首页 > 最新文献

ACS Applied Nano Materials最新文献

英文 中文
Correction notice. 更正通知。
IF 6.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-06-18 DOI: 10.1080/10717544.2024.2339792
{"title":"Correction notice.","authors":"","doi":"10.1080/10717544.2024.2339792","DOIUrl":"10.1080/10717544.2024.2339792","url":null,"abstract":"","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"31 1","pages":"2339792"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking boundaries: the advancements in transdermal delivery of antibiotics. 打破界限:抗生素透皮给药技术的进步。
IF 6.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-01-19 DOI: 10.1080/10717544.2024.2304251
Ahlam Zaid Alkilani, Rania Hamed, Batool Musleh, Zaina Sharaire

Transdermal drug delivery systems (TDDS) for antibiotics have seen significant advances in recent years that aimed to improve the efficacy and safety of these drugs. TDDS offer many advantages over other conventional delivery systems such as non-invasiveness, controlled-release pattern, avoidance of first-pass metabolism. The objective of this review is to provide an overview on the recent advances in the TDDS of different groups of antibiotics including β-lactams, tetracyclines, macrolides, and lincosamides, utilized for their effective delivery through the skin and to explore the challenges associated with this field. The majority of antibiotics do not have favorable properties for passive transdermal delivery. Thus, novel strategies have been employed to improve the delivery of antibiotics through the skin, such as the use of nanotechnology (nanoparticles, solid-lipid nanoparticles, nanoemulsions, vesicular carriers, and liposomes) or the physical enhancement techniques like microneedles and ultrasound. In conclusion, the transdermal delivery systems could be a promising method for delivering antibiotics that have the potential to improve patient outcomes and enhance the efficacy of drugs. Further research and development are still needed to explore the potential of delivering more antibiotic drugs by using various transdermal drug delivery approaches.

近年来,抗生素透皮给药系统(TDDS)取得了重大进展,旨在提高这些药物的疗效和安全性。与其他传统给药系统相比,透皮给药系统具有许多优势,如非侵入性、控释模式、避免首过代谢等。本综述旨在概述不同类抗生素(包括 β-内酰胺类、四环素类、大环内酯类和林可酰胺类)的 TDDS 的最新进展,并探讨该领域所面临的挑战。大多数抗生素都不具备被动透皮给药的有利特性。因此,人们采用了新的策略来改善抗生素的透皮给药,如使用纳米技术(纳米颗粒、固脂纳米颗粒、纳米乳液、囊泡载体和脂质体)或微针和超声波等物理增强技术。总之,透皮给药系统是一种很有前景的抗生素给药方法,有可能改善患者的治疗效果并提高药物的疗效。目前仍需进一步研究和开发,以探索利用各种透皮给药方法输送更多抗生素药物的潜力。
{"title":"Breaking boundaries: the advancements in transdermal delivery of antibiotics.","authors":"Ahlam Zaid Alkilani, Rania Hamed, Batool Musleh, Zaina Sharaire","doi":"10.1080/10717544.2024.2304251","DOIUrl":"10.1080/10717544.2024.2304251","url":null,"abstract":"<p><p>Transdermal drug delivery systems (TDDS) for antibiotics have seen significant advances in recent years that aimed to improve the efficacy and safety of these drugs. TDDS offer many advantages over other conventional delivery systems such as non-invasiveness, controlled-release pattern, avoidance of first-pass metabolism. The objective of this review is to provide an overview on the recent advances in the TDDS of different groups of antibiotics including β-lactams, tetracyclines, macrolides, and lincosamides, utilized for their effective delivery through the skin and to explore the challenges associated with this field. The majority of antibiotics do not have favorable properties for passive transdermal delivery. Thus, novel strategies have been employed to improve the delivery of antibiotics through the skin, such as the use of nanotechnology (nanoparticles, solid-lipid nanoparticles, nanoemulsions, vesicular carriers, and liposomes) or the physical enhancement techniques like microneedles and ultrasound. In conclusion, the transdermal delivery systems could be a promising method for delivering antibiotics that have the potential to improve patient outcomes and enhance the efficacy of drugs. Further research and development are still needed to explore the potential of delivering more antibiotic drugs by using various transdermal drug delivery approaches.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"31 1","pages":"2304251"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139502483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems. 用于解决正向和反向动态问题的频谱集成神经网络(SINNs)。
IF 6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-09-22 DOI: 10.1016/j.neunet.2024.106756
Lin Qiu, Fajie Wang, Wenzhen Qu, Yan Gu, Qing-Hua Qin

This study introduces an innovative neural network framework named spectral integrated neural networks (SINNs) to address both forward and inverse dynamic problems in three-dimensional space. In the SINNs, the spectral integration technique is utilized for temporal discretization, followed by the application of a fully connected neural network to solve the resulting partial differential equations in the spatial domain. Furthermore, the polynomial basis functions are employed to expand the unknown function, with the goal of improving the performance of SINNs in tackling inverse problems. The performance of the developed framework is evaluated through several dynamic benchmark examples encompassing linear and nonlinear heat conduction problems, linear and nonlinear wave propagation problems, inverse problem of heat conduction, and long-time heat conduction problem. The numerical results demonstrate that the SINNs can effectively and accurately solve forward and inverse problems involving heat conduction and wave propagation. Additionally, the SINNs provide precise and stable solutions for dynamic problems with extended time durations. Compared to commonly used physics-informed neural networks, the SINNs exhibit superior performance with enhanced convergence speed, computational accuracy, and efficiency.

本研究介绍了一种名为光谱集成神经网络(SINNs)的创新神经网络框架,用于解决三维空间中的正向和反向动态问题。在 SINNs 中,利用频谱积分技术进行时间离散化,然后应用全连接神经网络求解空间域的偏微分方程。此外,还采用多项式基函数来扩展未知函数,目的是提高 SINN 在处理逆问题时的性能。通过几个动态基准示例,包括线性和非线性热传导问题、线性和非线性波传播问题、热传导逆问题和长时间热传导问题,对所开发框架的性能进行了评估。数值结果表明,SINN 可以有效、准确地解决涉及热传导和波传播的正向和反向问题。此外,SINN 还能为时间持续较长的动态问题提供精确而稳定的解决方案。与常用的物理信息神经网络相比,SINN 在收敛速度、计算精度和效率方面表现出更优越的性能。
{"title":"Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems.","authors":"Lin Qiu, Fajie Wang, Wenzhen Qu, Yan Gu, Qing-Hua Qin","doi":"10.1016/j.neunet.2024.106756","DOIUrl":"10.1016/j.neunet.2024.106756","url":null,"abstract":"<p><p>This study introduces an innovative neural network framework named spectral integrated neural networks (SINNs) to address both forward and inverse dynamic problems in three-dimensional space. In the SINNs, the spectral integration technique is utilized for temporal discretization, followed by the application of a fully connected neural network to solve the resulting partial differential equations in the spatial domain. Furthermore, the polynomial basis functions are employed to expand the unknown function, with the goal of improving the performance of SINNs in tackling inverse problems. The performance of the developed framework is evaluated through several dynamic benchmark examples encompassing linear and nonlinear heat conduction problems, linear and nonlinear wave propagation problems, inverse problem of heat conduction, and long-time heat conduction problem. The numerical results demonstrate that the SINNs can effectively and accurately solve forward and inverse problems involving heat conduction and wave propagation. Additionally, the SINNs provide precise and stable solutions for dynamic problems with extended time durations. Compared to commonly used physics-informed neural networks, the SINNs exhibit superior performance with enhanced convergence speed, computational accuracy, and efficiency.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"180 ","pages":"106756"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition. 用于跨主体脑电图情感识别的多源选择性图域自适应网络。
IF 6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI: 10.1016/j.neunet.2024.106742
Jing Wang, Xiaojun Ning, Wei Xu, Yunze Li, Ziyu Jia, Youfang Lin

Affective brain-computer interface is an important part of realizing emotional human-computer interaction. However, existing objective individual differences among subjects significantly hinder the application of electroencephalography (EEG) emotion recognition. Existing methods still lack the complete extraction of subject-invariant representations for EEG and the ability to fuse valuable information from multiple subjects to facilitate the emotion recognition of the target subject. To address the above challenges, we propose a Multi-source Selective Graph Domain Adaptation Network (MSGDAN), which can better utilize data from different source subjects and perform more robust emotion recognition on the target subject. The proposed network extracts and selects the individual information specific to each subject, where public information refers to subject-invariant components from multi-source subjects. Moreover, the graph domain adaptation network captures both functional connectivity and regional states of the brain via a dynamic graph network and then integrates graph domain adaptation to ensure the invariance of both functional connectivity and regional states. To evaluate our method, we conduct cross-subject emotion recognition experiments on the SEED, SEED-IV, and DEAP datasets. The results demonstrate that the MSGDAN has superior classification performance.

情感脑机接口是实现情感人机交互的重要组成部分。然而,客观存在的受试者个体差异极大地阻碍了脑电图(EEG)情感识别的应用。现有的方法仍然缺乏对脑电的主体不变性表征的完整提取,以及融合来自多个主体的有价值信息以促进目标主体的情感识别的能力。针对上述挑战,我们提出了一种多源选择性图域自适应网络(MSGDAN),它能更好地利用来自不同源主体的数据,对目标主体进行更稳健的情感识别。所提出的网络可提取和选择每个主体的特定个体信息,其中公共信息指的是来自多源主体的主体不变成分。此外,图域自适应网络通过动态图网络捕捉大脑的功能连接和区域状态,然后整合图域自适应以确保功能连接和区域状态的不变性。为了评估我们的方法,我们在 SEED、SEED-IV 和 DEAP 数据集上进行了跨主体情绪识别实验。结果表明,MSGDAN 的分类性能更优越。
{"title":"Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition.","authors":"Jing Wang, Xiaojun Ning, Wei Xu, Yunze Li, Ziyu Jia, Youfang Lin","doi":"10.1016/j.neunet.2024.106742","DOIUrl":"10.1016/j.neunet.2024.106742","url":null,"abstract":"<p><p>Affective brain-computer interface is an important part of realizing emotional human-computer interaction. However, existing objective individual differences among subjects significantly hinder the application of electroencephalography (EEG) emotion recognition. Existing methods still lack the complete extraction of subject-invariant representations for EEG and the ability to fuse valuable information from multiple subjects to facilitate the emotion recognition of the target subject. To address the above challenges, we propose a Multi-source Selective Graph Domain Adaptation Network (MSGDAN), which can better utilize data from different source subjects and perform more robust emotion recognition on the target subject. The proposed network extracts and selects the individual information specific to each subject, where public information refers to subject-invariant components from multi-source subjects. Moreover, the graph domain adaptation network captures both functional connectivity and regional states of the brain via a dynamic graph network and then integrates graph domain adaptation to ensure the invariance of both functional connectivity and regional states. To evaluate our method, we conduct cross-subject emotion recognition experiments on the SEED, SEED-IV, and DEAP datasets. The results demonstrate that the MSGDAN has superior classification performance.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"180 ","pages":"106742"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. 认识胃肠道的生物屏障和病理生理特点,以设计和应用纳米疗法。
IF 6.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-10-15 DOI: 10.1080/10717544.2024.2415580
Shan Li, Tianyu Wu, Jingfeng Wu, Wensheng Chen, Dinglin Zhang

The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.

胃肠道(GIT)是人类消化食物和吸收营养的一个重要而复杂的系统。胃肠道很容易患病,可能导致人体不适甚至死亡。治疗胃肠道疾病的药物面临着多重生物障碍,这大大降低了药物的疗效。认识 GIT 的生物障碍和病理生理特点有助于设计创新疗法。纳米治疗药物具有特殊的靶向性和可控治疗释放特性,已被广泛用于治疗胃食管疾病。在此,我们对胃食管的生物屏障和病理生理特点进行了全面综述,这可能有助于设计治疗胃食管疾病的纳米疗法。此外,我们还选择了幽门螺杆菌感染和炎症性肠病等几种典型的上消化道和下消化道疾病,研究纳米疗法在消化道疾病治疗中的应用。
{"title":"Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics.","authors":"Shan Li, Tianyu Wu, Jingfeng Wu, Wensheng Chen, Dinglin Zhang","doi":"10.1080/10717544.2024.2415580","DOIUrl":"https://doi.org/10.1080/10717544.2024.2415580","url":null,"abstract":"<p><p>The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as <i>Helicobacter pylori</i> infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"31 1","pages":"2415580"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silicosis-Where to from here? 矽肺病--何去何从?
IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-11-03 DOI: 10.1111/resp.14853
Hayley Barnes, Daniel C Chambers
{"title":"Silicosis-Where to from here?","authors":"Hayley Barnes, Daniel C Chambers","doi":"10.1111/resp.14853","DOIUrl":"10.1111/resp.14853","url":null,"abstract":"","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"1020-1022"},"PeriodicalIF":5.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nature's carriers: leveraging extracellular vesicles for targeted drug delivery. 大自然的载体:利用细胞外囊泡进行靶向给药。
IF 6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-06-04 DOI: 10.1080/10717544.2024.2361165
Qi Chen, Yuyi Zheng, Xuhong Jiang, Yi Wang, Zhong Chen, Di Wu

With the rapid development of drug delivery systems, extracellular vesicles (EVs) have emerged as promising stars for improving targeting abilities and realizing effective delivery. Numerous studies have shown when compared to conventional strategies in targeted drug delivery (TDD), EVs-based strategies have several distinguished advantages besides targeting, such as participating in cell-to-cell communications and immune response, showing high biocompatibility and stability, penetrating through biological barriers, etc. In this review, we mainly focus on the mass production of EVs including the challenges and strategies for scaling up EVs production in a cost-effective and reproducible manner, the loading and active targeting methods, and examples of EVs as vehicles for TDD in consideration of potential safety and regulatory issues associated. We also conclude and discuss the rigor and reproducibility of EVs production, the current research status of the application of EVs-based strategies to targeted drug delivery, clinical conversion prospects, and existing chances and challenges.

随着药物递送系统的快速发展,细胞外囊泡(EVs)已成为提高靶向能力和实现有效递送的希望之星。大量研究表明,与传统的靶向药物递送(TDD)策略相比,基于EVs的策略除靶向性外,还具有参与细胞间通讯和免疫反应、高生物相容性和稳定性、可穿透生物屏障等显著优势。在这篇综述中,我们主要关注 EVs 的大规模生产,包括以具有成本效益和可重复性的方式扩大 EVs 生产规模所面临的挑战和策略、装载和主动靶向方法,以及考虑到潜在安全性和相关监管问题将 EVs 作为 TDD 载体的实例。我们还总结并讨论了 EVs 生产的严谨性和可重复性、基于 EVs 的靶向给药策略应用的研究现状、临床转化前景以及现有的机遇和挑战。
{"title":"Nature's carriers: leveraging extracellular vesicles for targeted drug delivery.","authors":"Qi Chen, Yuyi Zheng, Xuhong Jiang, Yi Wang, Zhong Chen, Di Wu","doi":"10.1080/10717544.2024.2361165","DOIUrl":"10.1080/10717544.2024.2361165","url":null,"abstract":"<p><p>With the rapid development of drug delivery systems, extracellular vesicles (EVs) have emerged as promising stars for improving targeting abilities and realizing effective delivery. Numerous studies have shown when compared to conventional strategies in targeted drug delivery (TDD), EVs-based strategies have several distinguished advantages besides targeting, such as participating in cell-to-cell communications and immune response, showing high biocompatibility and stability, penetrating through biological barriers, etc. In this review, we mainly focus on the mass production of EVs including the challenges and strategies for scaling up EVs production in a cost-effective and reproducible manner, the loading and active targeting methods, and examples of EVs as vehicles for TDD in consideration of potential safety and regulatory issues associated. We also conclude and discuss the rigor and reproducibility of EVs production, the current research status of the application of EVs-based strategies to targeted drug delivery, clinical conversion prospects, and existing chances and challenges.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"31 1","pages":"2361165"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
γ-Cyclodextrin hydrogel for the sustained release of josamycin for potential ocular application. γ-环糊精水凝胶可持续释放柔红霉素,具有潜在的眼部应用前景。
IF 6.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-06-20 DOI: 10.1080/10717544.2024.2361168
Jennifer Huling, Stefan Oschatz, Helge Lange, Katharina Anna Sterenczak, Thomas Stahnke, Jana Markhoff, Oliver Stachs, Steffen Möller, Nasrullah Undre, Anita Peil, Anselm Jünemann, Niels Grabow, Georg Fuellen, Thomas Eickner

Glaucoma is the leading cause of blindness worldwide. However, its surgical treatment, in particular via trabeculectomy, can be complicated by fibrosis. In current clinical practice, application of the drug, Mitomycin C, prevents or delays fibrosis, but can lead to additional side effects, such as bleb leakage and hypotony. Previous in silico drug screening and in vitro testing has identified the known antibiotic, josamycin, as a possible alternative antifibrotic medication with potentially fewer side effects. However, a suitable ocular delivery mechanism for the hydrophobic drug to the surgical site does not yet exist. Therefore, the focus of this paper is the development of an implantable drug delivery system for sustained delivery of josamycin after glaucoma surgery based on crosslinked γ-cyclodextrin. γ-Cyclodextrin is a commonly used solubilizer which was shown to complex with josamycin, drastically increasing the drug's solubility in aqueous solutions. A simple γ-cyclodextrin crosslinking method produced biocompatible hydrogels well-suited for implantation. The crosslinked γ - cyclodextrin retained the ability to form complexes with josamycin, resulting in a 4-fold higher drug loading efficiency when compared to linear dextran hydrogels, and prolonged drug release over 4 days.

青光眼是全球致盲的主要原因。然而,手术治疗,尤其是小梁切除术,可能会因纤维化而变得复杂。在目前的临床实践中,使用药物丝裂霉素 C 可以预防或延缓纤维化,但会导致额外的副作用,如眼泡渗漏和眼压过低。之前的硅学药物筛选和体外测试发现,已知的抗生素--交沙霉素可能是一种副作用较小的替代抗纤维化药物。然而,将疏水性药物输送到手术部位的合适眼部给药机制尚不存在。因此,本文的重点是基于交联γ-环糊精开发一种植入式给药系统,用于在青光眼手术后持续给药柔沙霉素。γ-环糊精是一种常用的增溶剂,已被证明能与柔沙霉素络合,从而大幅提高药物在水溶液中的溶解度。一种简单的γ-环糊精交联方法就能制成生物相容性水凝胶,非常适合植入。交联后的γ-环糊精保持了与柔红霉素形成复合物的能力,与线性葡聚糖水凝胶相比,药物负载效率提高了4倍,药物释放时间延长了4天。
{"title":"γ-Cyclodextrin hydrogel for the sustained release of josamycin for potential ocular application.","authors":"Jennifer Huling, Stefan Oschatz, Helge Lange, Katharina Anna Sterenczak, Thomas Stahnke, Jana Markhoff, Oliver Stachs, Steffen Möller, Nasrullah Undre, Anita Peil, Anselm Jünemann, Niels Grabow, Georg Fuellen, Thomas Eickner","doi":"10.1080/10717544.2024.2361168","DOIUrl":"10.1080/10717544.2024.2361168","url":null,"abstract":"<p><p>Glaucoma is the leading cause of blindness worldwide. However, its surgical treatment, in particular via trabeculectomy, can be complicated by fibrosis. In current clinical practice, application of the drug, Mitomycin C, prevents or delays fibrosis, but can lead to additional side effects, such as bleb leakage and hypotony. Previous <i>in silico</i> drug screening and <i>in vitro</i> testing has identified the known antibiotic, josamycin, as a possible alternative antifibrotic medication with potentially fewer side effects. However, a suitable ocular delivery mechanism for the hydrophobic drug to the surgical site does not yet exist. Therefore, the focus of this paper is the development of an implantable drug delivery system for sustained delivery of josamycin after glaucoma surgery based on crosslinked γ-cyclodextrin. γ-Cyclodextrin is a commonly used solubilizer which was shown to complex with josamycin, drastically increasing the drug's solubility in aqueous solutions. A simple γ-cyclodextrin crosslinking method produced biocompatible hydrogels well-suited for implantation. The crosslinked γ - cyclodextrin retained the ability to form complexes with josamycin, resulting in a 4-fold higher drug loading efficiency when compared to linear dextran hydrogels, and prolonged drug release over 4 days.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"31 1","pages":"2361168"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 6.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-07-02 DOI: 10.1080/10717544.2024.2374134
{"title":"Correction.","authors":"","doi":"10.1080/10717544.2024.2374134","DOIUrl":"10.1080/10717544.2024.2374134","url":null,"abstract":"","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"31 1","pages":"2374134"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug delivery in leptomeningeal disease: Navigating barriers and beyond. 脑垂体疾病的药物输送:克服障碍,超越自我。
IF 6.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 Epub Date: 2024-07-12 DOI: 10.1080/10717544.2024.2375521
Numair Arshad, Nupur Biswas, Jaya Gill, Santosh Kesari, Shashaanka Ashili

Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.

脑膜疾病(LMD)是指癌细胞渗入脑膜。脑膜是指蛛网膜和桥脑这两层膜。LMD 的弥漫性给有效诊断和成功治疗带来了挑战。此外,主要表型(固体肿块或自由漂浮的细胞)对给药系统的有效性也有影响。目前的标准治疗方法是鞘内给药,但这与治疗相关并发症增多、患者依从性低和药物分布不理想有关。另一种方法是全身给药,然后药物必须穿过液体屏障才能到达其在脑膜腔内的目的地。然而,众所周知,这种途径会造成脱靶效应,并在中枢神经系统内的目标部位产生低于治疗浓度的药物。脂质体阿糖胞苷等新型给药系统的开发改善了对脑膜转移性疾病的给药,但要有效针对这一具有挑战性的疾病,仍有许多工作要做。在这篇综述中,我们将讨论与药物渗透相关的脑膜解剖学、治疗 LMD 的传统和先进给药方法。我们还讨论了不同临床试验确定的未来方向。
{"title":"Drug delivery in leptomeningeal disease: Navigating barriers and beyond.","authors":"Numair Arshad, Nupur Biswas, Jaya Gill, Santosh Kesari, Shashaanka Ashili","doi":"10.1080/10717544.2024.2375521","DOIUrl":"10.1080/10717544.2024.2375521","url":null,"abstract":"<p><p>Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"31 1","pages":"2375521"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Applied Nano Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1