Cancer, a term encompassing a diverse group of diseases, is characterized by uncontrolled cell growth that disrupts normal bodily functions. It remains a major global health concern, claiming millions of lives annually. The causes of cancer are complex and multifaceted, involving lifestyle choices, genetics, and environmental factors. Many FDA-approved drugs feature heterocyclic cores due to their promising pharmacological properties. Notable anticancer agents include doxorubicin, daunorubicin, 5-fluorouracil, methotrexate, vinblastine, and vincristine. Indolizine, a heterocyclic compound with the formula C8H7N, stands out as a privileged scaffold in medicinal chemistry. This unique isomer of indole, with nitrogen located at a ring fusion position fused to a six-membered benzene ring, has emerged as a potent candidate for anticancer drug development. This review explores the structure-activity relationship (SAR) studies of various indolizine derivatives, highlighting their potential in targeting diverse cancer types. The review comprehensively analyzes the synthetic pathways employed to create potent indolizine derivatives, focusing on methods such as one-pot reactions, domino reactions, and other innovative approaches. Additionally, it critically examines the biological assays used to evaluate the anticancer activity of indolizine derivatives, providing a quantitative understanding of their potency against various cancer cell lines. Emphasizing different cancer types, including breast, lung, liver, and colorectal cancer, this review underscores the oncotherapeutic significance of indolizine derivatives.