Pub Date : 2024-09-16DOI: 10.1021/acsestengg.4c00186
Jiyun Park, Smruti Ranjan Dash, Seow Wah How, Di Wu, Jeonghwan Kim
This study investigated the effect of hydraulic retention times (HRTs) on the organic removal efficiency, membrane fouling, and methane production rate from an anaerobic fluidized bed membrane bioreactor (AFMBR) to treat synthetic greywater with a soluble chemical oxygen demand (SCOD) of 300 mg/L. Here, a polyvinylidene fluoride (PVDF)-based biocarrier was applied to control membrane fouling and facilitate attached biofilm growth. At an HRT of 16 h, which corresponds to 3.75 L/m2 h of permeate flux, transmembrane pressure was maintained as 0.15 bar. As the HRT decreased 12 h, the SCOD removal efficiency dropped 42% quickly while bulk volatile suspended solid (VSS) concentration increased 1300 mg/L. However, when the HRT was further reduced to 8 h, the SCOD removal stabilized at 81% gradually with reducing the bulk VSS to 300 mg/L. During the entire operational period, the biogas produced by AFMBR under the fluidization of multichanneled media consisted of 50% methane. The methane yield was 0.13 L of CH4/day at an HRT of 8 h. A 16S ribosomal ribonucleic acid analysis of the microbial community demonstrated that the relative abundance of Methanosaeta grown on the PVDF media increased as the HRT decreased. Spectroscopic observation revealed that a significant portion of biomass was grown inside media channels having higher surface roughness than their outer surfaces.
{"title":"Anaerobic Fluidized Bed Membrane Bioreactor with Multichanneled Biocarrier for Carbon-Neutral, Decentralized Greywater Treatment","authors":"Jiyun Park, Smruti Ranjan Dash, Seow Wah How, Di Wu, Jeonghwan Kim","doi":"10.1021/acsestengg.4c00186","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00186","url":null,"abstract":"This study investigated the effect of hydraulic retention times (HRTs) on the organic removal efficiency, membrane fouling, and methane production rate from an anaerobic fluidized bed membrane bioreactor (AFMBR) to treat synthetic greywater with a soluble chemical oxygen demand (SCOD) of 300 mg/L. Here, a polyvinylidene fluoride (PVDF)-based biocarrier was applied to control membrane fouling and facilitate attached biofilm growth. At an HRT of 16 h, which corresponds to 3.75 L/m<sup>2</sup> h of permeate flux, transmembrane pressure was maintained as 0.15 bar. As the HRT decreased 12 h, the SCOD removal efficiency dropped 42% quickly while bulk volatile suspended solid (VSS) concentration increased 1300 mg/L. However, when the HRT was further reduced to 8 h, the SCOD removal stabilized at 81% gradually with reducing the bulk VSS to 300 mg/L. During the entire operational period, the biogas produced by AFMBR under the fluidization of multichanneled media consisted of 50% methane. The methane yield was 0.13 L of CH<sub>4</sub>/day at an HRT of 8 h. A 16S ribosomal ribonucleic acid analysis of the microbial community demonstrated that the relative abundance of Methanosaeta grown on the PVDF media increased as the HRT decreased. Spectroscopic observation revealed that a significant portion of biomass was grown inside media channels having higher surface roughness than their outer surfaces.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"18 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1021/acsestengg.4c00276
Yuxuan Li, Mahuizi Lu, Luiza C. Campos, Yukun Hu
In the field of anaerobic digestion (AD) for biogas production, accurately predicting biogas yields following microwave pretreatment (MP) remains a significant challenge. Traditional kinetic models, such as the modified Gompertz (MG) model, are widely utilized but often lack the precision and adaptability needed for optimal process design and operational efficiency. This highlights a crucial gap in the development of more accurate and flexible predictive tools. To address this gap, advanced machine learning techniques, specifically, artificial neural networks (ANN), have been explored. This study developed and evaluated three ANN models: ANN, deep feed forward backpropagation (DFFBP), and deep cascade forward backpropagation network (DCFBP). The DCFBP model demonstrated superior predictive accuracy with a high coefficient of determination (R2 = 0.9946) and a lower mean absolute error (MAE = 0.34). Key input parameters, including the ratios of volatile solids to total solids (VS/TS) and the ratio of soluble chemical oxygen demand to total chemical oxygen demand (SCOD/TCOD), were integrated to enhance the prediction precision. These findings highlight the potential of ANN models to improve biogas yield predictions, offering significant benefits for the optimization and design of AD processes.
{"title":"Predicting Biogas Yield after Microwave Pretreatment Using Artificial Neural Network Models: Performance Evaluation and Method Comparison","authors":"Yuxuan Li, Mahuizi Lu, Luiza C. Campos, Yukun Hu","doi":"10.1021/acsestengg.4c00276","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00276","url":null,"abstract":"In the field of anaerobic digestion (AD) for biogas production, accurately predicting biogas yields following microwave pretreatment (MP) remains a significant challenge. Traditional kinetic models, such as the modified Gompertz (MG) model, are widely utilized but often lack the precision and adaptability needed for optimal process design and operational efficiency. This highlights a crucial gap in the development of more accurate and flexible predictive tools. To address this gap, advanced machine learning techniques, specifically, artificial neural networks (ANN), have been explored. This study developed and evaluated three ANN models: ANN, deep feed forward backpropagation (DFFBP), and deep cascade forward backpropagation network (DCFBP). The DCFBP model demonstrated superior predictive accuracy with a high coefficient of determination (<i>R</i><sup>2</sup> = 0.9946) and a lower mean absolute error (MAE = 0.34). Key input parameters, including the ratios of volatile solids to total solids (VS/TS) and the ratio of soluble chemical oxygen demand to total chemical oxygen demand (SCOD/TCOD), were integrated to enhance the prediction precision. These findings highlight the potential of ANN models to improve biogas yield predictions, offering significant benefits for the optimization and design of AD processes.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"16 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1021/acsestengg.4c00545
Wonyong Choi
As <i>ACS ES&T Engineering</i> has entered its fourth year of publication, we take a moment to acknowledge and celebrate the exceptional contributions of our dedicated reviewers. The journal has made remarkable strides, including achieving its first Journal Impact Factor of 7.4 this year, thanks to the collective efforts of our research community. In 2023, <i>ACS ES&T Engineering</i> continued to advance as a leading platform for environmental engineering and technology research. Our impact is increasingly evident in the quality of our publications and the trust we build with authors and readers. At the heart of this progress are our reviewers, whose expert evaluations ensure the rigor and relevance of every manuscript we consider. We are delighted to honor the best reviewers of 2023, whose exceptional work has set a new standard for excellence in peer review. Their insightful critiques and thoughtful recommendations extend beyond surface-level feedback, playing a crucial role in shaping the future of environmental engineering research. Their dedication has not only upheld the high standards of <i>ACS ES&T Engineering</i> but also fostered a culture of scholarly rigor and integrity. The 2023 Excellence in Review Awards are presented to the following outstanding reviewers: <b>Wensi Chen</b>, Texas A&M University, USA, https://engineering.tamu.edu/civil/profiles/chen-wensi.html <b>Yi-Hsueh Chuang</b>, National Yang Ming Chiao Tung University, Taiwan, https://scholar.nycu.edu.tw/en/persons/yi-hsueh-chuang <b>Dahu Ding</b>, Nanjing Agricultural University, China, https://www.researchgate.net/profile/Dahu-Ding <b>Dahong Huang</b>, University of Science and Technology of China, China, https://ese.ustc.edu.cn/2022/0923/c26804a592604/page.htm <b>Samir Khanal</b>, University of Hawaii at Manoa, USA, https://www.ctahr.hawaii.edu/depart/mbbe/Khanal.html <b>Choonsoo Kim</b>, Kongju National University, Republic of Korea, https://scholar.google.de/citations?user=gbTj9OUAAAAJ&hl=en <b>Sunil Kumar</b>, National Environmental Engineering Research Institute, India, https://www.researchgate.net/profile/Sunil-Kumar-493 <b>Yu Liu</b>, Nanyang Technological University, Singapore, https://www.researchgate.net/profile/Yu-Liu-35/5 <b>Kathryn Newhart</b>, United States Military Academy at West Point, USA, https://www.westpoint.edu/geography-and-environmental-engineering/profile/kate_newhart <b>Meng Sun</b>, Tsinghua University, China, https://www.tsinghua.edu.cn/enven/info/1052/2104.htm <b>Mengye Wang</b>, Sun Yat-Sen University, China, https://www.researchgate.net/profile/Mengye-Wang <b>Xin Wang</b>, Nankai University, China, https://enven.nankai.edu.cn/wx1_en/main.htm We look forward to continuing this successful journey of publication with the support of dedicated reviewers. We extend our warmest appreciation to all of our reviewers for their loyal support in maintaining the fullest scientific rigor in our published outputs and for proudly serving
{"title":"ACS ES&T Engineering’s 2023 Excellence in Review Awards","authors":"Wonyong Choi","doi":"10.1021/acsestengg.4c00545","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00545","url":null,"abstract":"As <i>ACS ES&T Engineering</i> has entered its fourth year of publication, we take a moment to acknowledge and celebrate the exceptional contributions of our dedicated reviewers. The journal has made remarkable strides, including achieving its first Journal Impact Factor of 7.4 this year, thanks to the collective efforts of our research community. In 2023, <i>ACS ES&T Engineering</i> continued to advance as a leading platform for environmental engineering and technology research. Our impact is increasingly evident in the quality of our publications and the trust we build with authors and readers. At the heart of this progress are our reviewers, whose expert evaluations ensure the rigor and relevance of every manuscript we consider. We are delighted to honor the best reviewers of 2023, whose exceptional work has set a new standard for excellence in peer review. Their insightful critiques and thoughtful recommendations extend beyond surface-level feedback, playing a crucial role in shaping the future of environmental engineering research. Their dedication has not only upheld the high standards of <i>ACS ES&T Engineering</i> but also fostered a culture of scholarly rigor and integrity. The 2023 Excellence in Review Awards are presented to the following outstanding reviewers: <b>Wensi Chen</b>, Texas A&M University, USA, https://engineering.tamu.edu/civil/profiles/chen-wensi.html <b>Yi-Hsueh Chuang</b>, National Yang Ming Chiao Tung University, Taiwan, https://scholar.nycu.edu.tw/en/persons/yi-hsueh-chuang <b>Dahu Ding</b>, Nanjing Agricultural University, China, https://www.researchgate.net/profile/Dahu-Ding <b>Dahong Huang</b>, University of Science and Technology of China, China, https://ese.ustc.edu.cn/2022/0923/c26804a592604/page.htm <b>Samir Khanal</b>, University of Hawaii at Manoa, USA, https://www.ctahr.hawaii.edu/depart/mbbe/Khanal.html <b>Choonsoo Kim</b>, Kongju National University, Republic of Korea, https://scholar.google.de/citations?user=gbTj9OUAAAAJ&hl=en <b>Sunil Kumar</b>, National Environmental Engineering Research Institute, India, https://www.researchgate.net/profile/Sunil-Kumar-493 <b>Yu Liu</b>, Nanyang Technological University, Singapore, https://www.researchgate.net/profile/Yu-Liu-35/5 <b>Kathryn Newhart</b>, United States Military Academy at West Point, USA, https://www.westpoint.edu/geography-and-environmental-engineering/profile/kate_newhart <b>Meng Sun</b>, Tsinghua University, China, https://www.tsinghua.edu.cn/enven/info/1052/2104.htm <b>Mengye Wang</b>, Sun Yat-Sen University, China, https://www.researchgate.net/profile/Mengye-Wang <b>Xin Wang</b>, Nankai University, China, https://enven.nankai.edu.cn/wx1_en/main.htm We look forward to continuing this successful journey of publication with the support of dedicated reviewers. We extend our warmest appreciation to all of our reviewers for their loyal support in maintaining the fullest scientific rigor in our published outputs and for proudly serving ","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"42 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1021/acsestengg.4c00316
Kai He, Yuanfang Lai, Shuchen Wang, Li Gong, Feng He
Metal doping for improving the reactivity of zerovalent iron (ZVI) has been well studied, while Mn(II)-modified microscale ZVI (Mn-mZVI) has not yet been explored. Herein, ball-milled Mn-mZVI was fabricated and used for Cr(VI) removal. Characterization analysis showed that the structure, composition, and charge of mZVI changed after the Mn(II) modification. The comparative test showed that Mn-mZVI could remove 100% of Cr(VI) within 10 min, whereas mZVI removed negligible Cr(VI) within 60 min. The zeta-potential and electrochemical evidence verified that the enhanced electrostatic attraction and electron-transfer ability contributed to the superior Cr(VI) removal performance of Mn-mZVI. Moreover, the solution pH increase caused the decline of Cr(VI) removal, and the presence of NO3– inhibited Cr(VI) removal, whereas other coexisting ions showed little influence on the Cr(VI) removal performance of Mn-mZVI. Chemical and material characterization analyses revealed that Cr(VI) reduction by Mn-mZVI was the combined action of Fe(0) and generated Fe(II). In addition, the reusability of Mn-mZVI was not ideal due to the surface passivation and loss of Mn(II), but the reactivity could be reactivated by ball-milling the reacted Mn-mZVI again with Mn(II). Overall, this work provides a new mentality for mZVI modification and is important to develop promising mZVI-based materials for Cr(VI) pollution control.
{"title":"Mechanochemical Synthesis of Manganese-Modified Microscale Zerovalent Iron for Efficient Cr(VI) Removal: Performance and Mechanism","authors":"Kai He, Yuanfang Lai, Shuchen Wang, Li Gong, Feng He","doi":"10.1021/acsestengg.4c00316","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00316","url":null,"abstract":"Metal doping for improving the reactivity of zerovalent iron (ZVI) has been well studied, while Mn(II)-modified microscale ZVI (Mn-mZVI) has not yet been explored. Herein, ball-milled Mn-mZVI was fabricated and used for Cr(VI) removal. Characterization analysis showed that the structure, composition, and charge of mZVI changed after the Mn(II) modification. The comparative test showed that Mn-mZVI could remove 100% of Cr(VI) within 10 min, whereas mZVI removed negligible Cr(VI) within 60 min. The zeta-potential and electrochemical evidence verified that the enhanced electrostatic attraction and electron-transfer ability contributed to the superior Cr(VI) removal performance of Mn-mZVI. Moreover, the solution pH increase caused the decline of Cr(VI) removal, and the presence of NO<sub>3</sub><sup>–</sup> inhibited Cr(VI) removal, whereas other coexisting ions showed little influence on the Cr(VI) removal performance of Mn-mZVI. Chemical and material characterization analyses revealed that Cr(VI) reduction by Mn-mZVI was the combined action of Fe(0) and generated Fe(II). In addition, the reusability of Mn-mZVI was not ideal due to the surface passivation and loss of Mn(II), but the reactivity could be reactivated by ball-milling the reacted Mn-mZVI again with Mn(II). Overall, this work provides a new mentality for mZVI modification and is important to develop promising mZVI-based materials for Cr(VI) pollution control.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"73 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing algorithmic methodologies for the rational design of environmental functional materials enables targeted approaches to environmental challenges. Novel machine learning (ML) tools are instrumental in realizing this goal, particularly when biochars are involved with complex components and flexible internal structures. However, such rational design necessitates a holistic perspective across the entire multistage design process, while current ML endeavors for environmental biochar (EB) often concentrate on specific production or application substages. In this regard, taking an end-to-end (E2E) approach to applying ML holds the potential to better guide EB design from a comprehensive view, a perspective yet to be thoroughly explored and summarized. Thus, we review the recent advancements of ML employed in predicting EB problems, aiming to elucidate the broad relevance of various ML models in realizing the E2E design of EBs. It is observed that the properties of EB might be the “Achilles’ heel” within the data set, which poses a significant challenge to achieving the E2E. Furthermore, we also provide an overview of the existing pathways to achieve the E2E, examining both traditional ML and the emerging field of deep leaning, followed by a discussion on key challenges, opportunities, and our vision for the future of rational EB design.
为合理设计环境功能材料开发算法方法,可以有针对性地应对环境挑战。新颖的机器学习(ML)工具有助于实现这一目标,尤其是当生物炭涉及复杂的成分和灵活的内部结构时。然而,这种合理的设计需要在整个多阶段设计过程中采用整体视角,而目前针对环境生物炭(EB)的机器学习努力往往集中在特定的生产或应用子阶段。因此,采用端到端(E2E)的方法来应用 ML 有可能更好地从全面的角度指导 EB 设计,而这一观点还有待深入探索和总结。因此,我们回顾了最近在预测 EB 问题时使用的 ML 的最新进展,旨在阐明各种 ML 模型在实现 E2E EB 设计中的广泛相关性。据观察,EB 的特性可能是数据集中的 "致命弱点",这对实现 E2E 构成了重大挑战。此外,我们还概述了实现 E2E 的现有途径,研究了传统 ML 和新兴的深度倾斜领域,随后讨论了合理 EB 设计的关键挑战、机遇和我们对未来的展望。
{"title":"Machine Learning toward Realizing End-to-End Biochar Design for Environmental Remediation","authors":"Rupeng Wang, Honglin Chen, Silin Guo, Zixiang He, Nanqi Ren, Shih-Hsin Ho","doi":"10.1021/acsestengg.4c00267","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00267","url":null,"abstract":"Developing algorithmic methodologies for the rational design of environmental functional materials enables targeted approaches to environmental challenges. Novel machine learning (ML) tools are instrumental in realizing this goal, particularly when biochars are involved with complex components and flexible internal structures. However, such rational design necessitates a holistic perspective across the entire multistage design process, while current ML endeavors for environmental biochar (EB) often concentrate on specific production or application substages. In this regard, taking an end-to-end (E2E) approach to applying ML holds the potential to better guide EB design from a comprehensive view, a perspective yet to be thoroughly explored and summarized. Thus, we review the recent advancements of ML employed in predicting EB problems, aiming to elucidate the broad relevance of various ML models in realizing the E2E design of EBs. It is observed that the properties of EB might be the “Achilles’ heel” within the data set, which poses a significant challenge to achieving the E2E. Furthermore, we also provide an overview of the existing pathways to achieve the E2E, examining both traditional ML and the emerging field of deep leaning, followed by a discussion on key challenges, opportunities, and our vision for the future of rational EB design.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"12 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1021/acsestengg.4c00321
Yi Yang, Xintong You, Shuo Tang, Ying Li, Minyi Liu, Ying Mei, Wei Shu
Eutrophication caused by excessive phosphorus pollution not only brings a series of environmental problems but also threatens biological safety. The adsorption method has been widely used for preventing eutrophication due to its high selectivity, environmental friendliness, easy operation, and cost-effectiveness. In this study, an easily separated magnetic lanthanum and iron-fabricated carbon nanotube (La–Fe–CNT) membrane was synthesized by a simple combined impregnation and vacuum filtration method for highly effective phosphate uptake. Characterization results show that metallic (hydr)oxide species were successfully fabricated on the CNT membrane, and phosphate was absorbed on it. The structure-activity correlation of La–Fe–CNT was quantitatively investigated by the Box–Behnken design model, and the following optimized conditions were obtained: a reaction temperature of 44 °C, synthesis time of 14.3 h, and La molar ratio of 0.53, with an adsorption capacity of 127 mg/g. La–Fe–CNT performs well over a wide pH range (142 mg/g at pH 2) with high stability (less than 2 mg/L metal leaching). Three interactions exist during the adsorption process, including electrostatic interactions, ligand exchange, and Lewis acid–base interactions. A kinetic study shows that the phosphate adsorption process is a physical-chemical process with combined intraparticle and surface film diffusion. The equilibrium phosphate adsorption capacity of La–Fe–CNT in the isotherm study is 120.2 mg/g, and the phosphate uptake process involves a complex process including both Langmuir and Freundlich adsorption. The adsorbent still retains nearly 70% of its original capacity after 5 cycles of operation, depicting its stability and sustainability for potential industrial applications.
{"title":"Phosphate Uptake over the Innovative La–Fe–CNT Membrane: Structure-Activity Correlation and Mechanism Investigation","authors":"Yi Yang, Xintong You, Shuo Tang, Ying Li, Minyi Liu, Ying Mei, Wei Shu","doi":"10.1021/acsestengg.4c00321","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00321","url":null,"abstract":"Eutrophication caused by excessive phosphorus pollution not only brings a series of environmental problems but also threatens biological safety. The adsorption method has been widely used for preventing eutrophication due to its high selectivity, environmental friendliness, easy operation, and cost-effectiveness. In this study, an easily separated magnetic lanthanum and iron-fabricated carbon nanotube (La–Fe–CNT) membrane was synthesized by a simple combined impregnation and vacuum filtration method for highly effective phosphate uptake. Characterization results show that metallic (hydr)oxide species were successfully fabricated on the CNT membrane, and phosphate was absorbed on it. The structure-activity correlation of La–Fe–CNT was quantitatively investigated by the Box–Behnken design model, and the following optimized conditions were obtained: a reaction temperature of 44 °C, synthesis time of 14.3 h, and La molar ratio of 0.53, with an adsorption capacity of 127 mg/g. La–Fe–CNT performs well over a wide pH range (142 mg/g at pH 2) with high stability (less than 2 mg/L metal leaching). Three interactions exist during the adsorption process, including electrostatic interactions, ligand exchange, and Lewis acid–base interactions. A kinetic study shows that the phosphate adsorption process is a physical-chemical process with combined intraparticle and surface film diffusion. The equilibrium phosphate adsorption capacity of La–Fe–CNT in the isotherm study is 120.2 mg/g, and the phosphate uptake process involves a complex process including both Langmuir and Freundlich adsorption. The adsorbent still retains nearly 70% of its original capacity after 5 cycles of operation, depicting its stability and sustainability for potential industrial applications.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"202 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1021/acsestengg.4c00376
Xin Gao, Huayi Shen, Chun-Ran Chang
It is well-known that conventional disposable plastics, such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS), are causing “white pollution” and becoming one of the greatest challenges to the natural environment worldwide. To overcome severe environmental pollution, policy makers have introduced a series of regulations to reduce and replace the utilization of conventional nonbiodegradable plastics, for instance, guiding plastic manufactories to produce biodegradable (or compostable) plastics instead of conventional nonbiodegradable plastics, banning markets from using or selling conventional nonbiodegradable plastics, and calling on citizens to use and even reuse biodegradable plastics for various applications (including shopping bags and boxes, catering materials, agricultural mulching film, medical devices, etc.). By far, the most common state-of-the-art biodegradable polyester plastics in markets are polylactic acid (PLA), polyhydroxyalkanoates (PHA), polybutylene adipate coterephthalate (PBAT), polyglycolic acid (PGA), polycaprolactone (PCL), polybutylene succinate (PBS), and polypropylene carbonate (PPC) (Figure 1). It is noteworthy that these novel polyesters usually contain sizable ester groups. On the basis of the different physical properties (e.g., melting point, stretchability, percentage of elongation, gas resistance, etc.) and chemical properties (e.g., molecular structures, molecular weights, oxygen and carbon contents, etc.) of these novel polyesters, their functionalities could be adopted in a wide range of industrial and consumer sectors. Figure 1. State-of-the-art emerging polyester plastics and their chemical structures, biological degradation process, and chemolytic valorizations. Theoretically, there should be no further concerns about the end life of biodegradable plastic waste because these types of polyesters are expected to be biologically and completely decomposed quickly into small molecules (e.g., water, carbon dioxide, and methane). However, practically, the realistic situation is that such biological degradation (biodegradation) of biodegradable plastics is strictly conditional, where suitable biodegradation factors must be reached, including temperature, humidity, quality and quantity of microorganisms, large-scale industrial or homemade composting plant, intrinsic degradation properties, etc. In other words, biological decomposition is not spontaneous. Therefore, the utilization of biodegradable plastics cannot guarantee that the plastic pollution issue can be readily and automatically resolved. Considering the fast-growing momentum of biodegradable polyester plastic utilization and the subsequent rapid increase in the amount of biodegradable plastic waste, the current implementation status of the treatment facilities for biodegradable plastics (i.e., industrial composting plant) still lags behind the growth in the use of biodegradable plasti
{"title":"Chemolysis for Efficient and Sustainable Upcycling of Biodegradable Polyester Waste to Value-Added Products","authors":"Xin Gao, Huayi Shen, Chun-Ran Chang","doi":"10.1021/acsestengg.4c00376","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00376","url":null,"abstract":"It is well-known that conventional disposable plastics, such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS), are causing “white pollution” and becoming one of the greatest challenges to the natural environment worldwide. To overcome severe environmental pollution, policy makers have introduced a series of regulations to reduce and replace the utilization of conventional nonbiodegradable plastics, for instance, guiding plastic manufactories to produce biodegradable (or compostable) plastics instead of conventional nonbiodegradable plastics, banning markets from using or selling conventional nonbiodegradable plastics, and calling on citizens to use and even reuse biodegradable plastics for various applications (including shopping bags and boxes, catering materials, agricultural mulching film, medical devices, etc.). By far, the most common state-of-the-art biodegradable polyester plastics in markets are polylactic acid (PLA), polyhydroxyalkanoates (PHA), polybutylene adipate coterephthalate (PBAT), polyglycolic acid (PGA), polycaprolactone (PCL), polybutylene succinate (PBS), and polypropylene carbonate (PPC) (Figure 1). It is noteworthy that these novel polyesters usually contain sizable ester groups. On the basis of the different physical properties (e.g., melting point, stretchability, percentage of elongation, gas resistance, etc.) and chemical properties (e.g., molecular structures, molecular weights, oxygen and carbon contents, etc.) of these novel polyesters, their functionalities could be adopted in a wide range of industrial and consumer sectors. Figure 1. State-of-the-art emerging polyester plastics and their chemical structures, biological degradation process, and chemolytic valorizations. Theoretically, there should be no further concerns about the end life of biodegradable plastic waste because these types of polyesters are expected to be biologically and completely decomposed quickly into small molecules (e.g., water, carbon dioxide, and methane). However, practically, the realistic situation is that such biological degradation (biodegradation) of biodegradable plastics is strictly conditional, where suitable biodegradation factors must be reached, including temperature, humidity, quality and quantity of microorganisms, large-scale industrial or homemade composting plant, intrinsic degradation properties, etc. In other words, biological decomposition is not spontaneous. Therefore, the utilization of biodegradable plastics cannot guarantee that the plastic pollution issue can be readily and automatically resolved. Considering the fast-growing momentum of biodegradable polyester plastic utilization and the subsequent rapid increase in the amount of biodegradable plastic waste, the current implementation status of the treatment facilities for biodegradable plastics (i.e., industrial composting plant) still lags behind the growth in the use of biodegradable plasti","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"52 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1021/acsestengg.4c00258
Khalida Muda, Mohamad Ali Fulazzaky, Tiffany Messer, Ahmad Hanis Omar, Armstrong Ighodalo Omoregie
The treatment of dye-contaminated wastewater using granular sludge was evaluated to ensure an effective design process for biogranulation technology. The investigation of dye-contaminated wastewater treatment in a sequencing batch reactor (SBR) aimed to understand the decolorization of mixed azo dyes (MAD) mediated by aerobic granular sludge (AGS) and magnetic-activated carbon aerobic granular sludge (MACAGS). The applicability of Generalized Fulazzaky equations was expanded to predict the mechanisms and kinetics of global, external, and internal mass transfer. The performance of SBR in decolorizing MAD with AGS and MACAGS reached 65.04% and 82.32% efficiency, respectively, exhibiting an increased efficiency of 17.28% (82.32–65.04%) with the presence of magnetic-activated carbon (MAC) in the formation of AGS. A trend in the variation of the internal mass transfer factor was similar to that of the global mass transfer factor and was far higher than that of the external mass transfer factor, indicating that the rate-limiting step of MAD decolorization was dependent on the resistance of external mass transfer. An analysis of the decolorization efficiency based on the internal mass transfer factor provided new insights into the role of MAC in enhancing the SBR performance, contributing to the advanced treatment of dye-contaminated wastewater.
{"title":"Mass Transfer Mechanisms and Decolorization Kinetics of the Mixed Azo Dyes","authors":"Khalida Muda, Mohamad Ali Fulazzaky, Tiffany Messer, Ahmad Hanis Omar, Armstrong Ighodalo Omoregie","doi":"10.1021/acsestengg.4c00258","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00258","url":null,"abstract":"The treatment of dye-contaminated wastewater using granular sludge was evaluated to ensure an effective design process for biogranulation technology. The investigation of dye-contaminated wastewater treatment in a sequencing batch reactor (SBR) aimed to understand the decolorization of mixed azo dyes (MAD) mediated by aerobic granular sludge (AGS) and magnetic-activated carbon aerobic granular sludge (MACAGS). The applicability of Generalized Fulazzaky equations was expanded to predict the mechanisms and kinetics of global, external, and internal mass transfer. The performance of SBR in decolorizing MAD with AGS and MACAGS reached 65.04% and 82.32% efficiency, respectively, exhibiting an increased efficiency of 17.28% (82.32–65.04%) with the presence of magnetic-activated carbon (MAC) in the formation of AGS. A trend in the variation of the internal mass transfer factor was similar to that of the global mass transfer factor and was far higher than that of the external mass transfer factor, indicating that the rate-limiting step of MAD decolorization was dependent on the resistance of external mass transfer. An analysis of the decolorization efficiency based on the internal mass transfer factor provided new insights into the role of MAC in enhancing the SBR performance, contributing to the advanced treatment of dye-contaminated wastewater.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"4 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1021/acsestengg.4c00220
Shunan Zhao, Ge Song, Suo Liu, Jing Zhao, Kai Zhao, Shaoqing Zhu, Yufei Zeng, Ruiping Liu, Huijuan Liu, Jiuhui Qu
Anaerobic fermentation of organic wastewater is expected to produce short-chain fatty acids that are available as carbon sources for nitrogen and phosphorus removal in wastewater treatment. By long-term semicontinuous experiments, this study indicated that the introduction of exogenous N-acyl-homoserine lactone (AHL), a quorum sensing (QS) molecule, improved acidogenesis capacity and regulated fermentation type even at low pH. The product concentration increased from 13.5 gCOD/L in the control to 19.9 gCOD/L in the QS enhancement system. Moreover, the acidogenesis pathway related to acetyl-CoA, butyrate, and caproate production was also more highly expressed based on metagenomic sequencing accordingly. Notably, the introduction of exogenous AHL improved chain elongation (CE) during anaerobic fermentation and resulted in a 2.6-fold increase in caproate concentrations. Additionally, the abundance of caproate producers was also increased by 2.0–3.6 folds in the QS enhancement system. Metagenomic analysis results indicated that QS boosted the reverse β-oxidation pathways, and the higher acidogenesis pathway provided more lactate and butyrate available for CE. Importantly, QS enhancement upregulated genes associated with the detection of the typical acid stress signal. Concurrently, three typical acid stress resistance pathways, i.e., proton-consuming reactions, protons efflux, and extracellular polymeric substance production, were activated and highly expressed. Overall, this study proposes a novel strategy to improve microbial resistance to acidic conditions and to regulate the microbial community through QS enhancement and is potentially valuable to enhance resources and energy recovery by anaerobic fermentation.
{"title":"Anaerobic Acidogenesis Improvement and Fermentation-Type Regulation by Quorum Sensing","authors":"Shunan Zhao, Ge Song, Suo Liu, Jing Zhao, Kai Zhao, Shaoqing Zhu, Yufei Zeng, Ruiping Liu, Huijuan Liu, Jiuhui Qu","doi":"10.1021/acsestengg.4c00220","DOIUrl":"https://doi.org/10.1021/acsestengg.4c00220","url":null,"abstract":"Anaerobic fermentation of organic wastewater is expected to produce short-chain fatty acids that are available as carbon sources for nitrogen and phosphorus removal in wastewater treatment. By long-term semicontinuous experiments, this study indicated that the introduction of exogenous <i>N</i>-acyl-homoserine lactone (AHL), a quorum sensing (QS) molecule, improved acidogenesis capacity and regulated fermentation type even at low pH. The product concentration increased from 13.5 gCOD/L in the control to 19.9 gCOD/L in the QS enhancement system. Moreover, the acidogenesis pathway related to acetyl-CoA, butyrate, and caproate production was also more highly expressed based on metagenomic sequencing accordingly. Notably, the introduction of exogenous AHL improved chain elongation (CE) during anaerobic fermentation and resulted in a 2.6-fold increase in caproate concentrations. Additionally, the abundance of caproate producers was also increased by 2.0–3.6 folds in the QS enhancement system. Metagenomic analysis results indicated that QS boosted the reverse β-oxidation pathways, and the higher acidogenesis pathway provided more lactate and butyrate available for CE. Importantly, QS enhancement upregulated genes associated with the detection of the typical acid stress signal. Concurrently, three typical acid stress resistance pathways, i.e., proton-consuming reactions, protons efflux, and extracellular polymeric substance production, were activated and highly expressed. Overall, this study proposes a novel strategy to improve microbial resistance to acidic conditions and to regulate the microbial community through QS enhancement and is potentially valuable to enhance resources and energy recovery by anaerobic fermentation.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"3 1","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}