Pub Date : 2024-08-02DOI: 10.1007/s11012-024-01856-5
Michele Rosso, Simone Cuccurullo, Filippo Pietro Perli, Federico Maspero, Alberto Corigliano, Raffaele Ardito
In this work, a technique to improve the magnetic plucking for frequency up-conversion in piezoelectric energy harvesters is presented. The technique involves shielded magnets with Neodymium-iron-boron alloy polarized in the opposite direction on a main magnet. The phenomenon is investigated both at the computational and at the experimental level. Subsequently, simulations on a mesoscale piezoelectric energy harvester are presented which demonstrate a gain of 17 times if the magnets are shielded in comparison with the classical plucking (i.e. without shielding). The technique finds useful applications and benefits in the field of low-speed and low-frequency vibration energy harvesting, as well as in actuation and sensing.
{"title":"A method to enhance the nonlinear magnetic plucking for vibration energy harvesters","authors":"Michele Rosso, Simone Cuccurullo, Filippo Pietro Perli, Federico Maspero, Alberto Corigliano, Raffaele Ardito","doi":"10.1007/s11012-024-01856-5","DOIUrl":"10.1007/s11012-024-01856-5","url":null,"abstract":"<div><p>In this work, a technique to improve the magnetic plucking for frequency up-conversion in piezoelectric energy harvesters is presented. The technique involves shielded magnets with Neodymium-iron-boron alloy polarized in the opposite direction on a main magnet. The phenomenon is investigated both at the computational and at the experimental level. Subsequently, simulations on a mesoscale piezoelectric energy harvester are presented which demonstrate a gain of 17 times if the magnets are shielded in comparison with the classical plucking (i.e. without shielding). The technique finds useful applications and benefits in the field of low-speed and low-frequency vibration energy harvesting, as well as in actuation and sensing.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 9","pages":"1577 - 1592"},"PeriodicalIF":1.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01856-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1007/s11012-024-01860-9
Marco Fava, Vincenzo Parenti-Castelli, Michele Conconi, Nicola Sancisi
This paper presents a new combined fabrication method, named 3D-PLAST, aimed at overcoming inherent limitations of conventional additive manufacturing techniques when producing small flexure hinges in compliant mechanisms. Flexure hinges play a crucial role in various applications, offering advantages such as cost reduction, increased precision, and weight reduction. However, traditional additive manufacturing proves challenging in achieving satisfactory mechanical properties when manufacturing small-size hinges. To overcome these limitations, the 3D-PLAST process combines fused filament fabrication with compressive plastic deformation. This hybrid process exploits the advantages of both techniques, i.e., flexibility, low cost, and ease of use. This process enables the fabrication of small-size mechanisms with good dimensional accuracy. Finally, the paper reports experimental tests on two materials comparing flexure hinges manufactured by 3D-PLAST versus 3D printing methods to demonstrate the effectiveness of the proposed process.
本文介绍了一种名为 3D-PLAST 的新型组合制造方法,旨在克服传统增材制造技术在生产顺从机构中的小型挠性铰链时所固有的局限性。挠性铰链在各种应用中发挥着至关重要的作用,具有降低成本、提高精度和减轻重量等优势。然而,在制造小型铰链时,传统的快速成型技术在获得令人满意的机械性能方面具有挑战性。为了克服这些限制,3D-PLAST 工艺将熔融长丝制造与压缩塑性变形相结合。这种混合工艺利用了两种技术的优点,即灵活性、低成本和易用性。这种工艺能够制造出尺寸精度高的小尺寸机构。最后,论文报告了两种材料的实验测试,比较了 3D-PLAST 与 3D 打印方法制造的挠性铰链,以证明所提议工艺的有效性。
{"title":"A new combined fabrication process to shape small flexure hinges","authors":"Marco Fava, Vincenzo Parenti-Castelli, Michele Conconi, Nicola Sancisi","doi":"10.1007/s11012-024-01860-9","DOIUrl":"10.1007/s11012-024-01860-9","url":null,"abstract":"<div><p>This paper presents a new combined fabrication method, named 3D-PLAST, aimed at overcoming inherent limitations of conventional additive manufacturing techniques when producing small flexure hinges in compliant mechanisms. Flexure hinges play a crucial role in various applications, offering advantages such as cost reduction, increased precision, and weight reduction. However, traditional additive manufacturing proves challenging in achieving satisfactory mechanical properties when manufacturing small-size hinges. To overcome these limitations, the 3D-PLAST process combines fused filament fabrication with compressive plastic deformation. This hybrid process exploits the advantages of both techniques, i.e., flexibility, low cost, and ease of use. This process enables the fabrication of small-size mechanisms with good dimensional accuracy. Finally, the paper reports experimental tests on two materials comparing flexure hinges manufactured by 3D-PLAST versus 3D printing methods to demonstrate the effectiveness of the proposed process.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 8","pages":"1327 - 1334"},"PeriodicalIF":1.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01860-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1007/s11012-024-01862-7
Francesco Chirianni, Giuseppe Vairo, Michele Marino
Planning a smooth-running and effective extrusion-based bioprinting process is a challenging endeavor due to the intricate interplay among process variables (e.g., printing pressure, nozzle diameter, extrusion velocity, and mass flow rate). A priori predicting how process variables relate each other is complex due to both the non-Newtonian response of bio-inks and the extruder geometries. In addition, ensuring high cell viability is of paramount importance, as bioprinting procedures expose cells to stresses that can potentially induce mechanobiological damage. Currently, in laboratory settings, bioprinting planning is often conducted through expensive and time-consuming trial-and-error procedures. In this context, an in silico strategy has been recently proposed by the authors for a clear and streamlined pathway towards bioprinting process planning (Chirianni et al. in Comput Methods Appl Mech Eng 419:116685, 2024. https://doi.org/10.1016/j.cma.2023.116685). The aim of this work is to investigate on the influence of bio-ink polymer type and of cartridge-nozzle connection shape on the setting of key process variables by adopting such in silico strategy. In detail, combinations of two different bio-inks and three different extruder geometries are considered. Nomograms are built as graphical fast design tools, thus informing how the printing pressure, the mass flow rate and the cell viability vary with extrusion velocity and nozzle diameter.
{"title":"Influence of extruder geometry and bio-ink type in extrusion-based bioprinting via an in silico design tool","authors":"Francesco Chirianni, Giuseppe Vairo, Michele Marino","doi":"10.1007/s11012-024-01862-7","DOIUrl":"10.1007/s11012-024-01862-7","url":null,"abstract":"<div><p>Planning a smooth-running and effective extrusion-based bioprinting process is a challenging endeavor due to the intricate interplay among process variables (e.g., printing pressure, nozzle diameter, extrusion velocity, and mass flow rate). <i>A priori</i> predicting how process variables relate each other is complex due to both the non-Newtonian response of bio-inks and the extruder geometries. In addition, ensuring high cell viability is of paramount importance, as bioprinting procedures expose cells to stresses that can potentially induce mechanobiological damage. Currently, in laboratory settings, bioprinting planning is often conducted through expensive and time-consuming trial-and-error procedures. In this context, an in silico strategy has been recently proposed by the authors for a clear and streamlined pathway towards bioprinting process planning (Chirianni et al. in Comput Methods Appl Mech Eng 419:116685, 2024. https://doi.org/10.1016/j.cma.2023.116685). The aim of this work is to investigate on the influence of bio-ink polymer type and of cartridge-nozzle connection shape on the setting of key process variables by adopting such in silico strategy. In detail, combinations of two different bio-inks and three different extruder geometries are considered. Nomograms are built as graphical fast design tools, thus informing how the printing pressure, the mass flow rate and the cell viability vary with extrusion velocity and nozzle diameter.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 8","pages":"1285 - 1299"},"PeriodicalIF":1.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01862-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A multimodal distribution based uncertainty analysis method for cross-domain aircraft morphing wing mechanisms is proposed to address the engineering issue of the reliability of morphing mechanisms. This method is based on Gaussian mixture model, isotropic sparse mesh method combined with maximum entropy method analysis. In the working environment of the morphing wings, the external load exhibits a multimodal distribution with changes in flight altitude and geographical location. Traditional uncertainty methods are difficult to accurately determine the reliability of aircraft under the influence of multiple variable influencing factors. Therefore, the proposed method is proposed to evaluate the reliability of morphing wing mechanisms. Firstly, a Gaussian mixture model is used to establish the mixture density function of the pressure and the leading edge size of the variant aircraft. Secondly, the integral points and weights of the multimodal random variables are calculated by the sparse grid method. Finally, an adaptive convergence mechanism is used to improve the uncertainty propagation accuracy. After a mathematical example and two engineering examples, it can be considered that the proposed method has a certain reference value in analyzing the uncertainty propagation under the multimodal distribution state of multiple factors.
{"title":"Multimodal uncertainty propagation analysis for the morphing wings of cross-domain variant aircraft","authors":"Qishui Yao, Siyuan Liu, Jiachang Tang, Hairui Zhang, Zitong Qiu","doi":"10.1007/s11012-024-01857-4","DOIUrl":"10.1007/s11012-024-01857-4","url":null,"abstract":"<div><p>A multimodal distribution based uncertainty analysis method for cross-domain aircraft morphing wing mechanisms is proposed to address the engineering issue of the reliability of morphing mechanisms. This method is based on Gaussian mixture model, isotropic sparse mesh method combined with maximum entropy method analysis. In the working environment of the morphing wings, the external load exhibits a multimodal distribution with changes in flight altitude and geographical location. Traditional uncertainty methods are difficult to accurately determine the reliability of aircraft under the influence of multiple variable influencing factors. Therefore, the proposed method is proposed to evaluate the reliability of morphing wing mechanisms. Firstly, a Gaussian mixture model is used to establish the mixture density function of the pressure and the leading edge size of the variant aircraft. Secondly, the integral points and weights of the multimodal random variables are calculated by the sparse grid method. Finally, an adaptive convergence mechanism is used to improve the uncertainty propagation accuracy. After a mathematical example and two engineering examples, it can be considered that the proposed method has a certain reference value in analyzing the uncertainty propagation under the multimodal distribution state of multiple factors.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 9","pages":"1555 - 1576"},"PeriodicalIF":1.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1007/s11012-024-01851-w
Shuting Lu, Beinan Jia, Jialu Wang, Yongjun Jian
The extended Brinkman model is employed in this study to investigate the instability of double diffusion natural convection in porous layers caused by vertical variations in boundary temperature and solute concentration. The stability of fluid flow is determined by discussing the temporal evolution of normal mode disturbances superposed onto the fundamental state. The linear dynamics problem is formulated as an Orr–Sommerfeld eigenvalue problem and solved numerically using the Chebyshev collocation method. The effects of thermal/solute Darcy–Rayleigh number (RaT/RaS), Lewis number (Le), and Darcy–Prandtl number (PrD) on system instability are analyzed. Growth rate curves indicate that solute Darcy–Rayleigh numbers can induce flow instability. Neutral stability curves show that increasing RaT/RaS promotes instability. There is a critical threshold for Le, exceeding this amplifies instability, while falling below suppresses it. For large RaT values, varying PrD leads to different effects of increasing RaS on flow stability. The stability of the system is significantly dependent on RaT and RaS, with the critical value of the Le playing a decisive role in system stability. Additionally, PrD significantly affects system instability under certain conditions.
本研究采用扩展布林克曼模型来研究边界温度和溶质浓度垂直变化引起的多孔层双扩散自然对流的不稳定性。流体流动的稳定性是通过讨论叠加在基态上的正常模式扰动的时间演化来确定的。线性动力学问题被表述为 Orr-Sommerfeld 特征值问题,并使用切比雪夫配位法进行数值求解。分析了热/溶质达西-雷利数(RaT/RaS)、刘易斯数(Le)和达西-勃兰特数(PrD)对系统不稳定性的影响。增长率曲线表明,溶质达西-雷利数可诱发流动不稳定性。中性稳定性曲线表明,RaT/RaS 的增加会促进不稳定性。Le 存在一个临界阈值,超过该阈值会放大不稳定性,而低于该阈值则会抑制不稳定性。对于较大的 RaT 值,不同的 PrD 会导致 RaS 的增加对流动稳定性产生不同的影响。系统稳定性在很大程度上取决于 RaT 和 RaS,其中 Le 的临界值对系统稳定性起着决定性作用。此外,在某些条件下,PrD 对系统的不稳定性也有很大影响。
{"title":"Instability of double-diffusive natural convection in a vertical Brinkman porous layer","authors":"Shuting Lu, Beinan Jia, Jialu Wang, Yongjun Jian","doi":"10.1007/s11012-024-01851-w","DOIUrl":"10.1007/s11012-024-01851-w","url":null,"abstract":"<div><p>The extended Brinkman model is employed in this study to investigate the instability of double diffusion natural convection in porous layers caused by vertical variations in boundary temperature and solute concentration. The stability of fluid flow is determined by discussing the temporal evolution of normal mode disturbances superposed onto the fundamental state. The linear dynamics problem is formulated as an Orr–Sommerfeld eigenvalue problem and solved numerically using the Chebyshev collocation method. The effects of thermal/solute Darcy–Rayleigh number (<i>Ra</i><sub><i>T</i></sub>/<i>Ra</i><sub><i>S</i></sub>), Lewis number (<i>Le</i>), and Darcy–Prandtl number (<i>Pr</i><sub><i>D</i></sub>) on system instability are analyzed. Growth rate curves indicate that solute Darcy–Rayleigh numbers can induce flow instability. Neutral stability curves show that increasing <i>Ra</i><sub><i>T</i></sub>/<i>Ra</i><sub><i>S</i></sub> promotes instability. There is a critical threshold for <i>Le</i>, exceeding this amplifies instability, while falling below suppresses it. For large <i>Ra</i><sub><i>T</i></sub> values, varying <i>Pr</i><sub><i>D</i></sub> leads to different effects of increasing <i>Ra</i><sub><i>S</i></sub> on flow stability. The stability of the system is significantly dependent on <i>Ra</i><sub><i>T</i></sub> and <i>Ra</i><sub><i>S</i></sub>, with the critical value of the <i>Le</i> playing a decisive role in system stability. Additionally, <i>Pr</i><sub><i>D</i></sub> significantly affects system instability under certain conditions.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 9","pages":"1539 - 1553"},"PeriodicalIF":1.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1007/s11012-024-01843-w
Pierfrancesco Gaziano, Michele Marino
In this paper, we propose an extension of a previous model of cell motility in tissue engineering applications recently developed by the authors. Achieving large-scale production of neo-tissue through biofabrication technologies remains challenging owing to the need of thoroughly optimizing all the relevant process variables, a task hardly attainable through solely trial and error approaches. Therefore, the present work is intended to provide a valid and effective computational-based support for neo-tissue formation, with a specific focus on the preliminary phase of such process, in which cells move through a polymeric scaffold (hydrogel) and then compact into clusters. Cell motility is modeled by resorting to the phase-field method, and by incorporating diffusion of nutrients from the external culture bath as well as the expression by cells of chemoattractant substances that bias the random path they otherwise would follow. The previous model has been enriched by additionally encompassing the secretion of enzymes by cells that cleave the crosslinks between the hydrogel polymer chains. As such, in the present model hydrogel degradation exhibits spatio-temporal variations in its chemo-physical properties related to the local amount of enzymes, which deeply affects cell motility. Numerical results showcase the pivotal importance of the cells micro-environment properties for their crawling in hydrogel scaffolds, opening towards the development of a predictive computational-aided optimization tool for neo-tissue growth in bioprinted scaffolds.
{"title":"Computational modeling of cell motility and clusters formation in enzyme-sensitive hydrogels","authors":"Pierfrancesco Gaziano, Michele Marino","doi":"10.1007/s11012-024-01843-w","DOIUrl":"10.1007/s11012-024-01843-w","url":null,"abstract":"<div><p>In this paper, we propose an extension of a previous model of cell motility in tissue engineering applications recently developed by the authors. Achieving large-scale production of neo-tissue through biofabrication technologies remains challenging owing to the need of thoroughly optimizing all the relevant process variables, a task hardly attainable through solely trial and error approaches. Therefore, the present work is intended to provide a valid and effective computational-based support for neo-tissue formation, with a specific focus on the preliminary phase of such process, in which cells move through a polymeric scaffold (hydrogel) and then compact into clusters. Cell motility is modeled by resorting to the phase-field method, and by incorporating diffusion of nutrients from the external culture bath as well as the expression by cells of chemoattractant substances that bias the random path they otherwise would follow. The previous model has been enriched by additionally encompassing the secretion of enzymes by cells that cleave the crosslinks between the hydrogel polymer chains. As such, in the present model hydrogel degradation exhibits spatio-temporal variations in its chemo-physical properties related to the local amount of enzymes, which deeply affects cell motility. Numerical results showcase the pivotal importance of the cells micro-environment properties for their crawling in hydrogel scaffolds, opening towards the development of a predictive computational-aided optimization tool for neo-tissue growth in bioprinted scaffolds.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 8","pages":"1335 - 1349"},"PeriodicalIF":1.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01843-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-21DOI: 10.1007/s11012-024-01846-7
Mohammad Khoshnazar, Amir Hossein Barjini, Hamed Moradi
In this paper, a robust (mu)-optimal controller is developed for a three-dimensional overhead crane system with hoisting mechanism using the (mu)-synthesis method. The 3D overhead crane system is modeled as an underactuated five degrees of freedom (5DOFs) system with uncertain parameters. The system receives only three input signals: Two forces that move the trolley along the (x) and (y) axes, and the hoisting force that moves the payload along the rope. In the first step to design the (mu)-optimal controller for the 3D overhead crane system, nonlinear equations of the system are linearized around the equilibrium point to obtain the transfer functions. Next, to ensure that the system performs well and is robust against uncertainties, efficient weight functions for both performance and uncertainty are calculated. Finally, the (mu)-optimal robust controller is designed using MATLAB’s Robust Control Toolbox, implementing the D-K iteration algorithm, and analyzing (mu)-plots. It is shown that not only does the proposed controller provide nominal stability and performance, but it also ensures robust stability and performance. The proposed controller is applied to the original nonlinear system and simulation results demonstrate that this controller satisfies the control objectives well and is also robust to severe parametric uncertainties and external disturbances. Moreover, this controller provides better results compared to a conventional sliding mode controller (SMC) and a second-order SMC, by applying much less control forces. Another advantage of the proposed controller is that, unlike the other two controllers, it does not need feedback from states at the speed level. Therefore, in practice, the proposed robust controller needs fewer and cheaper sensors.
{"title":"Using a robust mu-synthesis based controller to eliminate the adverse effects of uncertainties and external disturbances in nonlinear 3D overhead cranes with hoisting mechanism","authors":"Mohammad Khoshnazar, Amir Hossein Barjini, Hamed Moradi","doi":"10.1007/s11012-024-01846-7","DOIUrl":"10.1007/s11012-024-01846-7","url":null,"abstract":"<div><p>In this paper, a robust <span>(mu)</span>-optimal controller is developed for a three-dimensional overhead crane system with hoisting mechanism using the <span>(mu)</span>-synthesis method. The 3D overhead crane system is modeled as an underactuated five degrees of freedom (5DOFs) system with uncertain parameters. The system receives only three input signals: Two forces that move the trolley along the <span>(x)</span> and <span>(y)</span> axes, and the hoisting force that moves the payload along the rope. In the first step to design the <span>(mu)</span>-optimal controller for the 3D overhead crane system, nonlinear equations of the system are linearized around the equilibrium point to obtain the transfer functions. Next, to ensure that the system performs well and is robust against uncertainties, efficient weight functions for both performance and uncertainty are calculated. Finally, the <span>(mu)</span>-optimal robust controller is designed using MATLAB’s Robust Control Toolbox, implementing the D-K iteration algorithm, and analyzing <span>(mu)</span>-plots. It is shown that not only does the proposed controller provide nominal stability and performance, but it also ensures robust stability and performance. The proposed controller is applied to the original nonlinear system and simulation results demonstrate that this controller satisfies the control objectives well and is also robust to severe parametric uncertainties and external disturbances. Moreover, this controller provides better results compared to a conventional sliding mode controller (SMC) and a second-order SMC, by applying much less control forces. Another advantage of the proposed controller is that, unlike the other two controllers, it does not need feedback from states at the speed level. Therefore, in practice, the proposed robust controller needs fewer and cheaper sensors.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 9","pages":"1517 - 1538"},"PeriodicalIF":1.9,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1007/s11012-024-01855-6
Chu Chen, Xu Zhuo, Li Hui, Xu Pei-yao, Sun Xian-chao, Gu Da-wei, Hu Chang-cheng, Li He, Wen Bang-chun
Theoretical modeling is established for an all-composite honeycomb core sandwich panel (ACHCSP) using the higher-order shear deformation theory and Gibson equivalent theory. The central honeycomb layer is equivalently modeled as a thick layer of orthotropic material. The vibration characteristics are solved using energy methods and orthogonal polynomial approaches. Experimental specimens of ACHCSP are fabricated, and a dedicated experimental setup is constructed for vibration response testing. The experimental results validate the accuracy of the theoretical model in predicting the intrinsic properties and vibration response of ACHCSP. A comparison between experimental and theoretical vibration response values indicates a maximum error of 10.91%. Finally, the impact of different fiber layer thicknesses, honeycomb cell wall thicknesses, and honeycomb cell wall lengths on the vibration characteristics of ACHCSP is discussed.
{"title":"Analysis of vibrational characteristics of all-composite honeycomb core sandwich panels: theoretical and experimental study","authors":"Chu Chen, Xu Zhuo, Li Hui, Xu Pei-yao, Sun Xian-chao, Gu Da-wei, Hu Chang-cheng, Li He, Wen Bang-chun","doi":"10.1007/s11012-024-01855-6","DOIUrl":"10.1007/s11012-024-01855-6","url":null,"abstract":"<div><p>Theoretical modeling is established for an all-composite honeycomb core sandwich panel (ACHCSP) using the higher-order shear deformation theory and Gibson equivalent theory. The central honeycomb layer is equivalently modeled as a thick layer of orthotropic material. The vibration characteristics are solved using energy methods and orthogonal polynomial approaches. Experimental specimens of ACHCSP are fabricated, and a dedicated experimental setup is constructed for vibration response testing. The experimental results validate the accuracy of the theoretical model in predicting the intrinsic properties and vibration response of ACHCSP. A comparison between experimental and theoretical vibration response values indicates a maximum error of 10.91%. Finally, the impact of different fiber layer thicknesses, honeycomb cell wall thicknesses, and honeycomb cell wall lengths on the vibration characteristics of ACHCSP is discussed.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 9","pages":"1481 - 1498"},"PeriodicalIF":1.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1007/s11012-024-01853-8
Julia de Castro Motta, Fernando Fraternali, Giuseppe Saccomandi
This study investigates the propagation of rarefaction solitary waves in one-dimensional, tensegrity-like mass-spring lattices that are subject to an initial state of pre-compression. The analyzed systems exhibit a cubic interaction potential between adjacent masses that accurately captures the constitutive response of tensegrity prisms with elastically softening behavior. Analytical results are presented for the propagation of rarefaction solitary waves that produce a reduction of the initial prestress exhibited by the system. It is known in the literature that the use of cubic interaction potentials in one-dimensional lattices enables the prediction of the propagation of solitary waves with sech(^2) profile. Investigating the particular case of pre-compressed, softening-type tensegrity lattices, this study shows that such a noticeable result can be derived using both the classical and the improved Boussinesq equation. The given results reveal the presence of rarefaction solitary waves in a suitable range of wave speeds, and offer an explicit formula for the upper bound of the rarefaction wave speed that leaves the system in a compressed state. The outcomes of the present work pave the way to the development of analytic models for the design of radically new, metamaterial-type impact protection systems. Numerical simulations show the ability of the tensegrity-like model in predicting the propagation of rarefaction solitary waves in a physical model of a tensegrity mass-spring chain.
{"title":"Rarefaction pulses on tensegrity lattices are just $$text {sech}^2$$ -solitary (dark) waves","authors":"Julia de Castro Motta, Fernando Fraternali, Giuseppe Saccomandi","doi":"10.1007/s11012-024-01853-8","DOIUrl":"https://doi.org/10.1007/s11012-024-01853-8","url":null,"abstract":"<p>This study investigates the propagation of rarefaction solitary waves in one-dimensional, tensegrity-like mass-spring lattices that are subject to an initial state of pre-compression. The analyzed systems exhibit a cubic interaction potential between adjacent masses that accurately captures the constitutive response of tensegrity prisms with elastically softening behavior. Analytical results are presented for the propagation of rarefaction solitary waves that produce a reduction of the initial prestress exhibited by the system. It is known in the literature that the use of cubic interaction potentials in one-dimensional lattices enables the prediction of the propagation of solitary waves with sech<span>(^2)</span> profile. Investigating the particular case of pre-compressed, softening-type tensegrity lattices, this study shows that such a noticeable result can be derived using both the classical and the improved Boussinesq equation. The given results reveal the presence of rarefaction solitary waves in a suitable range of wave speeds, and offer an explicit formula for the upper bound of the rarefaction wave speed that leaves the system in a compressed state. The outcomes of the present work pave the way to the development of analytic models for the design of radically new, metamaterial-type impact protection systems. Numerical simulations show the ability of the tensegrity-like model in predicting the propagation of rarefaction solitary waves in a physical model of a tensegrity mass-spring chain.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"21 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inspired that Kangaroo could buffer the shock and vibration from ground and keep the body and head steady and low/wide-frequency vibration isolation performance, a novel foot-leg coupling bio-inspired vibration isolation (FLBVI) system is proposed considering the synergy among skeleton, ligament/muscle and articulation. Based on the statics model, the static properties are investigated, and the idealized loading capacity and quasi-zero stiffness (QZS) range could be easily obtained by adjusting structure parameters. Combining with the dynamic model, the dynamic equation of the FLBVI structure is derived by Lagrange principle, and the nonlinear properties are analyzed by incremental harmonic balance method (IHBM). Based on verifying validity and feasibility of theoretical model with experiment results, the dynamic behaviors and vibration isolation performances of FLBVI structure are revealed from the visual angle of resonance characteristic and displacement transmissibility under different parameters. The results show that the FLBVI could availably reduce response amplitude, broaden the vibration isolation bandwidth, and then improve vibration isolation performance (below 5 Hz) and stability with proper parameters. The research of the FLBVI structure provides an innovative strategy of the designing bio-inspired vibration isolation structure.
{"title":"Dynamic stability and vibration isolation property of a foot-leg coupling bio-inspired vibration isolation structure","authors":"Shihua Zhou, Pengyang Wang, Yunchao Zhou, Chenhui Zhou, Zichun Zhou, XinHai Yu","doi":"10.1007/s11012-024-01858-3","DOIUrl":"10.1007/s11012-024-01858-3","url":null,"abstract":"<div><p>Inspired that Kangaroo could buffer the shock and vibration from ground and keep the body and head steady and low/wide-frequency vibration isolation performance, a novel foot-leg coupling bio-inspired vibration isolation (FLBVI) system is proposed considering the synergy among skeleton, ligament/muscle and articulation. Based on the statics model, the static properties are investigated, and the idealized loading capacity and quasi-zero stiffness (QZS) range could be easily obtained by adjusting structure parameters. Combining with the dynamic model, the dynamic equation of the FLBVI structure is derived by Lagrange principle, and the nonlinear properties are analyzed by incremental harmonic balance method (IHBM). Based on verifying validity and feasibility of theoretical model with experiment results, the dynamic behaviors and vibration isolation performances of FLBVI structure are revealed from the visual angle of resonance characteristic and displacement transmissibility under different parameters. The results show that the FLBVI could availably reduce response amplitude, broaden the vibration isolation bandwidth, and then improve vibration isolation performance (below 5 Hz) and stability with proper parameters. The research of the FLBVI structure provides an innovative strategy of the designing bio-inspired vibration isolation structure.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 9","pages":"1499 - 1515"},"PeriodicalIF":1.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}