;E. A. Houston,&nbsp;E. J. Howell,&nbsp;Y. M. Hu,&nbsp;S. Huang,&nbsp;E. A. Huerta,&nbsp;D. Huet,&nbsp;B. Hughey,&nbsp;S. Husa,&nbsp;S. H. Huttner,&nbsp;T. Huynh-Dinh,&nbsp;A. Idrisy,&nbsp;N. Indik,&nbsp;D. R. Ingram,&nbsp;R. Inta,&nbsp;H. N. Isa,&nbsp;J.-M. Isac,&nbsp;M. Isi,&nbsp;G. Islas,&nbsp;T. Isogai,&nbsp;B. R. Iyer,&nbsp;K. Izumi,&nbsp;T. Jacqmin,&nbsp;H. Jang,&nbsp;K. Jani,&nbsp;P. Jaranowski,&nbsp;S. Jawahar,&nbsp;F. Jiménez-Forteza,&nbsp;W. W. Johnson,&nbsp;D. I. Jones,&nbsp;R. Jones,&nbsp;R. J. G. Jonker,&nbsp;L. Ju,&nbsp;K. Haris,&nbsp;C. V. Kalaghatgi,&nbsp;V. Kalogera,&nbsp;S. Kandhasamy,&nbsp;G. Kang,&nbsp;J. B. Kanner,&nbsp;S. Karki,&nbsp;M. Kasprzack,&nbsp;E. Katsavounidis,&nbsp;W. Katzman,&nbsp;S. Kaufer,&nbsp;T. Kaur,&nbsp;K. Kawabe,&nbsp;F. Kawazoe,&nbsp;F. Kéfélian,&nbsp;M. S. Kehl,&nbsp;D. Keitel,&nbsp;D. B. Kelley,&nbsp;W. Kells,&nbsp;R. Kennedy,&nbsp;J. S. Key,&nbsp;A. Khalaidovski,&nbsp;F. Y. Khalili,&nbsp;S. Khan,&nbsp;Z. Khan,&nbsp;E. A. Khazanov,&nbsp;N. Kijbunchoo,&nbsp;C. Kim,&nbsp;J. Kim,&nbsp;K. Kim,&nbsp;N. Kim,&nbsp;Y.-M. Kim,&nbsp;E. J. King,&nbsp;P. J. King,&nbsp;D. L. Kinzel,&nbsp;J. S. Kissel,&nbsp;L. Kleybolte,&nbsp;S. Klimenko,&nbsp;S. M. Koehlenbeck,&nbsp;K. Kokeyama,&nbsp;S. Koley,&nbsp;V. Kondrashov,&nbsp;A. Kontos,&nbsp;M. Korobko,&nbsp;W. Z. Korth,&nbsp;I. Kowalska,&nbsp;D. B. Kozak,&nbsp;V. Kringel,&nbsp;B. Krishnan,&nbsp;A. Królak,&nbsp;C. Krueger,&nbsp;G. Kuehn,&nbsp;P. Kumar,&nbsp;L. Kuo,&nbsp;A. Kutynia,&nbsp;B. D. Lackey,&nbsp;M. Landry,&nbsp;J. Lange,&nbsp;B. Lantz,&nbsp;P. D. Lasky,&nbsp;A. Lazzarini,&nbsp;C. Lazzaro,&nbsp;P. Leaci,&nbsp;S. Leavey,&nbsp;E. Lebigot,&nbsp;C. H. Lee,&nbsp;H. K. Lee,&nbsp;H. M. Lee,&nbsp;K. Lee,&nbsp;A. Lenon,&nbsp;M. Leonardi,&nbsp;J. R. Leong,&nbsp;N. Leroy,&nbsp;N. Letendre,&nbsp;Y. Levin,&nbsp;B. M. Levine,&nbsp;T. G. F. Li,&nbsp;A. Libson,&nbsp;T. B. Littenberg,&nbsp;N. A. Lockerbie,&nbsp;J. Logue,&nbsp;A. L. Lombardi,&nbsp;J. E. Lord,&nbsp;M. Lorenzini,&nbsp;V. Loriette,&nbsp;M. Lormand,&nbsp;G. Losurdo,&nbsp;J. D. Lough,&nbsp;H. Lück,&nbsp;A. P. Lundgren,&nbsp;J. Luo,&nbsp;R. Lynch,&nbsp;Y. Ma,&nbsp;T. MacDonald,&nbsp;B. Machenschalk,&nbsp;M. MacInnis,&nbsp;D. M. Macleod,&nbsp;F. Magaña-Sandoval,&nbsp;R. M. Magee,&nbsp;M. Mageswaran,&nbsp;E. Majorana,&nbsp;I. Maksimovic,&nbsp;V. Malvezzi,&nbsp;N. Man,&nbsp;I. Mandel,&nbsp;V. Mandic,&nbsp;V. Mangano,&nbsp;G. L. Mansell,&nbsp;M. Manske,&nbsp;M. Mantovani,&nbsp;F. Marchesoni,&nbsp;F. Marion,&nbsp;S. Márka,&nbsp;Z. Márka,&nbsp;A. S. Markosyan,&nbsp;E. Maros,&nbsp;F. Martelli,&nbsp;L. Martellini,&nbsp;I. W. Martin,&nbsp;R. M. Martin,&nbsp;D. V. Martynov,&nbsp;J. N. Marx,&nbsp;K. Mason,&nbsp;A. Masserot,&nbsp;T. J. Massinger,&nbsp;M. Masso-Reid,&nbsp;F. Matichard,&nbsp;L. Matone,&nbsp;N. Mavalvala,&nbsp;N. Mazumder,&nbsp;G. Mazzolo,&nbsp;R. McCarthy,&nbsp;D. E. McClelland,&nbsp;S. McCormick,&nbsp;S. C. McGuire,&nbsp;G. McIntyre,&nbsp;J. McIver,&nbsp;D. J. McManus,&nbsp;S. T. McWilliams,&nbsp;D. Meacher,&nbsp;G. D. Meadors,&nbsp;J. Meidam,&nbsp;A. Melatos,&nbsp;G. Mendell,&nbsp;D. Mendoza-Gandara,&nbsp;R. A. Mercer,&nbsp;E. Merilh,&nbsp;M. Merzougui,&nbsp;S. Meshkov,&nbsp;C. Messenger,&nbsp;C. Messick,&nbsp;P. M. Meyers,&nbsp;F. Mezzani,&nbsp;H. Miao,&nbsp;C. Michel,&nbsp;H. Middleton,&nbsp;E. E. Mikhailov,&nbsp;L. Milano,&nbsp;J. Miller,&nbsp;M. Millhouse,&nbsp;Y. Minenkov,&nbsp;J. Ming,&nbsp;S. Mirshekari,&nbsp;C. Mishra,&nbsp;S. Mitra,&nbsp;V. P. Mitrofanov,&nbsp;G. Mitselmakher,&nbsp;R. Mittleman,&nbsp;A. Moggi,&nbsp;M. Mohan,&nbsp;S. R. P. Mohapatra,&nbsp;M. Montani,&nbsp;B. C. Moore,&nbsp;C. J. Moore,&nbsp;D. Moraru,&nbsp;G. Moreno,&nbsp;S. R. Morriss,&nbsp;K. Mossavi,&nbsp;B. Mours,&nbsp;C. M. Mow-Lowry,&nbsp;C. L. Mueller,&nbsp;G. Mueller,&nbsp;A. W. Muir,&nbsp;Arunava Mukherjee,&nbsp;D. Mukherjee,&nbsp;S. Mukherjee,&nbsp;A. Mullavey,&nbsp;J. Munch,&nbsp;D. J. Murphy,&nbsp;P. G. Murray,&nbsp;A. Mytidis,&nbsp;I. Nardecchia,&nbsp;L. Naticchioni,&nbsp;R. K. Nayak,&nbsp;V. Necula,&nbsp;K. Nedkova,&nbsp;G. Nelemans,&nbsp;M. Neri,&nbsp;A. Neunzert,&nbsp;G. Newton,&nbsp;T. T. Nguyen,&nbsp;A. B. Nielsen,&nbsp;S. Nissanke,&nbsp;A. Nitz,&nbsp;F. Nocera,&nbsp;D. Nolting,&nbsp;M. E. N. Normandin,&nbsp;L. K. Nuttall,&nbsp;J. Oberling,&nbsp;E. Ochsner,&nbsp;J. O’Dell,&nbsp;E. Oelker,&nbsp;G. H. Ogin,&nbsp;J. J. Oh,&nbsp;S. H. Oh,&nbsp;F. Ohme,&nbsp;M. Oliver,&nbsp;P. Oppermann,&nbsp;R. J. Oram,&nbsp;B. O’Reilly,&nbsp;R. O’Shaughnessy,&nbsp;C. D. Ott,&nbsp;D. J. Ottaway,&nbsp;R. S. Ottens,&nbsp;H. Overmier,&nbsp;B. J. Owen,&nbsp;A. Pai,&nbsp;S. A. Pai,&nbsp;J. R. Palamos,&nbsp;O. Palashov,&nbsp;C. Palomba,&nbsp;A. Pal-Singh,&nbsp;H. Pan,&nbsp;C. Pankow,&nbsp;F. Pannarale,&nbsp;B. C. Pant,&nbsp;F. Paoletti,&nbsp;A. Paoli,&nbsp;M. A. Papa,&nbsp;H. R. Paris,&nbsp;W. Parker,&nbsp;D. Pascucci,&nbsp;A. Pasqualetti,&nbsp;R. Passaquieti,&nbsp;D. Passuello,&nbsp;Z. Patrick,&nbsp;B. L. Pearlstone,&nbsp;M. Pedraza,&nbsp;R. Pedurand,&nbsp;L. Pekowsky,&nbsp;A. Pele,&nbsp;S. Penn,&nbsp;R. Pereira,&nbsp;A. Perreca,&nbsp;M. Phelps,&nbsp;O. Piccinni,&nbsp;M. Pichot,&nbsp;F. Piergiovanni,&nbsp;V. Pierro,&nbsp;G. Pillant,&nbsp;L. Pinard,&nbsp;I. M. Pinto,&nbsp;M. Pitkin,&nbsp;R. Poggiani,&nbsp;A. Post,&nbsp;J. Powell,&nbsp;J. Prasad,&nbsp;V. Predoi,&nbsp;S. S. Premachandra,&nbsp;T. Prestegard,&nbsp;L. R. Price,&nbsp;M. Prijatelj,&nbsp;M. Principe,&nbsp;S. Privitera,&nbsp;G. A. Prodi,&nbsp;L. Prokhorov,&nbsp;M. Punturo,&nbsp;P. Puppo,&nbsp;M. Pürrer,&nbsp;H. Qi,&nbsp;J. Qin,&nbsp;V. Quetschke,&nbsp;E. A. Quintero,&nbsp;R. Quitzow-James,&nbsp;F. J. Raab,&nbsp;D. S. Rabeling,&nbsp;H. Radkins,&nbsp;P. Raffai,&nbsp;S. Raja,&nbsp;M. Rakhmanov,&nbsp;P. Rapagnani,&nbsp;V. Raymond,&nbsp;M. Razzano,&nbsp;V. Re,&nbsp;J. Read,&nbsp;C. M. Reed,&nbsp;T. Regimbau,&nbsp;L. Rei,&nbsp;S. Reid,&nbsp;D. H. Reitze,&nbsp;H. Rew,&nbsp;F. Ricci,&nbsp;K. Riles,&nbsp;N. A. Robertson,&nbsp;R. Robie,&nbsp;F. Robinet,&nbsp;A. Rocchi,&nbsp;L. Rolland,&nbsp;J. G. Rollins,&nbsp;V. J. Roma,&nbsp;J. D. Romano,&nbsp;R. Romano,&nbsp;G. Romanov,&nbsp;J. H. Romie,&nbsp;D. Rosińska,&nbsp;S. Rowan,&nbsp;A. Rüdiger,&nbsp;P. Ruggi,&nbsp;K. Ryan,&nbsp;S. Sachdev,&nbsp;T. Sadecki,&nbsp;L. Sadeghian,&nbsp;M. Saleem,&nbsp;F. Salemi,&nbsp;A. Samajdar,&nbsp;L. Sammut,&nbsp;E. J. Sanchez,&nbsp;V. Sandberg,&nbsp;B. Sandeen,&nbsp;J. R. Sanders,&nbsp;B. Sassolas,&nbsp;B. S. Sathyaprakash,&nbsp;P. R. Saulson,&nbsp;O. Sauter,&nbsp;R. L. Savage,&nbsp;A. Sawadsky,&nbsp;P. Schale,&nbsp;R. Schilling,&nbsp;J. Schmidt,&nbsp;P. Schmidt,&nbsp;R. Schnabel,&nbsp;R. M. S. Schofield,&nbsp;A. Schönbeck,&nbsp;E. Schreiber,&nbsp;D. Schuette,&nbsp;B. F. Schutz,&nbsp;J. Scott,&nbsp;S. M. Scott,&nbsp;D. Sellers,&nbsp;D. Sentenac,&nbsp;V. Sequino,&nbsp;A. Sergeev,&nbsp;G. Serna,&nbsp;Y. Setyawati,&nbsp;A. Sevigny,&nbsp;D. A. Shaddock,&nbsp;S. Shah,&nbsp;M. S. Shahriar,&nbsp;M. Shaltev,&nbsp;Z. Shao,&nbsp;B. Shapiro,&nbsp;P. Shawhan,&nbsp;A. Sheperd,&nbsp;D. H. Shoemaker,&nbsp;D. M. Shoemaker,&nbsp;K. Siellez,&nbsp;X. Siemens,&nbsp;D. Sigg,&nbsp;A. D. Silva,&nbsp;D. Simakov,&nbsp;A. Singer,&nbsp;L. P. Singer,&nbsp;A. Singh,&nbsp;R. Singh,&nbsp;A. M. Sintes,&nbsp;B. J. J. Slagmolen,&nbsp;J. R. Smith,&nbsp;N. D. Smith,&nbsp;R. J. E. Smith,&nbsp;E. J. Son,&nbsp;B. Sorazu,&nbsp;F. Sorrentino,&nbsp;T. Souradeep,&nbsp;A. K. Srivastava,&nbsp;A. Staley,&nbsp;M. Steinke,&nbsp;J. Steinlechner,&nbsp;S. Steinlechner,&nbsp;D. Steinmeyer,&nbsp;B. C. Stephens,&nbsp;R. Stone,&nbsp;K. A. Strain,&nbsp;N. Straniero,&nbsp;G. Stratta,&nbsp;N. A. Strauss,&nbsp;S. Strigin,&nbsp;R. Sturani,&nbsp;A. L. Stuver,&nbsp;T. Z. Summerscales,&nbsp;L. Sun,&nbsp;P. J. Sutton,&nbsp;B. L. Swinkels,&nbsp;M. J. Szczepanczyk,&nbsp;M. Tacca,&nbsp;D. Talukder,&nbsp;D. B. Tanner,&nbsp;M. Tápai,&nbsp;S. P. Tarabrin,&nbsp;A. Taracchini,&nbsp;R. Taylor,&nbsp;T. Theeg,&nbsp;M. P. Thirugnanasambandam,&nbsp;E. G. Thomas,&nbsp;M. Thomas,&nbsp;P. Thomas,&nbsp;K. A. Thorne,&nbsp;K. S. Thorne,&nbsp;E. Thrane,&nbsp;S. Tiwari,&nbsp;V. Tiwari,&nbsp;K. V. Tokmakov,&nbsp;C. Tomlinson,&nbsp;M. Tonelli,&nbsp;C. V. Torres,&nbsp;C. I. Torrie,&nbsp;D. Töyrä,&nbsp;F. Travasso,&nbsp;G. Traylor,&nbsp;D. Trifirò,&nbsp;M. C. Tringali,&nbsp;L. Trozzo,&nbsp;M. Tse,&nbsp;M. Turconi,&nbsp;D. Tuyenbayev,&nbsp;D. Ugolini,&nbsp;C. S. Unnikrishnan,&nbsp;A. L. Urban,&nbsp;S. A. Usman,&nbsp;H. Vahlbruch,&nbsp;G. Vajente,&nbsp;G. Valdes,&nbsp;N. van Bakel,&nbsp;M. van Beuzekom,&nbsp;J. F. J. van den Brand,&nbsp;C. van den Broeck,&nbsp;D. C. Vander-Hyde,&nbsp;L. van der Schaaf,&nbsp;M. V. van der Sluys,&nbsp;J. V. van Heijningen,&nbsp;A. A. van Veggel,&nbsp;M. Vardaro,&nbsp;S. Vass,&nbsp;M. Vasúth,&nbsp;R. Vaulin,&nbsp;A. Vecchio,&nbsp;G. Vedovato,&nbsp;J. Veitch,&nbsp;P. J. Veitch,&nbsp;K. Venkateswara,&nbsp;D. Verkindt,&nbsp;F. Vetrano,&nbsp;A. Viceré,&nbsp;S. Vinciguerra,&nbsp;D. J. Vine,&nbsp;J.-Y. Vinet,&nbsp;S. Vitale,&nbsp;T. Vo,&nbsp;H. Vocca,&nbsp;C. Vorvick,&nbsp;W. D. Vousden,&nbsp;S. P. Vyatchanin,&nbsp;A. R. Wade,&nbsp;L. E. Wade,&nbsp;M. Wade,&nbsp;M. Walker,&nbsp;L. Wallace,&nbsp;S. Walsh,&nbsp;G. Wang,&nbsp;H. Wang,&nbsp;M. Wang,&nbsp;X. Wang,&nbsp;Y. Wang,&nbsp;R. L. Ward,&nbsp;J. Warner,&nbsp;M. Was,&nbsp;B. Weaver,&nbsp;L.-W. Wei,&nbsp;M. Weinert,&nbsp;A. J. Weinstein,&nbsp;R. Weiss,&nbsp;T. Welborn,&nbsp;L. Wen,&nbsp;P. Weßels,&nbsp;T. Westphal,&nbsp;K. Wette,&nbsp;J. T. Whelan,&nbsp;D. J. White,&nbsp;B. F. Whiting,&nbsp;R. D. Williams,&nbsp;A. R. Williamson,&nbsp;J. L. Willis,&nbsp;B. Willke,&nbsp;M. H. Wimmer,&nbsp;W. Winkler,&nbsp;C. C. Wipf,&nbsp;H. Wittel,&nbsp;G. Woan,&nbsp;J. Worden,&nbsp;J. L. Wright,&nbsp;G. Wu,&nbsp;J. Yablon,&nbsp;W. Yam,&nbsp;H. Yamamoto,&nbsp;C. C. Yancey,&nbsp;M. J. Yap,&nbsp;H. Yu,&nbsp;M. Yvert,&nbsp;A. Zadrożny,&nbsp;L. Zangrando,&nbsp;M. Zanolin,&nbsp;J.-P. Zendri,&nbsp;M. Zevin,&nbsp;F. Zhang,&nbsp;L. Zhang,&nbsp;M. Zhang,&nbsp;Y. Zhang,&nbsp;C. Zhao,&nbsp;M. Zhou,&nbsp;Z. Zhou,&nbsp;X. J. Zhu,&nbsp;M. E. Zucker,&nbsp;S. E. Zuraw,&nbsp;J. Zweizig","doi":"10.1007/lrr-2016-1","DOIUrl":"https://doi.org/10.1007/lrr-2016-1","url":null,"abstract":"<p>We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg<sup>2</sup> to 20 deg<sup>2</sup> will require at least three detectors of sensitivity within a factor of ~ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/lrr-2016-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4337606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 447
Terrestrial Gravity Fluctuations 地球重力波动
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2015-12-02 DOI: 10.1007/lrr-2015-3
Jan Harms

Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10?23 Hz?1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

重力实验观测到地球重力场不同形式的波动。例如,在超导重力仪的测量中,大气压力波动会产生重力噪声前景。GRACE卫星重力实验已经探测到高震级地震引起的重力变化,我们预计环境地震场产生的高频地面重力波动将限制地面引力波探测器的灵敏度。因此,根据实验,地球重力波动被认为是噪声和信号。在这里,我们将重点关注地面重力测量。随着GW探测器的发展,这一领域正在迅速发展。在先进一代的LIGO和Virgo探测器中,这项技术被推向了目前的极限,目标是重力应变灵敏度优于10?23赫兹?比几十赫兹高1/2。从扭杆、原子干涉仪和超导梯度仪等传统重力梯度仪演变而来的GW探测器的替代设计目前正在开发中,以将探测频带扩展到低于1hz的频率。本文的目的是提供一个分析框架来描述这些实验中的地球重力摄动。推导并分析了与地震场、大气扰动和振动、旋转或运动物体有关的地球重力扰动模型。然后使用这些模型评估GW探测器中的被动和主动重力噪声缓解策略,或者描述它们在地球物理中的潜在用途。本文回顾了该领域的现状,并提出了新的分析方法,特别是关于地震散射对重力扰动的影响,主动重力噪声消除,以及大气和地震点源重力扰动的时域模型。我们对地球重力波动的理解将对GW探测器和高精度重力测量的未来发展产生重大影响,许多悬而未决的问题仍需要回答,正如本文所强调的。
{"title":"Terrestrial Gravity Fluctuations","authors":"Jan Harms","doi":"10.1007/lrr-2015-3","DOIUrl":"https://doi.org/10.1007/lrr-2015-3","url":null,"abstract":"<p>Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10<sup>?23</sup> Hz<sup>?1/2</sup> above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2015-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/lrr-2015-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4072595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 109
The Hubble Constant 哈勃常数
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2015-09-24 DOI: 10.1007/lrr-2015-2
Neal Jackson

I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0 values of around 72–74 km s?1 Mpc?1, with typical errors of 2–3 km s?1 Mpc?1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s?1 Mpc?1 and typical errors of 1–2 km s?1 Mpc?1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

我将回顾哈勃常数的测定现状,该常数通过将物体的膨胀速度与其距离联系起来,给出了宇宙的长度尺度。测量有两大类。第一种方法使用单个天体物理对象,这些对象具有某些特性,可以确定其固有亮度或大小,或者可以通过几何方法确定其距离。第二类包括利用全天空宇宙微波背景,或大型星系样本之间的相关性,来确定有关宇宙几何形状的信息,从而确定哈勃常数,通常与其他宇宙学参数相结合。许多(但不是全部)基于物体的测量给出的H0值约为72-74 km / s。1 Mpc ?1、典型误差2-3 km s?1 Mpc ? 1。这与基于宇宙微波背景辐射的测量结果存在轻微差异,特别是来自普朗克卫星的测量结果,后者给出的值为67-68 km / s?1 Mpc ?典型误差为1 - 2 km s?1 Mpc ? 1。剩余的系统数据的大小表明,准确而不是精确是确定哈勃常数的剩余问题。是否存在差异,是否需要新的物理学来解决它,取决于基于物体的方法的系统细节,也取决于对其他宇宙学参数的假设,以及在全天空方法的情况下,哪些数据集被组合在一起。
{"title":"The Hubble Constant","authors":"Neal Jackson","doi":"10.1007/lrr-2015-2","DOIUrl":"https://doi.org/10.1007/lrr-2015-2","url":null,"abstract":"<p>I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give <i>H</i><sub>0</sub> values of around 72–74 km s<sup>?1</sup> Mpc<sup>?1</sup>, with typical errors of 2–3 km s<sup>?1</sup> Mpc<sup>?1</sup>. This is in mild discrepancy with CMB-based measurements, in particular those from the <i>Planck</i> satellite, which give values of 67–68 km s<sup>?1</sup> Mpc<sup>?1</sup> and typical errors of 1–2 km s<sup>?1</sup> Mpc<sup>?1</sup>. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/lrr-2015-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4953178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
期刊
Living Reviews in Relativity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1