首页 > 最新文献

Living Reviews in Relativity最新文献

英文 中文
Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 先进LIGO、先进Virgo和KAGRA对引力波瞬态观测和定位的展望
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-09-28 DOI: 10.1007/s41114-020-00026-9
B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, G. Allen, A. Allocca, M. A. Aloy, P. A. Altin, A. Amato, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. V. Angelova, S. Antier, S. Appert, K. Arai, Koya Arai, Y. Arai, S. Araki, A. Araya, M. C. Araya, J. S. Areeda, M. Arène, N. Aritomi, N. Arnaud, K. G. Arun, S. Ascenzi, G. Ashton, Y. Aso, S. M. Aston, P. Astone, F. Aubin, P. Aufmuth, K. AultONeal, C. Austin, V. Avendano, A. Avila-Alvarez, S. Babak, P. Bacon, F. Badaracco, M. K. M. Bader, S. W. Bae, Y. B. Bae, L. Baiotti, R. Bajpai, P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, S. Banagiri, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, K. Barkett, S. Barnum, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, M. Bazzan, B. Bécsy, M. Bejger, I. Belahcene, A. S. Bell, D. Beniwal, B. K. Berger, G. Bergmann, S. Bernuzzi, J. J. Bero, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, R. Bhandare, J. Bidler, I. A. Bilenko, S. A. Bilgili, G. Billingsley, J. Birch, R. Birney, O. Birnholtz, S. Biscans, S. Biscoveanu, A. Bisht, M. Bitossi, M. A. Bizouard, J. K. Blackburn, C. D. Blair, D. G. Blair, R. M. Blair, S. Bloemen, N. Bode, M. Boer, Y. Boetzel, G. Bogaert, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, C. D. Booth, R. Bork, V. Boschi, S. Bose, K. Bossie, V. Bossilkov, J. Bosveld, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, M. Branchesi, J. E. Brau, T. Briant, J. H. Briggs, F. Brighenti, A. Brillet, M. Brinkmann, V. Brisson, P. Brockill, A. F. Brooks, D. A. Brown, D. D. Brown, S. Brunett, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic, C. Buy, R. L. Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, T. A. Callister, E. Calloni, J. B. Camp, W. A. Campbell, M. Canepa, K. Cannon, K. C. Cannon, H. Cao, J. Cao, E. Capocasa, F. Carbognani, S. Caride, M. F. Carney, G. Carullo, J. Casanueva Diaz, C. Casentini, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, G. Cella, P. Cerdá-Durán, G. Cerretani, E. Cesarini, O. Chaibi, K. Chakravarti, S. J. Chamberlin, M. Chan, M. L. Chan, S. Chao, P. Charlton, E. A. Chase, E. Chassande-Mottin, D. Chatterjee, M. Chaturvedi, K. Chatziioannou, B. D. Cheeseboro, C. S. Chen, H. Y. Chen, K. H. Chen, X. Chen, Y. Chen, Y. R. Chen, H.-P. Cheng, C. K. Cheong, H. Y. Chia, A. Chincarini, A. Chiummo, G. Cho, H. S. Cho, M. Cho, N. Christensen, H. Y. Chu, Q. Chu, Y. K. Chu, S. Chua, K. W. Chung, S. Chung, G. Ciani, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, J. A. Clark, P. Clearwater, F. Cleva, C. Cocchieri, E. Coccia, P.-F. Cohadon, D. Cohen, R. Colgan, M. Colleoni, C. G. Collette, C. Collins, L. R. Cominsky, M. Constancio Jr., L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, K. R. Corley, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, S. B. Coughlin, J.-P. Coulon, S. T. Countryman, P. Couvares, P. B. Covas, E. E. Cowan, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, J. Cripe, M. Croquette, S. G. Crowder, T. J. Cullen, A. Cumming, L. Cunningham, E. Cuoco, T. Dal Canton, G. Dálya, S. L. Danilishin, S. D’Antonio, K. Danzmann, A. Dasgupta, C. F. Da Silva Costa, L. E. H. Datrier, V. Dattilo, I. Dave, M. Davier, D. Davis, E. J. Daw, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, L. M. DeMarchi, N. Demos, T. Dent, R. De Pietri, J. Derby, R. De Rosa, C. De Rossi, R. DeSalvo, O. de Varona, S. Dhurandhar, M. C. Díaz, T. Dietrich, L. Di Fiore, M. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. Dmitriev, Z. Doctor, K. Doi, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, T. P. Downes, M. Drago, J. C. Driggers, Z. Du, J.-G. Ducoin, P. Dupej, S. E. Dwyer, P. J. Easter, T. B. Edo, M. C. Edwards, A. Effler, S. Eguchi, P. Ehrens, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, Y. Enomoto, R. C. Essick, H. Estelles, D. Estevez, Z. B. Etienne, T. Etzel, M. Evans, T. M. Evans, V. Fafone, H. Fair, S. Fairhurst, X. Fan, S. Farinon, B. Farr, W. M. Farr, E. J. Fauchon-Jones, M. Favata, M. Fays, M. Fazio, C. Fee, J. Feicht, M. M. Fejer, F. Feng, A. Fernandez-Galiana, I. Ferrante, E. C. Ferreira, T. A. Ferreira, F. Ferrini, F. Fidecaro, I. Fiori, D. Fiorucci, M. Fishbach, R. P. Fisher, J. M. Fishner, M. Fitz-Axen, R. Flaminio, M. Fletcher, E. Flynn, H. Fong, J. A. Font, P. W. F. Forsyth, J.-D. Fournier, S. Frasca, F. Frasconi, Z. Frei, A. Freise, R. Frey, V. Frey, P. Fritschel, V. V. Frolov, Y. Fujii, M. Fukunaga, M. Fukushima, P. Fulda, M. Fyffe, H. A. Gabbard, B. U. Gadre, S. M. Gaebel, J. R. Gair, L. Gammaitoni, M. R. Ganija, S. G. Gaonkar, A. Garcia, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, G. Gaur, V. Gayathri, G. G. Ge, G. Gemme, E. Genin, A. Gennai, D. George, J. George, L. Gergely, V. Germain, S. Ghonge, Abhirup Ghosh, Archisman Ghosh, S. Ghosh, B. Giacomazzo, J. A. Giaime, K. D. Giardina, A. Giazotto, K. Gill, G. Giordano, L. Glover, P. Godwin, E. Goetz, R. Goetz, B. Goncharov, G. González, J. M. Gonzalez Castro, A. Gopakumar, M. L. Gorodetsky, S. E. Gossan, M. Gosselin, R. Gouaty, A. Grado, C. Graef, M. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, E. M. Gretarsson, P. Groot, H. Grote, S. Grunewald, P. Gruning, G. M. Guidi, H. K. Gulati, Y. Guo, A. Gupta, M. K. Gupta, E. K. Gustafson, R. Gustafson, L. Haegel, A. Hagiwara, S. Haino, O. Halim, B. R. Hall, E. D. Hall, E. Z. Hamilton, G. Hammond, M. Haney, M. M. Hanke, J. Hanks, C. Hanna, M. D. Hannam, O. A. Hannuksela, J. Hanson, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, K. Hasegawa, C.-J. Haster, K. Haughian, H. Hayakawa, K. Hayama, F. J. Hayes, J. Healy, A. Heidmann, M. C. Heintze, H. Heitmann, P. Hello, G. Hemming, M. Hendry, I. S. Heng, J. Hennig, A. W. Heptonstall, M. Heurs, S. Hild, Y. Himemoto, T. Hinderer, Y. Hiranuma, N. Hirata, E. Hirose, D. Hoak, S. Hochheim, D. Hofman, A. M. Holgado, N. A. Holland, K. Holt, D. E. Holz, Z. Hong, P. Hopkins, C. Horst, J. Hough, E. J. Howell, C. G. Hoy, A. Hreibi, B. H. Hsieh, G. Z. Huang, P. W. Huang, Y. J. Huang, E. A. Huerta, D. Huet, B. Hughey, M. Hulko, S. Husa, S. H. Huttner, T. Huynh-Dinh, B. Idzkowski, A. Iess, B. Ikenoue, S. Imam, K. Inayoshi, C. Ingram, Y. Inoue, R. Inta, G. Intini, K. Ioka, B. Irwin, H. N. Isa, J.-M. Isac, M. Isi, Y. Itoh, B. R. Iyer, K. Izumi, T. Jacqmin, S. J. Jadhav, K. Jani, N. N. Janthalur, P. Jaranowski, A. C. Jenkins, J. Jiang, D. S. Johnson, A. W. Jones, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, K. Jung, P. Jung, J. Junker, T. Kajita, C. V. Kalaghatgi, V. Kalogera, B. Kamai, M. Kamiizumi, N. Kanda, S. Kandhasamy, G. W. Kang, J. B. Kanner, S. J. Kapadia, S. Karki, K. S. Karvinen, R. Kashyap, M. Kasprzack, S. Katsanevas, E. Katsavounidis, W. Katzman, S. Kaufer, K. Kawabe, K. Kawaguchi, N. Kawai, T. Kawasaki, N. V. Keerthana, F. Kéfélian, D. Keitel, R. Kennedy, J. S. Key, F. Y. Khalili, H. Khan, I. Khan, S. Khan, Z. Khan, E. A. Khazanov, M. Khursheed, N. Kijbunchoo, Chunglee Kim, C. Kim, J. C. Kim, J. Kim, K. Kim, W. Kim, W. S. Kim, Y.-M. Kim, C. Kimball, N. Kimura, E. J. King, P. J. King, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, N. Kita, H. Kitazawa, L. Kleybolte, J. H. Klika, S. Klimenko, T. D. Knowles, E. Knyazev, P. Koch, S. M. Koehlenbeck, G. Koekoek, Y. Kojima, K. Kokeyama, S. Koley, K. Komori, V. Kondrashov, A. K. H. Kong, A. Kontos, N. Koper, M. Korobko, W. Z. Korth, K. Kotake, I. Kowalska, D. B. Kozak, C. Kozakai, R. Kozu, V. Kringel, N. Krishnendu, A. Królak, G. Kuehn, A. Kumar, P. Kumar, Rahul Kumar, R. Kumar, S. Kumar, J. Kume, C. M. Kuo, H. S. Kuo, L. Kuo, S. Kuroyanagi, K. Kusayanagi, A. Kutynia, K. Kwak, S. Kwang, B. D. Lackey, K. H. Lai, T. L. Lam, M. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, R. K. Lanza, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, C. H. Lee, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, R. K. Lee, J. Lehmann, A. Lenon, M. Leonardi, N. Leroy, N. Letendre, Y. Levin, J. Li, K. J. L. Li, T. G. F. Li, X. Li, C. Y. Lin, F. Lin, F. L. Lin, L. C. C. Lin, F. Linde, S. D. Linker, T. B. Littenberg, G. C. Liu, J. Liu, X. Liu, R. K. L. Lo, N. A. Lockerbie, L. T. London, A. Longo, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, M. E. Lower, H. Lück, D. Lumaca, A. P. Lundgren, L. W. Luo, R. Lynch, Y. Ma, R. Macas, S. Macfoy, M. MacInnis, D. M. Macleod, A. Macquet, F. Magaña-Sandoval, L. Magaña Zertuche, R. M. Magee, E. Majorana, I. Maksimovic, A. Malik, N. Man, V. Mandic, V. Mangano, G. L. Mansell, M. Manske, M. Mantovani, F. Marchesoni, M. Marchio, F. Marion, S. Márka, Z. Márka, C. Markakis, A. S. Markosyan, A. Markowitz, E. Maros, A. Marquina, S. Marsat, F. Martelli, I. W. Martin, R. M. Martin, D. V. Martynov, K. Mason, E. Massera, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, A. Matas, F. Matichard, L. Matone, N. Mavalvala, N. Mazumder, J. J. McCann, R. McCarthy, D. E. McClelland, S. McCormick, L. McCuller, S. C. McGuire, J. McIver, D. J. McManus, T. McRae, S. T. McWilliams, D. Meacher, G. D. Meadors, M. Mehmet, A. K. Mehta, J. Meidam, A. Melatos, G. Mendell, R. A. Mercer, L. Mereni, E. L. Merilh, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, R. Metzdorff, P. M. Meyers, H. Miao, C. Michel, Y. Michimura, H. Middleton, E. E. Mikhailov, L. Milano, A. L. Miller, A. Miller, M. Millhouse, J. C. Mills, M. C. Milovich-Goff, O. Minazzoli, Y. Minenkov, N. Mio, A. Mishkin, C. Mishra, T. Mistry, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa, A. Miyamoto, Y. Miyazaki, K. Miyo, S. Miyoki, G. Mo, D. Moffa, K. Mogushi, S. R. P. Mohapatra, M. Montani, C. J. Moore, D. Moraru, G. Moreno, S. Morisaki, Y. Moriwaki, B. Mours, C. M. Mow-Lowry, Arunava Mukherjee, D. Mukherjee, S. Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. Muñiz, M. Muratore, P. G. Murray, K. Nagano, S. Nagano, A. Nagar, K. Nakamura, H. Nakano, M. Nakano, R. Nakashima, I. Nardecchia, T. Narikawa, L. Naticchioni, R. K. Nayak, R. Negishi, J. Neilson, G. Nelemans, T. J. N. Nelson, M. Nery, A. Neunzert, K. Y. Ng, S. Ng, P. Nguyen, W. T. Ni, D. Nichols, A. Nishizawa, S. Nissanke, F. Nocera, C. North, L. K. Nuttall, M. Obergaulinger, J. Oberling, B. D. O’Brien, Y. Obuchi, G. D. O’Dea, W. Ogaki, G. H. Ogin, J. J. Oh, S. H. Oh, M. Ohashi, N. Ohishi, M. Ohkawa, F. Ohme, H. Ohta, M. A. Okada, K. Okutomi, M. Oliver, K. Oohara, C. P. Ooi, P. Oppermann, Richard J. Oram, B. O’Reilly, R. G. Ormiston, L. F. Ortega, R. O’Shaughnessy, S. Oshino, S. Ossokine, D. J. Ottaway, H. Overmier, B. J. Owen, A. E. Pace, G. Pagano, M. A. Page, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, A. Pal-Singh, Huang-Wei Pan, K. C. Pan, B. Pang, H. F. Pang, P. T. H. Pang, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, M. A. Papa, A. Parida, J. Park, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Patil, B. Patricelli, B. L. Pearlstone, C. Pedersen, M. Pedraza, R. Pedurand, A. Pele, F. E. Peña Arellano, S. Penn, C. J. Perez, A. Perreca, H. P. Pfeiffer, M. Phelps, K. S. Phukon, O. J. Piccinni, M. Pichot, F. Piergiovanni, G. Pillant, L. Pinard, I. Pinto, M. Pirello, M. Pitkin, R. Poggiani, D. Y. T. Pong, S. Ponrathnam, P. Popolizio, E. K. Porter, J. Powell, A. K. Prajapati, J. Prasad, K. Prasai, R. Prasanna, G. Pratten, T. Prestegard, S. Privitera, G. A. Prodi, L. G. Prokhorov, O. Puncken, M. Punturo, P. Puppo, M. Pürrer, H. Qi, V. Quetschke, P. J. Quinonez, E. A. Quintero, R. Quitzow-James, F. J. Raab, H. Radkins, N. Radulescu, P. Raffai, S. Raja, C. Rajan, B. Rajbhandari, M. Rakhmanov, K. E. Ramirez, A. Ramos-Buades, Javed Rana, K. Rao, P. Rapagnani, V. Raymond, M. Razzano, J. Read, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, W. Ren, F. Ricci, C. J. Richardson, J. W. Richardson, P. M. Ricker, K. Riles, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, L. Rolland, J. G. Rollins, V. J. Roma, M. Romanelli, R. Romano, C. L. Romel, J. H. Romie, K. Rose, D. Rosińska, S. G. Rosofsky, M. P. Ross, S. Rowan, A. Rüdiger, P. Ruggi, G. Rutins, K. Ryan, S. Sachdev, T. Sadecki, N. Sago, S. Saito, Y. Saito, K. Sakai, Y. Sakai, H. Sakamoto, M. Sakellariadou, Y. Sakuno, L. Salconi, M. Saleem, A. Samajdar, L. Sammut, E. J. Sanchez, L. E. Sanchez, N. Sanchis-Gual, V. Sandberg, J. R. Sanders, K. A. Santiago, N. Sarin, B. Sassolas, B. S. Sathyaprakash, S. Sato, T. Sato, O. Sauter, R. L. Savage, T. Sawada, P. Schale, M. Scheel, J. Scheuer, P. Schmidt, R. Schnabel, R. M. S. Schofield, A. Schönbeck, E. Schreiber, B. W. Schulte, B. F. Schutz, S. G. Schwalbe, J. Scott, S. M. Scott, E. Seidel, T. Sekiguchi, Y. Sekiguchi, D. Sellers, A. S. Sengupta, N. Sennett, D. Sentenac, V. Sequino, A. Sergeev, Y. Setyawati, D. A. Shaddock, T. Shaffer, M. S. Shahriar, M. B. Shaner, L. Shao, P. Sharma, P. Shawhan, H. Shen, S. Shibagaki, R. Shimizu, T. Shimoda, K. Shimode, R. Shink, H. Shinkai, T. Shishido, A. Shoda, D. H. Shoemaker, D. M. Shoemaker, S. ShyamSundar, K. Siellez, M. Sieniawska, D. Sigg, A. D. Silva, L. P. Singer, N. Singh, A. Singhal, A. M. Sintes, S. Sitmukhambetov, V. Skliris, B. J. J. Slagmolen, T. J. Slaven-Blair, J. R. Smith, R. J. E. Smith, S. Somala, K. Somiya, E. J. Son, B. Sorazu, F. Sorrentino, H. Sotani, T. Souradeep, E. Sowell, A. P. Spencer, A. K. Srivastava, V. Srivastava, K. Staats, C. Stachie, M. Standke, D. A. Steer, M. Steinke, J. Steinlechner, S. Steinlechner, D. Steinmeyer, S. P. Stevenson, D. Stocks, R. Stone, D. J. Stops, K. A. Strain, G. Stratta, S. E. Strigin, A. Strunk, R. Sturani, A. L. Stuver, V. Sudhir, R. Sugimoto, T. Z. Summerscales, L. Sun, S. Sunil, J. Suresh, P. J. Sutton, Takamasa Suzuki, Toshikazu Suzuki, B. L. Swinkels, M. J. Szczepańczyk, M. Tacca, H. Tagoshi, S. C. Tait, H. Takahashi, R. Takahashi, A. Takamori, S. Takano, H. Takeda, M. Takeda, C. Talbot, D. Talukder, H. Tanaka, Kazuyuki Tanaka, Kenta Tanaka, Taiki Tanaka, Takahiro Tanaka, S. Tanioka, D. B. Tanner, M. Tápai, E. N. Tapia San Martin, A. Taracchini, J. D. Tasson, R. Taylor, S. Telada, F. Thies, M. Thomas, P. Thomas, S. R. Thondapu, K. A. Thorne, E. Thrane, Shubhanshu Tiwari, Srishti Tiwari, V. Tiwari, K. Toland, T. Tomaru, Y. Tomigami, T. Tomura, M. Tonelli, Z. Tornasi, A. Torres-Forné, C. I. Torrie, D. Töyrä, F. Travasso, G. Traylor, M. C. Tringali, A. Trovato, L. Trozzo, R. Trudeau, K. W. Tsang, T. T. L. Tsang, M. Tse, R. Tso, K. Tsubono, S. Tsuchida, L. Tsukada, D. Tsuna, T. Tsuzuki, D. Tuyenbayev, N. Uchikata, T. Uchiyama, A. Ueda, T. Uehara, K. Ueno, G. Ueshima, D. Ugolini, C. S. Unnikrishnan, F. Uraguchi, A. L. Urban, T. Ushiba, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, L. van der Schaaf, J. V. van Heijningen, M. H. P. M. van Putten, A. A. van Veggel, M. Vardaro, V. Varma, S. Vass, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, G. Venugopalan, D. Verkindt, F. Vetrano, A. Viceré, A. D. Viets, D. J. Vine, J.-Y. Vinet, S. Vitale, Francisco Hernandez Vivanco, T. Vo, H. Vocca, C. Vorvick, S. P. Vyatchanin, A. R. Wade, L. E. Wade, M. Wade, R. Walet, M. Walker, L. Wallace, S. Walsh, G. Wang, H. Wang, J. Wang, J. Z. Wang, W. H. Wang, Y. F. Wang, R. L. Ward, Z. A. Warden, J. Warner, M. Was, J. Watchi, B. Weaver, L.-W. Wei, M. Weinert, A. J. Weinstein, R. Weiss, F. Wellmann, L. Wen, E. K. Wessel, P. Weßels, J. W. Westhouse, K. Wette, J. T. Whelan, B. F. Whiting, C. Whittle, D. M. Wilken, D. Williams, A. R. Williamson, J. L. Willis, B. Willke, M. H. Wimmer, W. Winkler, C. C. Wipf, H. Wittel, G. Woan, J. Woehler, J. K. Wofford, J. Worden, J. L. Wright, C. M. Wu, D. S. Wu, H. C. Wu, S. R. Wu, D. M. Wysocki, L. Xiao, W. R. Xu, T. Yamada, H. Yamamoto, Kazuhiro Yamamoto, Kohei Yamamoto, T. Yamamoto, C. C. Yancey, L. Yang, M. J. Yap, M. Yazback, D. W. Yeeles, K. Yokogawa, J. Yokoyama, T. Yokozawa, T. Yoshioka, Hang Yu, Haocun Yu, S. H. R. Yuen, H. Yuzurihara, M. Yvert, A. K. Zadrożny, M. Zanolin, S. Zeidler, T. Zelenova, J.-P. Zendri, M. Zevin, J. Zhang, L. Zhang, T. Zhang, C. Zhao, Y. Zhao, M. Zhou, Z. Zhou, X. J. Zhu, Z. H. Zhu, A. B. Zimmerman, M. E. Zucker, J. Zweizig, KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of (10^{5}, 10^{6}, 10^{7}mathrm { Mpc}^3) for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of (1^{+12}_{-1})((10^{+52}_{-10})) for binary neutron star mergers, of (0^{+19}_{-0})((1^{+91}_{-1})) for neutron star–black hole mergers, and (17^{+22}_{-11})((79^{+89}_{-44})) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.

我们提出了目前对先进的LIGO、先进的Virgo和KAGRA引力波探测器在未来几年内可能的观测情景的最佳估计,旨在为引力波的多信使天文学规划提供信息。我们估计了第三次(O3),第四次(O4)和第五次观测(O5)运行时网络对瞬态引力波信号的灵敏度,包括计划升级的高级LIGO和高级处女座探测器。我们研究了网络确定致密天体双星系统(即双中子星、中子星-黑洞和双黑洞系统)的引力波信号的天空位置的能力。定位光源的能力以天空区域概率、光度距离和移动体积给出。中位天空定位区域(90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of (10^{5}, 10^{6}, 10^{7}mathrm { Mpc}^3) for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of (1^{+12}_{-1})((10^{+52}_{-10})) for binary neutron star mergers, of (0^{+19}_{-0})((1^{+91}_{-1})) for neutron star–black hole mergers, and (17^{+22}_{-11})((79^{+89}_{-44})) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.
{"title":"Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA","authors":"B. P. Abbott,&nbsp;R. Abbott,&nbsp;T. D. Abbott,&nbsp;S. Abraham,&nbsp;F. Acernese,&nbsp;K. Ackley,&nbsp;C. Adams,&nbsp;V. B. Adya,&nbsp;C. Affeldt,&nbsp;M. Agathos,&nbsp;K. Agatsuma,&nbsp;N. Aggarwal,&nbsp;O. D. Aguiar,&nbsp;L. Aiello,&nbsp;A. Ain,&nbsp;P. Ajith,&nbsp;T. Akutsu,&nbsp;G. Allen,&nbsp;A. Allocca,&nbsp;M. A. Aloy,&nbsp;P. A. Altin,&nbsp;A. Amato,&nbsp;A. Ananyeva,&nbsp;S. B. Anderson,&nbsp;W. G. Anderson,&nbsp;M. Ando,&nbsp;S. V. Angelova,&nbsp;S. Antier,&nbsp;S. Appert,&nbsp;K. Arai,&nbsp;Koya Arai,&nbsp;Y. Arai,&nbsp;S. Araki,&nbsp;A. Araya,&nbsp;M. C. Araya,&nbsp;J. S. Areeda,&nbsp;M. Arène,&nbsp;N. Aritomi,&nbsp;N. Arnaud,&nbsp;K. G. Arun,&nbsp;S. Ascenzi,&nbsp;G. Ashton,&nbsp;Y. Aso,&nbsp;S. M. Aston,&nbsp;P. Astone,&nbsp;F. Aubin,&nbsp;P. Aufmuth,&nbsp;K. AultONeal,&nbsp;C. Austin,&nbsp;V. Avendano,&nbsp;A. Avila-Alvarez,&nbsp;S. Babak,&nbsp;P. Bacon,&nbsp;F. Badaracco,&nbsp;M. K. M. Bader,&nbsp;S. W. Bae,&nbsp;Y. B. Bae,&nbsp;L. Baiotti,&nbsp;R. Bajpai,&nbsp;P. T. Baker,&nbsp;F. Baldaccini,&nbsp;G. Ballardin,&nbsp;S. W. Ballmer,&nbsp;S. Banagiri,&nbsp;J. C. Barayoga,&nbsp;S. E. Barclay,&nbsp;B. C. Barish,&nbsp;D. Barker,&nbsp;K. Barkett,&nbsp;S. Barnum,&nbsp;F. Barone,&nbsp;B. Barr,&nbsp;L. Barsotti,&nbsp;M. Barsuglia,&nbsp;D. Barta,&nbsp;J. Bartlett,&nbsp;M. A. Barton,&nbsp;I. Bartos,&nbsp;R. Bassiri,&nbsp;A. Basti,&nbsp;M. Bawaj,&nbsp;J. C. Bayley,&nbsp;M. Bazzan,&nbsp;B. Bécsy,&nbsp;M. Bejger,&nbsp;I. Belahcene,&nbsp;A. S. Bell,&nbsp;D. Beniwal,&nbsp;B. K. Berger,&nbsp;G. Bergmann,&nbsp;S. Bernuzzi,&nbsp;J. J. Bero,&nbsp;C. P. L. Berry,&nbsp;D. Bersanetti,&nbsp;A. Bertolini,&nbsp;J. Betzwieser,&nbsp;R. Bhandare,&nbsp;J. Bidler,&nbsp;I. A. Bilenko,&nbsp;S. A. Bilgili,&nbsp;G. Billingsley,&nbsp;J. Birch,&nbsp;R. Birney,&nbsp;O. Birnholtz,&nbsp;S. Biscans,&nbsp;S. Biscoveanu,&nbsp;A. Bisht,&nbsp;M. Bitossi,&nbsp;M. A. Bizouard,&nbsp;J. K. Blackburn,&nbsp;C. D. Blair,&nbsp;D. G. Blair,&nbsp;R. M. Blair,&nbsp;S. Bloemen,&nbsp;N. Bode,&nbsp;M. Boer,&nbsp;Y. Boetzel,&nbsp;G. Bogaert,&nbsp;F. Bondu,&nbsp;E. Bonilla,&nbsp;R. Bonnand,&nbsp;P. Booker,&nbsp;B. A. Boom,&nbsp;C. D. Booth,&nbsp;R. Bork,&nbsp;V. Boschi,&nbsp;S. Bose,&nbsp;K. Bossie,&nbsp;V. Bossilkov,&nbsp;J. Bosveld,&nbsp;Y. Bouffanais,&nbsp;A. Bozzi,&nbsp;C. Bradaschia,&nbsp;P. R. Brady,&nbsp;A. Bramley,&nbsp;M. Branchesi,&nbsp;J. E. Brau,&nbsp;T. Briant,&nbsp;J. H. Briggs,&nbsp;F. Brighenti,&nbsp;A. Brillet,&nbsp;M. Brinkmann,&nbsp;V. Brisson,&nbsp;P. Brockill,&nbsp;A. F. Brooks,&nbsp;D. A. Brown,&nbsp;D. D. Brown,&nbsp;S. Brunett,&nbsp;A. Buikema,&nbsp;T. Bulik,&nbsp;H. J. Bulten,&nbsp;A. Buonanno,&nbsp;D. Buskulic,&nbsp;C. Buy,&nbsp;R. L. Byer,&nbsp;M. Cabero,&nbsp;L. Cadonati,&nbsp;G. Cagnoli,&nbsp;C. Cahillane,&nbsp;J. Calderón Bustillo,&nbsp;T. A. Callister,&nbsp;E. Calloni,&nbsp;J. B. Camp,&nbsp;W. A. Campbell,&nbsp;M. Canepa,&nbsp;K. Cannon,&nbsp;K. C. Cannon,&nbsp;H. Cao,&nbsp;J. Cao,&nbsp;E. Capocasa,&nbsp;F. Carbognani,&nbsp;S. Caride,&nbsp;M. F. Carney,&nbsp;G. Carullo,&nbsp;J. Casanueva Diaz,&nbsp;C. Casentini,&nbsp;S. Caudill,&nbsp;M. Cavaglià,&nbsp;F. Cavalier,&nbsp;R. Cavalieri,&nbsp;G. Cella,&nbsp;P. Cerdá-Durán,&nbsp;G. Cerretani,&nbsp;E. Cesarini,&nbsp;O. Chaibi,&nbsp;K. Chakravarti,&nbsp;S. J. Chamberlin,&nbsp;M. Chan,&nbsp;M. L. Chan,&nbsp;S. Chao,&nbsp;P. Charlton,&nbsp;E. A. Chase,&nbsp;E. Chassande-Mottin,&nbsp;D. Chatterjee,&nbsp;M. Chaturvedi,&nbsp;K. Chatziioannou,&nbsp;B. D. Cheeseboro,&nbsp;C. S. Chen,&nbsp;H. Y. Chen,&nbsp;K. H. Chen,&nbsp;X. Chen,&nbsp;Y. Chen,&nbsp;Y. R. Chen,&nbsp;H.-P. Cheng,&nbsp;C. K. Cheong,&nbsp;H. Y. Chia,&nbsp;A. Chincarini,&nbsp;A. Chiummo,&nbsp;G. Cho,&nbsp;H. S. Cho,&nbsp;M. Cho,&nbsp;N. Christensen,&nbsp;H. Y. Chu,&nbsp;Q. Chu,&nbsp;Y. K. Chu,&nbsp;S. Chua,&nbsp;K. W. Chung,&nbsp;S. Chung,&nbsp;G. Ciani,&nbsp;A. A. Ciobanu,&nbsp;R. Ciolfi,&nbsp;F. Cipriano,&nbsp;A. Cirone,&nbsp;F. Clara,&nbsp;J. A. Clark,&nbsp;P. Clearwater,&nbsp;F. Cleva,&nbsp;C. Cocchieri,&nbsp;E. Coccia,&nbsp;P.-F. Cohadon,&nbsp;D. Cohen,&nbsp;R. Colgan,&nbsp;M. Colleoni,&nbsp;C. G. Collette,&nbsp;C. Collins,&nbsp;L. R. Cominsky,&nbsp;M. Constancio Jr.,&nbsp;L. Conti,&nbsp;S. J. Cooper,&nbsp;P. Corban,&nbsp;T. R. Corbitt,&nbsp;I. Cordero-Carrión,&nbsp;K. R. Corley,&nbsp;N. Cornish,&nbsp;A. Corsi,&nbsp;S. Cortese,&nbsp;C. A. Costa,&nbsp;R. Cotesta,&nbsp;M. W. Coughlin,&nbsp;S. B. Coughlin,&nbsp;J.-P. Coulon,&nbsp;S. T. Countryman,&nbsp;P. Couvares,&nbsp;P. B. Covas,&nbsp;E. E. Cowan,&nbsp;D. M. Coward,&nbsp;M. J. Cowart,&nbsp;D. C. Coyne,&nbsp;R. Coyne,&nbsp;J. D. E. Creighton,&nbsp;T. D. Creighton,&nbsp;J. Cripe,&nbsp;M. Croquette,&nbsp;S. G. Crowder,&nbsp;T. J. Cullen,&nbsp;A. Cumming,&nbsp;L. Cunningham,&nbsp;E. Cuoco,&nbsp;T. Dal Canton,&nbsp;G. Dálya,&nbsp;S. L. Danilishin,&nbsp;S. D’Antonio,&nbsp;K. Danzmann,&nbsp;A. Dasgupta,&nbsp;C. F. Da Silva Costa,&nbsp;L. E. H. Datrier,&nbsp;V. Dattilo,&nbsp;I. Dave,&nbsp;M. Davier,&nbsp;D. Davis,&nbsp;E. J. Daw,&nbsp;D. DeBra,&nbsp;M. Deenadayalan,&nbsp;J. Degallaix,&nbsp;M. De Laurentis,&nbsp;S. Deléglise,&nbsp;W. Del Pozzo,&nbsp;L. M. DeMarchi,&nbsp;N. Demos,&nbsp;T. Dent,&nbsp;R. De Pietri,&nbsp;J. Derby,&nbsp;R. De Rosa,&nbsp;C. De Rossi,&nbsp;R. DeSalvo,&nbsp;O. de Varona,&nbsp;S. Dhurandhar,&nbsp;M. C. Díaz,&nbsp;T. Dietrich,&nbsp;L. Di Fiore,&nbsp;M. Di Giovanni,&nbsp;T. Di Girolamo,&nbsp;A. Di Lieto,&nbsp;B. Ding,&nbsp;S. Di Pace,&nbsp;I. Di Palma,&nbsp;F. Di Renzo,&nbsp;A. Dmitriev,&nbsp;Z. Doctor,&nbsp;K. Doi,&nbsp;F. Donovan,&nbsp;K. L. Dooley,&nbsp;S. Doravari,&nbsp;I. Dorrington,&nbsp;T. P. Downes,&nbsp;M. Drago,&nbsp;J. C. Driggers,&nbsp;Z. Du,&nbsp;J.-G. Ducoin,&nbsp;P. Dupej,&nbsp;S. E. Dwyer,&nbsp;P. J. Easter,&nbsp;T. B. Edo,&nbsp;M. C. Edwards,&nbsp;A. Effler,&nbsp;S. Eguchi,&nbsp;P. Ehrens,&nbsp;J. Eichholz,&nbsp;S. S. Eikenberry,&nbsp;M. Eisenmann,&nbsp;R. A. Eisenstein,&nbsp;Y. Enomoto,&nbsp;R. C. Essick,&nbsp;H. Estelles,&nbsp;D. Estevez,&nbsp;Z. B. Etienne,&nbsp;T. Etzel,&nbsp;M. Evans,&nbsp;T. M. Evans,&nbsp;V. Fafone,&nbsp;H. Fair,&nbsp;S. Fairhurst,&nbsp;X. Fan,&nbsp;S. Farinon,&nbsp;B. Farr,&nbsp;W. M. Farr,&nbsp;E. J. Fauchon-Jones,&nbsp;M. Favata,&nbsp;M. Fays,&nbsp;M. Fazio,&nbsp;C. Fee,&nbsp;J. Feicht,&nbsp;M. M. Fejer,&nbsp;F. Feng,&nbsp;A. Fernandez-Galiana,&nbsp;I. Ferrante,&nbsp;E. C. Ferreira,&nbsp;T. A. Ferreira,&nbsp;F. Ferrini,&nbsp;F. Fidecaro,&nbsp;I. Fiori,&nbsp;D. Fiorucci,&nbsp;M. Fishbach,&nbsp;R. P. Fisher,&nbsp;J. M. Fishner,&nbsp;M. Fitz-Axen,&nbsp;R. Flaminio,&nbsp;M. Fletcher,&nbsp;E. Flynn,&nbsp;H. Fong,&nbsp;J. A. Font,&nbsp;P. W. F. Forsyth,&nbsp;J.-D. Fournier,&nbsp;S. Frasca,&nbsp;F. Frasconi,&nbsp;Z. Frei,&nbsp;A. Freise,&nbsp;R. Frey,&nbsp;V. Frey,&nbsp;P. Fritschel,&nbsp;V. V. Frolov,&nbsp;Y. Fujii,&nbsp;M. Fukunaga,&nbsp;M. Fukushima,&nbsp;P. Fulda,&nbsp;M. Fyffe,&nbsp;H. A. Gabbard,&nbsp;B. U. Gadre,&nbsp;S. M. Gaebel,&nbsp;J. R. Gair,&nbsp;L. Gammaitoni,&nbsp;M. R. Ganija,&nbsp;S. G. Gaonkar,&nbsp;A. Garcia,&nbsp;C. García-Quirós,&nbsp;F. Garufi,&nbsp;B. Gateley,&nbsp;S. Gaudio,&nbsp;G. Gaur,&nbsp;V. Gayathri,&nbsp;G. G. Ge,&nbsp;G. Gemme,&nbsp;E. Genin,&nbsp;A. Gennai,&nbsp;D. George,&nbsp;J. George,&nbsp;L. Gergely,&nbsp;V. Germain,&nbsp;S. Ghonge,&nbsp;Abhirup Ghosh,&nbsp;Archisman Ghosh,&nbsp;S. Ghosh,&nbsp;B. Giacomazzo,&nbsp;J. A. Giaime,&nbsp;K. D. Giardina,&nbsp;A. Giazotto,&nbsp;K. Gill,&nbsp;G. Giordano,&nbsp;L. Glover,&nbsp;P. Godwin,&nbsp;E. Goetz,&nbsp;R. Goetz,&nbsp;B. Goncharov,&nbsp;G. González,&nbsp;J. M. Gonzalez Castro,&nbsp;A. Gopakumar,&nbsp;M. L. Gorodetsky,&nbsp;S. E. Gossan,&nbsp;M. Gosselin,&nbsp;R. Gouaty,&nbsp;A. Grado,&nbsp;C. Graef,&nbsp;M. Granata,&nbsp;A. Grant,&nbsp;S. Gras,&nbsp;P. Grassia,&nbsp;C. Gray,&nbsp;R. Gray,&nbsp;G. Greco,&nbsp;A. C. Green,&nbsp;R. Green,&nbsp;E. M. Gretarsson,&nbsp;P. Groot,&nbsp;H. Grote,&nbsp;S. Grunewald,&nbsp;P. Gruning,&nbsp;G. M. Guidi,&nbsp;H. K. Gulati,&nbsp;Y. Guo,&nbsp;A. Gupta,&nbsp;M. K. Gupta,&nbsp;E. K. Gustafson,&nbsp;R. Gustafson,&nbsp;L. Haegel,&nbsp;A. Hagiwara,&nbsp;S. Haino,&nbsp;O. Halim,&nbsp;B. R. Hall,&nbsp;E. D. Hall,&nbsp;E. Z. Hamilton,&nbsp;G. Hammond,&nbsp;M. Haney,&nbsp;M. M. Hanke,&nbsp;J. Hanks,&nbsp;C. Hanna,&nbsp;M. D. Hannam,&nbsp;O. A. Hannuksela,&nbsp;J. Hanson,&nbsp;T. Hardwick,&nbsp;K. Haris,&nbsp;J. Harms,&nbsp;G. M. Harry,&nbsp;I. W. Harry,&nbsp;K. Hasegawa,&nbsp;C.-J. Haster,&nbsp;K. Haughian,&nbsp;H. Hayakawa,&nbsp;K. Hayama,&nbsp;F. J. Hayes,&nbsp;J. Healy,&nbsp;A. Heidmann,&nbsp;M. C. Heintze,&nbsp;H. Heitmann,&nbsp;P. Hello,&nbsp;G. Hemming,&nbsp;M. Hendry,&nbsp;I. S. Heng,&nbsp;J. Hennig,&nbsp;A. W. Heptonstall,&nbsp;M. Heurs,&nbsp;S. Hild,&nbsp;Y. Himemoto,&nbsp;T. Hinderer,&nbsp;Y. Hiranuma,&nbsp;N. Hirata,&nbsp;E. Hirose,&nbsp;D. Hoak,&nbsp;S. Hochheim,&nbsp;D. Hofman,&nbsp;A. M. Holgado,&nbsp;N. A. Holland,&nbsp;K. Holt,&nbsp;D. E. Holz,&nbsp;Z. Hong,&nbsp;P. Hopkins,&nbsp;C. Horst,&nbsp;J. Hough,&nbsp;E. J. Howell,&nbsp;C. G. Hoy,&nbsp;A. Hreibi,&nbsp;B. H. Hsieh,&nbsp;G. Z. Huang,&nbsp;P. W. Huang,&nbsp;Y. J. Huang,&nbsp;E. A. Huerta,&nbsp;D. Huet,&nbsp;B. Hughey,&nbsp;M. Hulko,&nbsp;S. Husa,&nbsp;S. H. Huttner,&nbsp;T. Huynh-Dinh,&nbsp;B. Idzkowski,&nbsp;A. Iess,&nbsp;B. Ikenoue,&nbsp;S. Imam,&nbsp;K. Inayoshi,&nbsp;C. Ingram,&nbsp;Y. Inoue,&nbsp;R. Inta,&nbsp;G. Intini,&nbsp;K. Ioka,&nbsp;B. Irwin,&nbsp;H. N. Isa,&nbsp;J.-M. Isac,&nbsp;M. Isi,&nbsp;Y. Itoh,&nbsp;B. R. Iyer,&nbsp;K. Izumi,&nbsp;T. Jacqmin,&nbsp;S. J. Jadhav,&nbsp;K. Jani,&nbsp;N. N. Janthalur,&nbsp;P. Jaranowski,&nbsp;A. C. Jenkins,&nbsp;J. Jiang,&nbsp;D. S. Johnson,&nbsp;A. W. Jones,&nbsp;D. I. Jones,&nbsp;R. Jones,&nbsp;R. J. G. Jonker,&nbsp;L. Ju,&nbsp;K. Jung,&nbsp;P. Jung,&nbsp;J. Junker,&nbsp;T. Kajita,&nbsp;C. V. Kalaghatgi,&nbsp;V. Kalogera,&nbsp;B. Kamai,&nbsp;M. Kamiizumi,&nbsp;N. Kanda,&nbsp;S. Kandhasamy,&nbsp;G. W. Kang,&nbsp;J. B. Kanner,&nbsp;S. J. Kapadia,&nbsp;S. Karki,&nbsp;K. S. Karvinen,&nbsp;R. Kashyap,&nbsp;M. Kasprzack,&nbsp;S. Katsanevas,&nbsp;E. Katsavounidis,&nbsp;W. Katzman,&nbsp;S. Kaufer,&nbsp;K. Kawabe,&nbsp;K. Kawaguchi,&nbsp;N. Kawai,&nbsp;T. Kawasaki,&nbsp;N. V. Keerthana,&nbsp;F. Kéfélian,&nbsp;D. Keitel,&nbsp;R. Kennedy,&nbsp;J. S. Key,&nbsp;F. Y. Khalili,&nbsp;H. Khan,&nbsp;I. Khan,&nbsp;S. Khan,&nbsp;Z. Khan,&nbsp;E. A. Khazanov,&nbsp;M. Khursheed,&nbsp;N. Kijbunchoo,&nbsp;Chunglee Kim,&nbsp;C. Kim,&nbsp;J. C. Kim,&nbsp;J. Kim,&nbsp;K. Kim,&nbsp;W. Kim,&nbsp;W. S. Kim,&nbsp;Y.-M. Kim,&nbsp;C. Kimball,&nbsp;N. Kimura,&nbsp;E. J. King,&nbsp;P. J. King,&nbsp;M. Kinley-Hanlon,&nbsp;R. Kirchhoff,&nbsp;J. S. Kissel,&nbsp;N. Kita,&nbsp;H. Kitazawa,&nbsp;L. Kleybolte,&nbsp;J. H. Klika,&nbsp;S. Klimenko,&nbsp;T. D. Knowles,&nbsp;E. Knyazev,&nbsp;P. Koch,&nbsp;S. M. Koehlenbeck,&nbsp;G. Koekoek,&nbsp;Y. Kojima,&nbsp;K. Kokeyama,&nbsp;S. Koley,&nbsp;K. Komori,&nbsp;V. Kondrashov,&nbsp;A. K. H. Kong,&nbsp;A. Kontos,&nbsp;N. Koper,&nbsp;M. Korobko,&nbsp;W. Z. Korth,&nbsp;K. Kotake,&nbsp;I. Kowalska,&nbsp;D. B. Kozak,&nbsp;C. Kozakai,&nbsp;R. Kozu,&nbsp;V. Kringel,&nbsp;N. Krishnendu,&nbsp;A. Królak,&nbsp;G. Kuehn,&nbsp;A. Kumar,&nbsp;P. Kumar,&nbsp;Rahul Kumar,&nbsp;R. Kumar,&nbsp;S. Kumar,&nbsp;J. Kume,&nbsp;C. M. Kuo,&nbsp;H. S. Kuo,&nbsp;L. Kuo,&nbsp;S. Kuroyanagi,&nbsp;K. Kusayanagi,&nbsp;A. Kutynia,&nbsp;K. Kwak,&nbsp;S. Kwang,&nbsp;B. D. Lackey,&nbsp;K. H. Lai,&nbsp;T. L. Lam,&nbsp;M. Landry,&nbsp;B. B. Lane,&nbsp;R. N. Lang,&nbsp;J. Lange,&nbsp;B. Lantz,&nbsp;R. K. Lanza,&nbsp;A. Lartaux-Vollard,&nbsp;P. D. Lasky,&nbsp;M. Laxen,&nbsp;A. Lazzarini,&nbsp;C. Lazzaro,&nbsp;P. Leaci,&nbsp;S. Leavey,&nbsp;Y. K. Lecoeuche,&nbsp;C. H. Lee,&nbsp;H. K. Lee,&nbsp;H. M. Lee,&nbsp;H. W. Lee,&nbsp;J. Lee,&nbsp;K. Lee,&nbsp;R. K. Lee,&nbsp;J. Lehmann,&nbsp;A. Lenon,&nbsp;M. Leonardi,&nbsp;N. Leroy,&nbsp;N. Letendre,&nbsp;Y. Levin,&nbsp;J. Li,&nbsp;K. J. L. Li,&nbsp;T. G. F. Li,&nbsp;X. Li,&nbsp;C. Y. Lin,&nbsp;F. Lin,&nbsp;F. L. Lin,&nbsp;L. C. C. Lin,&nbsp;F. Linde,&nbsp;S. D. Linker,&nbsp;T. B. Littenberg,&nbsp;G. C. Liu,&nbsp;J. Liu,&nbsp;X. Liu,&nbsp;R. K. L. Lo,&nbsp;N. A. Lockerbie,&nbsp;L. T. London,&nbsp;A. Longo,&nbsp;M. Lorenzini,&nbsp;V. Loriette,&nbsp;M. Lormand,&nbsp;G. Losurdo,&nbsp;J. D. Lough,&nbsp;C. O. Lousto,&nbsp;G. Lovelace,&nbsp;M. E. Lower,&nbsp;H. Lück,&nbsp;D. Lumaca,&nbsp;A. P. Lundgren,&nbsp;L. W. Luo,&nbsp;R. Lynch,&nbsp;Y. Ma,&nbsp;R. Macas,&nbsp;S. Macfoy,&nbsp;M. MacInnis,&nbsp;D. M. Macleod,&nbsp;A. Macquet,&nbsp;F. Magaña-Sandoval,&nbsp;L. Magaña Zertuche,&nbsp;R. M. Magee,&nbsp;E. Majorana,&nbsp;I. Maksimovic,&nbsp;A. Malik,&nbsp;N. Man,&nbsp;V. Mandic,&nbsp;V. Mangano,&nbsp;G. L. Mansell,&nbsp;M. Manske,&nbsp;M. Mantovani,&nbsp;F. Marchesoni,&nbsp;M. Marchio,&nbsp;F. Marion,&nbsp;S. Márka,&nbsp;Z. Márka,&nbsp;C. Markakis,&nbsp;A. S. Markosyan,&nbsp;A. Markowitz,&nbsp;E. Maros,&nbsp;A. Marquina,&nbsp;S. Marsat,&nbsp;F. Martelli,&nbsp;I. W. Martin,&nbsp;R. M. Martin,&nbsp;D. V. Martynov,&nbsp;K. Mason,&nbsp;E. Massera,&nbsp;A. Masserot,&nbsp;T. J. Massinger,&nbsp;M. Masso-Reid,&nbsp;S. Mastrogiovanni,&nbsp;A. Matas,&nbsp;F. Matichard,&nbsp;L. Matone,&nbsp;N. Mavalvala,&nbsp;N. Mazumder,&nbsp;J. J. McCann,&nbsp;R. McCarthy,&nbsp;D. E. McClelland,&nbsp;S. McCormick,&nbsp;L. McCuller,&nbsp;S. C. McGuire,&nbsp;J. McIver,&nbsp;D. J. McManus,&nbsp;T. McRae,&nbsp;S. T. McWilliams,&nbsp;D. Meacher,&nbsp;G. D. Meadors,&nbsp;M. Mehmet,&nbsp;A. K. Mehta,&nbsp;J. Meidam,&nbsp;A. Melatos,&nbsp;G. Mendell,&nbsp;R. A. Mercer,&nbsp;L. Mereni,&nbsp;E. L. Merilh,&nbsp;M. Merzougui,&nbsp;S. Meshkov,&nbsp;C. Messenger,&nbsp;C. Messick,&nbsp;R. Metzdorff,&nbsp;P. M. Meyers,&nbsp;H. Miao,&nbsp;C. Michel,&nbsp;Y. Michimura,&nbsp;H. Middleton,&nbsp;E. E. Mikhailov,&nbsp;L. Milano,&nbsp;A. L. Miller,&nbsp;A. Miller,&nbsp;M. Millhouse,&nbsp;J. C. Mills,&nbsp;M. C. Milovich-Goff,&nbsp;O. Minazzoli,&nbsp;Y. Minenkov,&nbsp;N. Mio,&nbsp;A. Mishkin,&nbsp;C. Mishra,&nbsp;T. Mistry,&nbsp;S. Mitra,&nbsp;V. P. Mitrofanov,&nbsp;G. Mitselmakher,&nbsp;R. Mittleman,&nbsp;O. Miyakawa,&nbsp;A. Miyamoto,&nbsp;Y. Miyazaki,&nbsp;K. Miyo,&nbsp;S. Miyoki,&nbsp;G. Mo,&nbsp;D. Moffa,&nbsp;K. Mogushi,&nbsp;S. R. P. Mohapatra,&nbsp;M. Montani,&nbsp;C. J. Moore,&nbsp;D. Moraru,&nbsp;G. Moreno,&nbsp;S. Morisaki,&nbsp;Y. Moriwaki,&nbsp;B. Mours,&nbsp;C. M. Mow-Lowry,&nbsp;Arunava Mukherjee,&nbsp;D. Mukherjee,&nbsp;S. Mukherjee,&nbsp;N. Mukund,&nbsp;A. Mullavey,&nbsp;J. Munch,&nbsp;E. A. Muñiz,&nbsp;M. Muratore,&nbsp;P. G. Murray,&nbsp;K. Nagano,&nbsp;S. Nagano,&nbsp;A. Nagar,&nbsp;K. Nakamura,&nbsp;H. Nakano,&nbsp;M. Nakano,&nbsp;R. Nakashima,&nbsp;I. Nardecchia,&nbsp;T. Narikawa,&nbsp;L. Naticchioni,&nbsp;R. K. Nayak,&nbsp;R. Negishi,&nbsp;J. Neilson,&nbsp;G. Nelemans,&nbsp;T. J. N. Nelson,&nbsp;M. Nery,&nbsp;A. Neunzert,&nbsp;K. Y. Ng,&nbsp;S. Ng,&nbsp;P. Nguyen,&nbsp;W. T. Ni,&nbsp;D. Nichols,&nbsp;A. Nishizawa,&nbsp;S. Nissanke,&nbsp;F. Nocera,&nbsp;C. North,&nbsp;L. K. Nuttall,&nbsp;M. Obergaulinger,&nbsp;J. Oberling,&nbsp;B. D. O’Brien,&nbsp;Y. Obuchi,&nbsp;G. D. O’Dea,&nbsp;W. Ogaki,&nbsp;G. H. Ogin,&nbsp;J. J. Oh,&nbsp;S. H. Oh,&nbsp;M. Ohashi,&nbsp;N. Ohishi,&nbsp;M. Ohkawa,&nbsp;F. Ohme,&nbsp;H. Ohta,&nbsp;M. A. Okada,&nbsp;K. Okutomi,&nbsp;M. Oliver,&nbsp;K. Oohara,&nbsp;C. P. Ooi,&nbsp;P. Oppermann,&nbsp;Richard J. Oram,&nbsp;B. O’Reilly,&nbsp;R. G. Ormiston,&nbsp;L. F. Ortega,&nbsp;R. O’Shaughnessy,&nbsp;S. Oshino,&nbsp;S. Ossokine,&nbsp;D. J. Ottaway,&nbsp;H. Overmier,&nbsp;B. J. Owen,&nbsp;A. E. Pace,&nbsp;G. Pagano,&nbsp;M. A. Page,&nbsp;A. Pai,&nbsp;S. A. Pai,&nbsp;J. R. Palamos,&nbsp;O. Palashov,&nbsp;C. Palomba,&nbsp;A. Pal-Singh,&nbsp;Huang-Wei Pan,&nbsp;K. C. Pan,&nbsp;B. Pang,&nbsp;H. F. Pang,&nbsp;P. T. H. Pang,&nbsp;C. Pankow,&nbsp;F. Pannarale,&nbsp;B. C. Pant,&nbsp;F. Paoletti,&nbsp;A. Paoli,&nbsp;M. A. Papa,&nbsp;A. Parida,&nbsp;J. Park,&nbsp;W. Parker,&nbsp;D. Pascucci,&nbsp;A. Pasqualetti,&nbsp;R. Passaquieti,&nbsp;D. Passuello,&nbsp;M. Patil,&nbsp;B. Patricelli,&nbsp;B. L. Pearlstone,&nbsp;C. Pedersen,&nbsp;M. Pedraza,&nbsp;R. Pedurand,&nbsp;A. Pele,&nbsp;F. E. Peña Arellano,&nbsp;S. Penn,&nbsp;C. J. Perez,&nbsp;A. Perreca,&nbsp;H. P. Pfeiffer,&nbsp;M. Phelps,&nbsp;K. S. Phukon,&nbsp;O. J. Piccinni,&nbsp;M. Pichot,&nbsp;F. Piergiovanni,&nbsp;G. Pillant,&nbsp;L. Pinard,&nbsp;I. Pinto,&nbsp;M. Pirello,&nbsp;M. Pitkin,&nbsp;R. Poggiani,&nbsp;D. Y. T. Pong,&nbsp;S. Ponrathnam,&nbsp;P. Popolizio,&nbsp;E. K. Porter,&nbsp;J. Powell,&nbsp;A. K. Prajapati,&nbsp;J. Prasad,&nbsp;K. Prasai,&nbsp;R. Prasanna,&nbsp;G. Pratten,&nbsp;T. Prestegard,&nbsp;S. Privitera,&nbsp;G. A. Prodi,&nbsp;L. G. Prokhorov,&nbsp;O. Puncken,&nbsp;M. Punturo,&nbsp;P. Puppo,&nbsp;M. Pürrer,&nbsp;H. Qi,&nbsp;V. Quetschke,&nbsp;P. J. Quinonez,&nbsp;E. A. Quintero,&nbsp;R. Quitzow-James,&nbsp;F. J. Raab,&nbsp;H. Radkins,&nbsp;N. Radulescu,&nbsp;P. Raffai,&nbsp;S. Raja,&nbsp;C. Rajan,&nbsp;B. Rajbhandari,&nbsp;M. Rakhmanov,&nbsp;K. E. Ramirez,&nbsp;A. Ramos-Buades,&nbsp;Javed Rana,&nbsp;K. Rao,&nbsp;P. Rapagnani,&nbsp;V. Raymond,&nbsp;M. Razzano,&nbsp;J. Read,&nbsp;T. Regimbau,&nbsp;L. Rei,&nbsp;S. Reid,&nbsp;D. H. Reitze,&nbsp;W. Ren,&nbsp;F. Ricci,&nbsp;C. J. Richardson,&nbsp;J. W. Richardson,&nbsp;P. M. Ricker,&nbsp;K. Riles,&nbsp;M. Rizzo,&nbsp;N. A. Robertson,&nbsp;R. Robie,&nbsp;F. Robinet,&nbsp;A. Rocchi,&nbsp;L. Rolland,&nbsp;J. G. Rollins,&nbsp;V. J. Roma,&nbsp;M. Romanelli,&nbsp;R. Romano,&nbsp;C. L. Romel,&nbsp;J. H. Romie,&nbsp;K. Rose,&nbsp;D. Rosińska,&nbsp;S. G. Rosofsky,&nbsp;M. P. Ross,&nbsp;S. Rowan,&nbsp;A. Rüdiger,&nbsp;P. Ruggi,&nbsp;G. Rutins,&nbsp;K. Ryan,&nbsp;S. Sachdev,&nbsp;T. Sadecki,&nbsp;N. Sago,&nbsp;S. Saito,&nbsp;Y. Saito,&nbsp;K. Sakai,&nbsp;Y. Sakai,&nbsp;H. Sakamoto,&nbsp;M. Sakellariadou,&nbsp;Y. Sakuno,&nbsp;L. Salconi,&nbsp;M. Saleem,&nbsp;A. Samajdar,&nbsp;L. Sammut,&nbsp;E. J. Sanchez,&nbsp;L. E. Sanchez,&nbsp;N. Sanchis-Gual,&nbsp;V. Sandberg,&nbsp;J. R. Sanders,&nbsp;K. A. Santiago,&nbsp;N. Sarin,&nbsp;B. Sassolas,&nbsp;B. S. Sathyaprakash,&nbsp;S. Sato,&nbsp;T. Sato,&nbsp;O. Sauter,&nbsp;R. L. Savage,&nbsp;T. Sawada,&nbsp;P. Schale,&nbsp;M. Scheel,&nbsp;J. Scheuer,&nbsp;P. Schmidt,&nbsp;R. Schnabel,&nbsp;R. M. S. Schofield,&nbsp;A. Schönbeck,&nbsp;E. Schreiber,&nbsp;B. W. Schulte,&nbsp;B. F. Schutz,&nbsp;S. G. Schwalbe,&nbsp;J. Scott,&nbsp;S. M. Scott,&nbsp;E. Seidel,&nbsp;T. Sekiguchi,&nbsp;Y. Sekiguchi,&nbsp;D. Sellers,&nbsp;A. S. Sengupta,&nbsp;N. Sennett,&nbsp;D. Sentenac,&nbsp;V. Sequino,&nbsp;A. Sergeev,&nbsp;Y. Setyawati,&nbsp;D. A. Shaddock,&nbsp;T. Shaffer,&nbsp;M. S. Shahriar,&nbsp;M. B. Shaner,&nbsp;L. Shao,&nbsp;P. Sharma,&nbsp;P. Shawhan,&nbsp;H. Shen,&nbsp;S. Shibagaki,&nbsp;R. Shimizu,&nbsp;T. Shimoda,&nbsp;K. Shimode,&nbsp;R. Shink,&nbsp;H. Shinkai,&nbsp;T. Shishido,&nbsp;A. Shoda,&nbsp;D. H. Shoemaker,&nbsp;D. M. Shoemaker,&nbsp;S. ShyamSundar,&nbsp;K. Siellez,&nbsp;M. Sieniawska,&nbsp;D. Sigg,&nbsp;A. D. Silva,&nbsp;L. P. Singer,&nbsp;N. Singh,&nbsp;A. Singhal,&nbsp;A. M. Sintes,&nbsp;S. Sitmukhambetov,&nbsp;V. Skliris,&nbsp;B. J. J. Slagmolen,&nbsp;T. J. Slaven-Blair,&nbsp;J. R. Smith,&nbsp;R. J. E. Smith,&nbsp;S. Somala,&nbsp;K. Somiya,&nbsp;E. J. Son,&nbsp;B. Sorazu,&nbsp;F. Sorrentino,&nbsp;H. Sotani,&nbsp;T. Souradeep,&nbsp;E. Sowell,&nbsp;A. P. Spencer,&nbsp;A. K. Srivastava,&nbsp;V. Srivastava,&nbsp;K. Staats,&nbsp;C. Stachie,&nbsp;M. Standke,&nbsp;D. A. Steer,&nbsp;M. Steinke,&nbsp;J. Steinlechner,&nbsp;S. Steinlechner,&nbsp;D. Steinmeyer,&nbsp;S. P. Stevenson,&nbsp;D. Stocks,&nbsp;R. Stone,&nbsp;D. J. Stops,&nbsp;K. A. Strain,&nbsp;G. Stratta,&nbsp;S. E. Strigin,&nbsp;A. Strunk,&nbsp;R. Sturani,&nbsp;A. L. Stuver,&nbsp;V. Sudhir,&nbsp;R. Sugimoto,&nbsp;T. Z. Summerscales,&nbsp;L. Sun,&nbsp;S. Sunil,&nbsp;J. Suresh,&nbsp;P. J. Sutton,&nbsp;Takamasa Suzuki,&nbsp;Toshikazu Suzuki,&nbsp;B. L. Swinkels,&nbsp;M. J. Szczepańczyk,&nbsp;M. Tacca,&nbsp;H. Tagoshi,&nbsp;S. C. Tait,&nbsp;H. Takahashi,&nbsp;R. Takahashi,&nbsp;A. Takamori,&nbsp;S. Takano,&nbsp;H. Takeda,&nbsp;M. Takeda,&nbsp;C. Talbot,&nbsp;D. Talukder,&nbsp;H. Tanaka,&nbsp;Kazuyuki Tanaka,&nbsp;Kenta Tanaka,&nbsp;Taiki Tanaka,&nbsp;Takahiro Tanaka,&nbsp;S. Tanioka,&nbsp;D. B. Tanner,&nbsp;M. Tápai,&nbsp;E. N. Tapia San Martin,&nbsp;A. Taracchini,&nbsp;J. D. Tasson,&nbsp;R. Taylor,&nbsp;S. Telada,&nbsp;F. Thies,&nbsp;M. Thomas,&nbsp;P. Thomas,&nbsp;S. R. Thondapu,&nbsp;K. A. Thorne,&nbsp;E. Thrane,&nbsp;Shubhanshu Tiwari,&nbsp;Srishti Tiwari,&nbsp;V. Tiwari,&nbsp;K. Toland,&nbsp;T. Tomaru,&nbsp;Y. Tomigami,&nbsp;T. Tomura,&nbsp;M. Tonelli,&nbsp;Z. Tornasi,&nbsp;A. Torres-Forné,&nbsp;C. I. Torrie,&nbsp;D. Töyrä,&nbsp;F. Travasso,&nbsp;G. Traylor,&nbsp;M. C. Tringali,&nbsp;A. Trovato,&nbsp;L. Trozzo,&nbsp;R. Trudeau,&nbsp;K. W. Tsang,&nbsp;T. T. L. Tsang,&nbsp;M. Tse,&nbsp;R. Tso,&nbsp;K. Tsubono,&nbsp;S. Tsuchida,&nbsp;L. Tsukada,&nbsp;D. Tsuna,&nbsp;T. Tsuzuki,&nbsp;D. Tuyenbayev,&nbsp;N. Uchikata,&nbsp;T. Uchiyama,&nbsp;A. Ueda,&nbsp;T. Uehara,&nbsp;K. Ueno,&nbsp;G. Ueshima,&nbsp;D. Ugolini,&nbsp;C. S. Unnikrishnan,&nbsp;F. Uraguchi,&nbsp;A. L. Urban,&nbsp;T. Ushiba,&nbsp;S. A. Usman,&nbsp;H. Vahlbruch,&nbsp;G. Vajente,&nbsp;G. Valdes,&nbsp;N. van Bakel,&nbsp;M. van Beuzekom,&nbsp;J. F. J. van den Brand,&nbsp;C. Van Den Broeck,&nbsp;D. C. Vander-Hyde,&nbsp;L. van der Schaaf,&nbsp;J. V. van Heijningen,&nbsp;M. H. P. M. van Putten,&nbsp;A. A. van Veggel,&nbsp;M. Vardaro,&nbsp;V. Varma,&nbsp;S. Vass,&nbsp;M. Vasúth,&nbsp;A. Vecchio,&nbsp;G. Vedovato,&nbsp;J. Veitch,&nbsp;P. J. Veitch,&nbsp;K. Venkateswara,&nbsp;G. Venugopalan,&nbsp;D. Verkindt,&nbsp;F. Vetrano,&nbsp;A. Viceré,&nbsp;A. D. Viets,&nbsp;D. J. Vine,&nbsp;J.-Y. Vinet,&nbsp;S. Vitale,&nbsp;Francisco Hernandez Vivanco,&nbsp;T. Vo,&nbsp;H. Vocca,&nbsp;C. Vorvick,&nbsp;S. P. Vyatchanin,&nbsp;A. R. Wade,&nbsp;L. E. Wade,&nbsp;M. Wade,&nbsp;R. Walet,&nbsp;M. Walker,&nbsp;L. Wallace,&nbsp;S. Walsh,&nbsp;G. Wang,&nbsp;H. Wang,&nbsp;J. Wang,&nbsp;J. Z. Wang,&nbsp;W. H. Wang,&nbsp;Y. F. Wang,&nbsp;R. L. Ward,&nbsp;Z. A. Warden,&nbsp;J. Warner,&nbsp;M. Was,&nbsp;J. Watchi,&nbsp;B. Weaver,&nbsp;L.-W. Wei,&nbsp;M. Weinert,&nbsp;A. J. Weinstein,&nbsp;R. Weiss,&nbsp;F. Wellmann,&nbsp;L. Wen,&nbsp;E. K. Wessel,&nbsp;P. Weßels,&nbsp;J. W. Westhouse,&nbsp;K. Wette,&nbsp;J. T. Whelan,&nbsp;B. F. Whiting,&nbsp;C. Whittle,&nbsp;D. M. Wilken,&nbsp;D. Williams,&nbsp;A. R. Williamson,&nbsp;J. L. Willis,&nbsp;B. Willke,&nbsp;M. H. Wimmer,&nbsp;W. Winkler,&nbsp;C. C. Wipf,&nbsp;H. Wittel,&nbsp;G. Woan,&nbsp;J. Woehler,&nbsp;J. K. Wofford,&nbsp;J. Worden,&nbsp;J. L. Wright,&nbsp;C. M. Wu,&nbsp;D. S. Wu,&nbsp;H. C. Wu,&nbsp;S. R. Wu,&nbsp;D. M. Wysocki,&nbsp;L. Xiao,&nbsp;W. R. Xu,&nbsp;T. Yamada,&nbsp;H. Yamamoto,&nbsp;Kazuhiro Yamamoto,&nbsp;Kohei Yamamoto,&nbsp;T. Yamamoto,&nbsp;C. C. Yancey,&nbsp;L. Yang,&nbsp;M. J. Yap,&nbsp;M. Yazback,&nbsp;D. W. Yeeles,&nbsp;K. Yokogawa,&nbsp;J. Yokoyama,&nbsp;T. Yokozawa,&nbsp;T. Yoshioka,&nbsp;Hang Yu,&nbsp;Haocun Yu,&nbsp;S. H. R. Yuen,&nbsp;H. Yuzurihara,&nbsp;M. Yvert,&nbsp;A. K. Zadrożny,&nbsp;M. Zanolin,&nbsp;S. Zeidler,&nbsp;T. Zelenova,&nbsp;J.-P. Zendri,&nbsp;M. Zevin,&nbsp;J. Zhang,&nbsp;L. Zhang,&nbsp;T. Zhang,&nbsp;C. Zhao,&nbsp;Y. Zhao,&nbsp;M. Zhou,&nbsp;Z. Zhou,&nbsp;X. J. Zhu,&nbsp;Z. H. Zhu,&nbsp;A. B. Zimmerman,&nbsp;M. E. Zucker,&nbsp;J. Zweizig,&nbsp;KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration","doi":"10.1007/s41114-020-00026-9","DOIUrl":"https://doi.org/10.1007/s41114-020-00026-9","url":null,"abstract":"<p>We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of <span>(10^{5}, 10^{6}, 10^{7}mathrm { Mpc}^3)</span> for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of <span>(1^{+12}_{-1})</span>(<span>(10^{+52}_{-10})</span>) for binary neutron star mergers, of <span>(0^{+19}_{-0})</span>(<span>(1^{+91}_{-1})</span>) for neutron star–black hole mergers, and <span>(17^{+22}_{-11})</span>(<span>(79^{+89}_{-44})</span>) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-020-00026-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5101584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 161
AdS black holes, holography and localization AdS黑洞,全息和定位
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-08-28 DOI: 10.1007/s41114-020-00027-8
Alberto Zaffaroni

I review some recent progresses in counting the number of microstates of AdS supersymmetric black holes in dimension equal or greater than four using holography. The counting is obtained by applying localization and matrix model techniques to the dual field theory. I cover in details the case of dyonic AdS(_4) black holes, corresponding to a twisted compactification of the dual field theory, and I discuss the state of the art for rotating AdS(_5) black holes.

本文回顾了利用全息术计算大于或等于4维的AdS超对称黑洞微态数的一些最新进展。对对偶场理论应用局部化和矩阵模型技术,得到了计数结果。我详细介绍了动态AdS (_4)黑洞的情况,对应于对偶场理论的扭曲紧化,并讨论了旋转AdS (_5)黑洞的最新技术。
{"title":"AdS black holes, holography and localization","authors":"Alberto Zaffaroni","doi":"10.1007/s41114-020-00027-8","DOIUrl":"https://doi.org/10.1007/s41114-020-00027-8","url":null,"abstract":"<p>I review some recent progresses in counting the number of microstates of AdS supersymmetric black holes in dimension equal or greater than four using holography. The counting is obtained by applying localization and matrix model techniques to the dual field theory. I cover in details the case of dyonic AdS<span>(_4)</span> black holes, corresponding to a twisted compactification of the dual field theory, and I discuss the state of the art for rotating AdS<span>(_5)</span> black holes.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-020-00027-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5072612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 76
Kilonovae Kilonovae
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2019-12-16 DOI: 10.1007/s41114-019-0024-0
Brian D. Metzger

The coalescence of double neutron star (NS–NS) and black hole (BH)–NS binaries are prime sources of gravitational waves (GW) for Advanced LIGO/Virgo and future ground-based detectors. Neutron-rich matter released from such events undergoes rapid neutron capture (r-process) nucleosynthesis as it decompresses into space, enriching our universe with rare heavy elements like gold and platinum. Radioactive decay of these unstable nuclei powers a rapidly evolving, approximately isotropic thermal transient known as a “kilonova”, which probes the physical conditions during the merger and its aftermath. Here I review the history and physics of kilonovae, leading to the current paradigm of day-timescale emission at optical wavelengths from lanthanide-free components of the ejecta, followed by week-long emission with a spectral peak in the near-infrared (NIR). These theoretical predictions, as compiled in the original version of this review, were largely confirmed by the transient optical/NIR counterpart discovered to the first NS–NS merger, GW170817, discovered by LIGO/Virgo. Using a simple light curve model to illustrate the essential physical processes and their application to GW170817, I then introduce important variations about the standard picture which may be observable in future mergers. These include (sim )hour-long UV precursor emission, powered by the decay of free neutrons in the outermost ejecta layers or shock-heating of the ejecta by a delayed ultra-relativistic outflow; and enhancement of the luminosity from a long-lived central engine, such as an accreting BH or millisecond magnetar. Joint GW and kilonova observations of GW170817 and future events provide a new avenue to constrain the astrophysical origin of the r-process elements and the equation of state of dense nuclear matter.

双中子星(NS-NS)和黑洞(BH) -NS双星的合并是高级LIGO/室女座和未来地面探测器引力波(GW)的主要来源。这些事件释放出的富含中子的物质在解压到太空时经历了快中子捕获(r-process)核合成,使我们的宇宙充满了稀有的重元素,如金和铂。这些不稳定原子核的放射性衰变为一种快速发展的、近似各向同性的热瞬变提供动力,称为“千新星”,它探测合并期间及其后果的物理条件。在这里,我回顾了千新星的历史和物理,导致了目前的范例,即从喷射物的无镧成分在光学波长上的日尺度发射,随后是为期一周的近红外(NIR)光谱峰值发射。这些理论预测,在这篇综述的原始版本中被编译,在很大程度上被LIGO/Virgo发现的第一次NS-NS合并的瞬态光学/近红外对应物GW170817所证实。用一个简单的光曲线模型来说明基本的物理过程及其在GW170817上的应用,然后我介绍了在未来合并中可能观察到的标准图像的重要变化。这些包括(sim )小时的紫外线前体发射,由最外层抛射层中自由中子的衰变或由延迟的超相对论性流出对抛射物进行冲击加热提供动力;以及来自长寿命中心引擎(如吸积黑洞或毫秒磁星)的亮度增强。GW和kilonova对GW170817和未来事件的联合观测为约束r过程元素的天体物理起源和致密核物质的状态方程提供了新的途径。
{"title":"Kilonovae","authors":"Brian D. Metzger","doi":"10.1007/s41114-019-0024-0","DOIUrl":"https://doi.org/10.1007/s41114-019-0024-0","url":null,"abstract":"<p>The coalescence of double neutron star (NS–NS) and black hole (BH)–NS binaries are prime sources of gravitational waves (GW) for Advanced LIGO/Virgo and future ground-based detectors. Neutron-rich matter released from such events undergoes rapid neutron capture (<i>r</i>-process) nucleosynthesis as it decompresses into space, enriching our universe with rare heavy elements like gold and platinum. Radioactive decay of these unstable nuclei powers a rapidly evolving, approximately isotropic thermal transient known as a “kilonova”, which probes the physical conditions during the merger and its aftermath. Here I review the history and physics of kilonovae, leading to the current paradigm of day-timescale emission at optical wavelengths from lanthanide-free components of the ejecta, followed by week-long emission with a spectral peak in the near-infrared (NIR). These theoretical predictions, as compiled in the original version of this review, were largely confirmed by the transient optical/NIR counterpart discovered to the first NS–NS merger, GW170817, discovered by LIGO/Virgo. Using a simple light curve model to illustrate the essential physical processes and their application to GW170817, I then introduce important variations about the standard picture which may be observable in future mergers. These include <span>(sim )</span>hour-long UV precursor emission, powered by the decay of free neutrons in the outermost ejecta layers or shock-heating of the ejecta by a delayed ultra-relativistic outflow; and enhancement of the luminosity from a long-lived central engine, such as an accreting BH or millisecond magnetar. Joint GW and kilonova observations of GW170817 and future events provide a new avenue to constrain the astrophysical origin of the <i>r</i>-process elements and the equation of state of dense nuclear matter.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0024-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4642923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 159
Terrestrial gravity fluctuations 地球重力波动
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2019-10-14 DOI: 10.1007/s41114-019-0022-2
Jan Harms

Terrestrial gravity fluctuations are a target of scientific studies in a variety of fields within geophysics and fundamental-physics experiments involving gravity such as the observation of gravitational waves. In geophysics, these fluctuations are typically considered as signal that carries information about processes such as fault ruptures and atmospheric density perturbations. In fundamental-physics experiments, it appears as environmental noise, which needs to be avoided or mitigated. This article reviews the current state-of-the-art of modeling high-frequency terrestrial gravity fluctuations and of gravity-noise mitigation strategies. It hereby focuses on frequencies above about 50?mHz, which allows us to simplify models of atmospheric gravity perturbations (beyond Brunt–V?is?l? regime) and it guarantees as well that gravitational forces on elastic media can be treated as perturbation. Extensive studies have been carried out over the past two decades to model contributions from seismic and atmospheric fields especially by the gravitational-wave community. While terrestrial gravity fluctuations above 50?mHz have not been observed conclusively yet, sensitivity of instruments for geophysical observations and of gravitational-wave detectors is improving, and we can expect first observations in the coming years. The next challenges include the design of gravity-noise mitigation systems to be implemented in current gravitational-wave detectors, and further improvement of models for future gravitational-wave detectors where terrestrial gravity noise will play a more important role. Also, many aspects of the recent proposition to use a new generation of gravity sensors to improve real-time earthquake early-warning systems still require detailed analyses.

在涉及重力的地球物理和基础物理实验(如引力波观测)的各个领域,地球重力波动是科学研究的目标。在地球物理学中,这些波动通常被认为是携带有关断层破裂和大气密度扰动等过程信息的信号。在基础物理实验中,它表现为环境噪声,需要加以避免或减轻。本文综述了高频地面重力波动建模和重力噪声缓解策略的最新进展。它聚焦在频率高于50的地方?这使我们能够简化大气重力扰动模型(超过Brunt-V ?is?l?)状态),它也保证了弹性介质上的引力可以被看作扰动。在过去的二十年中进行了广泛的研究,以模拟地震和大气场的贡献,特别是引力波界的贡献。而地球重力波动超过50?兆赫还没有得到最终的观测,地球物理观测仪器和引力波探测器的灵敏度正在提高,我们可以期待在未来几年的第一次观测。接下来的挑战包括设计用于当前引力波探测器的重力噪声缓解系统,以及进一步改进未来引力波探测器的模型,在未来引力波探测器中,地球重力噪声将发挥更重要的作用。此外,最近提出的使用新一代重力传感器来改进实时地震预警系统的许多方面仍需要详细分析。
{"title":"Terrestrial gravity fluctuations","authors":"Jan Harms","doi":"10.1007/s41114-019-0022-2","DOIUrl":"https://doi.org/10.1007/s41114-019-0022-2","url":null,"abstract":"<p>Terrestrial gravity fluctuations are a target of scientific studies in a variety of fields within geophysics and fundamental-physics experiments involving gravity such as the observation of gravitational waves. In geophysics, these fluctuations are typically considered as signal that carries information about processes such as fault ruptures and atmospheric density perturbations. In fundamental-physics experiments, it appears as environmental noise, which needs to be avoided or mitigated. This article reviews the current state-of-the-art of modeling high-frequency terrestrial gravity fluctuations and of gravity-noise mitigation strategies. It hereby focuses on frequencies above about 50?mHz, which allows us to simplify models of atmospheric gravity perturbations (beyond Brunt–V?is?l? regime) and it guarantees as well that gravitational forces on elastic media can be treated as perturbation. Extensive studies have been carried out over the past two decades to model contributions from seismic and atmospheric fields especially by the gravitational-wave community. While terrestrial gravity fluctuations above 50?mHz have not been observed conclusively yet, sensitivity of instruments for geophysical observations and of gravitational-wave detectors is improving, and we can expect first observations in the coming years. The next challenges include the design of gravity-noise mitigation systems to be implemented in current gravitational-wave detectors, and further improvement of models for future gravitational-wave detectors where terrestrial gravity noise will play a more important role. Also, many aspects of the recent proposition to use a new generation of gravity sensors to improve real-time earthquake early-warning systems still require detailed analyses.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0022-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4586645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
The causal set approach to quantum gravity 量子引力的因果集方法
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2019-09-27 DOI: 10.1007/s41114-019-0023-1
Sumati Surya

The causal set theory (CST) approach to quantum gravity postulates that at the most fundamental level, spacetime is discrete, with the spacetime continuum replaced by locally finite posets or “causal sets”. The partial order on a causal set represents a proto-causality relation while local finiteness encodes an intrinsic discreteness. In the continuum approximation the former corresponds to the spacetime causality relation and the latter to a fundamental spacetime atomicity, so that finite volume regions in the continuum contain only a finite number of causal set elements. CST is deeply rooted in the Lorentzian character of spacetime, where a primary role is played by the causal structure poset. Importantly, the assumption of a fundamental discreteness in CST does not violate local Lorentz invariance in the continuum approximation. On the other hand, the combination of discreteness and Lorentz invariance gives rise to a characteristic non-locality which distinguishes CST from most other approaches to quantum gravity. In this review we give a broad, semi-pedagogical introduction to CST, highlighting key results as well as some of the key open questions. This review is intended both for the beginner student in quantum gravity as well as more seasoned researchers in the field.

量子引力的因果集理论(CST)方法假设,在最基本的层面上,时空是离散的,时空连续体被局部有限的偏序集或“因果集”所取代。因果集上的偏序表示原因果关系,局部有限表示内在的离散性。在连续统近似中,前者对应于时空因果关系,后者对应于基本的时空原子性,因此连续统中的有限体积区域只包含有限数量的因果集元素。CST深深植根于时空的洛伦兹特征,其中因果结构偏置起了主要作用。重要的是,CST中基本离散性的假设并不违反连续统近似中的局部洛伦兹不变性。另一方面,离散性和洛伦兹不变性的结合产生了一种非局部性特征,使CST与大多数其他量子引力方法区别开来。在这篇综述中,我们对CST进行了广泛的、半教学性的介绍,突出了关键的结果以及一些关键的开放性问题。这篇综述既适用于量子引力的初学者,也适用于该领域的资深研究人员。
{"title":"The causal set approach to quantum gravity","authors":"Sumati Surya","doi":"10.1007/s41114-019-0023-1","DOIUrl":"https://doi.org/10.1007/s41114-019-0023-1","url":null,"abstract":"<p>The causal set theory (CST) approach to quantum gravity postulates that at the most fundamental level, spacetime is discrete, with the spacetime continuum replaced by locally finite posets or “causal sets”. The partial order on a causal set represents a proto-causality relation while local finiteness encodes an intrinsic discreteness. In the continuum approximation the former corresponds to the spacetime causality relation and the latter to a fundamental spacetime atomicity, so that finite volume regions in the continuum contain only a finite number of causal set elements. CST is deeply rooted in the Lorentzian character of spacetime, where a primary role is played by the causal structure poset. Importantly, the assumption of a fundamental discreteness in CST does not violate local Lorentz invariance in the continuum approximation. On the other hand, the combination of discreteness and Lorentz invariance gives rise to a characteristic non-locality which distinguishes CST from most other approaches to quantum gravity. In this review we give a broad, semi-pedagogical introduction to CST, highlighting key results as well as some of the key open questions. This review is intended both for the beginner student in quantum gravity as well as more seasoned researchers in the field.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0023-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5063679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 80
Testing the nature of dark compact objects: a status report 测试暗致密物体的性质:状态报告
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2019-07-08 DOI: 10.1007/s41114-019-0020-4
Vitor Cardoso, Paolo Pani

Very compact objects probe extreme gravitational fields and may be the key to understand outstanding puzzles in fundamental physics. These include the nature of dark matter, the fate of spacetime singularities, or the loss of unitarity in Hawking evaporation. The standard astrophysical description of collapsing objects tells us that massive, dark and compact objects are black holes. Any observation suggesting otherwise would be an indication of beyond-the-standard-model physics. Null results strengthen and quantify the Kerr black hole paradigm. The advent of gravitational-wave astronomy and precise measurements with very long baseline interferometry allow one to finally probe into such foundational issues. We overview the physics of exotic dark compact objects and their observational status, including the observational evidence for black holes with current and future experiments.

非常紧凑的物体探测到极端引力场,可能是理解基础物理学中突出难题的关键。这些问题包括暗物质的本质,时空奇点的命运,或者霍金蒸发的单一性丧失。坍缩物体的标准天体物理学描述告诉我们,大质量的、黑暗的、致密的物体是黑洞。任何与此相反的观察结果都是超越标准模型物理学的迹象。Null结果强化并量化了Kerr黑洞范式。引力波天文学的出现,以及用超长基线干涉测量法进行的精确测量,使人们最终能够探索这些基础问题。本文综述了奇异暗致密天体的物理学及其观测现状,包括目前和未来实验中黑洞的观测证据。
{"title":"Testing the nature of dark compact objects: a status report","authors":"Vitor Cardoso,&nbsp;Paolo Pani","doi":"10.1007/s41114-019-0020-4","DOIUrl":"https://doi.org/10.1007/s41114-019-0020-4","url":null,"abstract":"<p>Very compact objects probe extreme gravitational fields and may be the key to understand outstanding puzzles in fundamental physics. These include the nature of dark matter, the fate of spacetime singularities, or the loss of unitarity in Hawking evaporation. The standard astrophysical description of collapsing objects tells us that massive, dark and compact objects are black holes. Any observation suggesting otherwise would be an indication of beyond-the-standard-model physics. Null results strengthen and quantify the Kerr black hole paradigm. The advent of gravitational-wave astronomy and precise measurements with very long baseline interferometry allow one to finally probe into such foundational issues. We overview the physics of exotic dark compact objects and their observational status, including the observational evidence for black holes with current and future experiments.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0020-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4657647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Lorentzian causality theory 洛伦兹因果理论
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2019-06-03 DOI: 10.1007/s41114-019-0019-x
E. Minguzzi

I review Lorentzian causality theory paying particular attention to the optimality and generality of the presented results. I include complete proofs of some foundational results that are otherwise difficult to find in the literature (e.g. equivalence of some Lorentzian length definitions, upper semi-continuity of the length functional, corner regularization, etc.). The paper is almost self-contained thanks to a systematic logical exposition of the many different topics that compose the theory. It contains new results on classical concepts such as maximizing curves, achronal sets, edges, horismos, domains of dependence, Lorentzian distance. The treatment of causally pathological spacetimes requires the development of some new versatile causality notions, among which I found particularly convenient to introduce: biviability, chronal equivalence, araying sets, and causal versions of horismos and trapped sets. Their usefulness becomes apparent in the treatment of the classical singularity theorems, which is here considerably expanded in the exploration of some variations and alternatives.

我回顾洛伦兹的因果关系理论,特别注意所提出的结果的最优性和一般性。我包括一些在其他文献中很难找到的基本结果的完整证明(例如一些洛伦兹长度定义的等价,长度泛函的上半连续性,角正则化等)。由于对构成该理论的许多不同主题进行了系统的逻辑阐述,该论文几乎是独立的。它包含了经典概念的新结果,如最大化曲线,无时向集,边,视界,依赖域,洛伦兹距离。因果病态时空的处理需要发展一些新的通用因果关系概念,其中我发现特别方便介绍:双性性,时间等效,排列集,以及horismos和trapped集的因果版本。它们的有用性在处理经典奇点定理时变得明显,在探索一些变体和替代方案时,它在这里得到了相当大的扩展。
{"title":"Lorentzian causality theory","authors":"E. Minguzzi","doi":"10.1007/s41114-019-0019-x","DOIUrl":"https://doi.org/10.1007/s41114-019-0019-x","url":null,"abstract":"<p>I review Lorentzian causality theory paying particular attention to the optimality and generality of the presented results. I include complete proofs of some foundational results that are otherwise difficult to find in the literature (e.g. equivalence of some Lorentzian length definitions, upper semi-continuity of the length functional, corner regularization, etc.). The paper is almost self-contained thanks to a systematic logical exposition of the many different topics that compose the theory. It contains new results on classical concepts such as maximizing curves, achronal sets, edges, horismos, domains of dependence, Lorentzian distance. The treatment of causally pathological spacetimes requires the development of some new versatile causality notions, among which I found particularly convenient to introduce: biviability, chronal equivalence, araying sets, and causal versions of horismos and trapped sets. Their usefulness becomes apparent in the treatment of the classical singularity theorems, which is here considerably expanded in the exploration of some variations and alternatives.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0019-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4129179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 85
Advanced quantum techniques for future gravitational-wave detectors 未来引力波探测器的先进量子技术
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2019-04-29 DOI: 10.1007/s41114-019-0018-y
Stefan L. Danilishin, Farid Ya. Khalili, Haixing Miao

Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article (Danilishin and Khalili in Living Rev Relativ 15:5, 2012), we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.

光的量子涨落限制了先进激光干涉引力波探测器的灵敏度。这是通往下一代引力波天文台的主要障碍之一。设想的探测器灵敏度的显著提高需要使用量子非拆除测量和反作用规避技术,这使我们能够绕过海森堡测不准原理施加的灵敏度限制。在我们之前的综述文章(Danilishin and Khalili In Living Rev Relativ 15:5, 2012)中,我们奠定了量子测量理论的基本原理,并提供了分析干涉仪量子噪声的框架。本文的范围是回顾近年来提出的新的量子噪声抑制技术,并将它们放在同一个框架中。我们对干涉测量方案和拓扑结构的描述是为了帮助下一代引力波天文台选择设计的过程。
{"title":"Advanced quantum techniques for future gravitational-wave detectors","authors":"Stefan L. Danilishin,&nbsp;Farid Ya. Khalili,&nbsp;Haixing Miao","doi":"10.1007/s41114-019-0018-y","DOIUrl":"https://doi.org/10.1007/s41114-019-0018-y","url":null,"abstract":"<p>Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article (Danilishin and Khalili in Living Rev Relativ 15:5, 2012), we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0018-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5103861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Testing general relativity in cosmology 在宇宙学中检验广义相对论
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2018-12-18 DOI: 10.1007/s41114-018-0017-4
Mustapha Ishak

We review recent developments and results in testing general relativity (GR) at cosmological scales. The subject has witnessed rapid growth during the last two decades with the aim of addressing the question of cosmic acceleration and the dark energy associated with it. However, with the advent of precision cosmology, it has also become a well-motivated endeavor by itself to test gravitational physics at cosmic scales. We overview cosmological probes of gravity, formalisms and parameterizations for testing deviations from GR at cosmological scales, selected modified gravity (MG) theories, gravitational screening mechanisms, and computer codes developed for these tests. We then provide summaries of recent cosmological constraints on MG parameters and selected MG models. We supplement these cosmological constraints with a summary of implications from the recent binary neutron star merger event. Next, we summarize some results on MG parameter forecasts with and without astrophysical systematics that will dominate the uncertainties. The review aims at providing an overall picture of the subject and an entry point to students and researchers interested in joining the field. It can also serve as a quick reference to recent results and constraints on testing gravity at cosmological scales.

我们回顾了在宇宙尺度上检验广义相对论(GR)的最新进展和结果。在过去的二十年里,为了解决宇宙加速和与之相关的暗能量的问题,这一学科得到了迅速的发展。然而,随着精确宇宙学的出现,在宇宙尺度上测试引力物理本身也成为了一项有充分动机的努力。我们概述了宇宙重力探测器,在宇宙尺度上测试GR偏差的形式和参数化,选定的修正重力(MG)理论,重力筛选机制以及为这些测试开发的计算机代码。然后,我们总结了最近对MG参数和所选MG模型的宇宙学约束。我们补充了这些宇宙学上的限制,总结了最近的双中子星合并事件的影响。接下来,我们总结了一些有天体物理系统和没有天体物理系统的MG参数预测结果,这些结果将主导不确定性。该评论旨在提供主题的整体图景,并为有兴趣加入该领域的学生和研究人员提供切入点。它还可以作为在宇宙尺度上测试重力的最新结果和限制的快速参考。
{"title":"Testing general relativity in cosmology","authors":"Mustapha Ishak","doi":"10.1007/s41114-018-0017-4","DOIUrl":"https://doi.org/10.1007/s41114-018-0017-4","url":null,"abstract":"<p>We review recent developments and results in testing general relativity (GR) at cosmological scales. The subject has witnessed rapid growth during the last two decades with the aim of addressing the question of cosmic acceleration and the dark energy associated with it. However, with the advent of precision cosmology, it has also become a well-motivated endeavor by itself to test gravitational physics at cosmic scales. We overview cosmological probes of gravity, formalisms and parameterizations for testing deviations from GR at cosmological scales, selected modified gravity (MG) theories, gravitational screening mechanisms, and computer codes developed for these tests. We then provide summaries of recent cosmological constraints on MG parameters and selected MG models. We supplement these cosmological constraints with a summary of implications from the recent binary neutron star merger event. Next, we summarize some results on MG parameter forecasts with and without astrophysical systematics that will dominate the uncertainties. The review aims at providing an overall picture of the subject and an entry point to students and researchers interested in joining the field. It can also serve as a quick reference to recent results and constraints on testing gravity at cosmological scales.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0017-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4711447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 267
Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries 广义相对论的哈密顿公式和紧双星的后牛顿动力学
IF 40.6 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2018-08-31 DOI: 10.1007/s41114-018-0016-5
Gerhard Schäfer, Piotr Jaranowski

Hamiltonian formalisms provide powerful tools for the computation of approximate analytic solutions of the Einstein field equations. The post-Newtonian computations of the explicit analytic dynamics and motion of compact binaries are discussed within the most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous Hamiltonians is achieved by the transition to Routhians. Order reduction of higher derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of general relativity is introduced for the tackling of compact binaries with spinning components. Configurations are treated where the absolute values of the spin vectors can be considered constant. Compact objects are modeled by use of Dirac delta functions and their derivatives. Consistency is achieved through transition to d-dimensional space and application of dimensional regularization. At the fourth post-Newtonian level, tail contributions to the binding energy show up. The conservative spin-dependent dynamics finds explicit presentation in Hamiltonian form through next-to-next-to-leading-order spin–orbit and spin1–spin2 couplings and to leading-order in the cubic and quartic in spin interactions. The radiation reaction dynamics is presented explicitly through the third-and-half post-Newtonian order for spinless objects, and, for spinning bodies, to leading-order in the spin–orbit and spin1–spin2 couplings. The most important historical issues get pointed out.

哈密顿形式为计算爱因斯坦场方程的近似解析解提供了强有力的工具。在最常用的Arnowitt-Deser-Misner形式主义中讨论了紧双星的显式解析动力学和运动的后牛顿计算。自治汉密尔顿人的关注是通过向罗西亚人的过渡而实现的。高阶导数哈密顿量的降阶得到标准哈密顿量。引入广义相对论的四分体表示来处理具有自旋分量的紧二进制。处理构型时,自旋矢量的绝对值可以被认为是常数。用狄拉克函数及其导数对紧致物体进行建模。一致性是通过转换到d维空间和应用维度正则化来实现的。在后牛顿能级,尾巴对结合能的贡献出现了。保守的自旋依赖动力学通过次至次至先序自旋轨道和自旋1 -自旋2耦合以及自旋相互作用中的三次和四次的先序得到哈密顿形式的明确表示。辐射反应动力学是通过third-and-half提出明确的后牛顿spinless对象,,旋转的身体,按顺序在自旋轨道和spin1-spin2耦合。最重要的历史问题被指出来。
{"title":"Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries","authors":"Gerhard Schäfer,&nbsp;Piotr Jaranowski","doi":"10.1007/s41114-018-0016-5","DOIUrl":"https://doi.org/10.1007/s41114-018-0016-5","url":null,"abstract":"<p>Hamiltonian formalisms provide powerful tools for the computation of approximate analytic solutions of the Einstein field equations. The post-Newtonian computations of the explicit analytic dynamics and motion of compact binaries are discussed within the most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous Hamiltonians is achieved by the transition to Routhians. Order reduction of higher derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of general relativity is introduced for the tackling of compact binaries with spinning components. Configurations are treated where the absolute values of the spin vectors can be considered constant. Compact objects are modeled by use of Dirac delta functions and their derivatives. Consistency is achieved through transition to <i>d</i>-dimensional space and application of dimensional regularization. At the fourth post-Newtonian level, tail contributions to the binding energy show up. The conservative spin-dependent dynamics finds explicit presentation in Hamiltonian form through next-to-next-to-leading-order spin–orbit and spin1–spin2 couplings and to leading-order in the cubic and quartic in spin interactions. The radiation reaction dynamics is presented explicitly through the third-and-half post-Newtonian order for spinless objects, and, for spinning bodies, to leading-order in the spin–orbit and spin1–spin2 couplings. The most important historical issues get pointed out.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":40.6,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-018-0016-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5174159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 99
期刊
Living Reviews in Relativity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1