Aim: Given the encouraging results of the p53-Mdm2 inhibitor RG7388 in clinical trials and the vital function of miR-16-5p in suppressing cell proliferation, the aim of the present study was to investigate the combined impact of RG7388 and miR-16-5p overexpression on the childhood acute lymphoblastic leukemia (chALL). Methods: miRTarBase and miRDB, along with KEGG and STRING databases, were used to predict miR-16-5p target genes and explore protein-protein interaction networks, respectively. B- and T-lymphoblastic cell lines, in addition to patient primary cells, were treated with RG7388. Ectopic overexpression of miR-16-5p in Nalm6 cell line was induced through cell electroporation and transfection of microRNA mimics was confirmed by qRT-PCR. Cell viability was evaluated using the MTT assay. Western blot analyses were performed to evaluate the effects of RG7388 and miR-16-5p upregulation on the protein levels of p53 and its downstream target genes in chALL cells. Paired sample t-test was employed for statistical analyses. Results: MTT assay showed RG7388-induced cytotoxicity in wild-type p53 Nalm6 cell line and p53 functional patient primary cells. However, CCRF-CEM and p53 non-functional leukemic cells indicated drug resistance. Western blot analyses validated the bioinformatics results, confirming the downregulation of WIP1, p53 stabilization, as well as overexpression of p21WAF1 and Mdm2 proteins in Nalm6 cells transfected with miR-16-5p. Moreover, enhanced sensitivity to RG7388 was observed in the transfected cells. Conclusion: This is the first study indicating the mechanistic importance of miR-16-5p overexpression in chALL and its inhibitory role in leukemia treatment when combined with the p53-Mdm2 antagonist, RG7388. These findings might be useful for researchers and clinicians to pave the way for better management of chALL.
{"title":"miR-16-5p enhances sensitivity to RG7388 through targeting <i>PPM1D</i> expression (WIP1) in Childhood Acute Lymphoblastic Leukemia.","authors":"Maryam Zanjirband, Soheila Rahgozar, Narges Aberuyi","doi":"10.20517/cdr.2022.113","DOIUrl":"https://doi.org/10.20517/cdr.2022.113","url":null,"abstract":"<p><p><b>Aim:</b> Given the encouraging results of the p53-Mdm2 inhibitor RG7388 in clinical trials and the vital function of miR-16-5p in suppressing cell proliferation, the aim of the present study was to investigate the combined impact of RG7388 and miR-16-5p overexpression on the childhood acute lymphoblastic leukemia (chALL). <b>Methods:</b> miRTarBase and miRDB, along with KEGG and STRING databases, were used to predict miR-16-5p target genes and explore protein-protein interaction networks, respectively. B- and T-lymphoblastic cell lines, in addition to patient primary cells, were treated with RG7388. Ectopic overexpression of miR-16-5p in Nalm6 cell line was induced through cell electroporation and transfection of microRNA mimics was confirmed by qRT-PCR. Cell viability was evaluated using the MTT assay. Western blot analyses were performed to evaluate the effects of RG7388 and miR-16-5p upregulation on the protein levels of p53 and its downstream target genes in chALL cells. Paired sample t-test was employed for statistical analyses. <b>Results:</b> MTT assay showed RG7388-induced cytotoxicity in wild-type p53 Nalm6 cell line and p53 functional patient primary cells. However, CCRF-CEM and p53 non-functional leukemic cells indicated drug resistance. Western blot analyses validated the bioinformatics results, confirming the downregulation of WIP1, p53 stabilization, as well as overexpression of p21<sup>WAF1</sup> and Mdm2 proteins in Nalm6 cells transfected with miR-16-5p. Moreover, enhanced sensitivity to RG7388 was observed in the transfected cells. <b>Conclusion:</b> This is the first study indicating the mechanistic importance of miR-16-5p overexpression in chALL and its inhibitory role in leukemia treatment when combined with the p53-Mdm2 antagonist, RG7388. These findings might be useful for researchers and clinicians to pave the way for better management of chALL.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 2","pages":"242-256"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonhard H F Köhler, Sebastian Reich, Maria Yusenko, Karl-Heinz Klempnauer, Gerrit Begemann, Rainer Schobert, Bernhard Biersack
Aim: Efficient and readily available anticancer drugs are sought as treatment options. For this reason, chromene derivatives were prepared using the one-pot reaction and tested for their anticancer and anti-angiogenic properties. Methods: 2-Amino-3-cyano-4-(aryl)-7-methoxy-4H-chromene compounds (2A-R) were repurposed or newly synthesized via a three-component reaction of 3-methoxyphenol, various aryl aldehydes, and malononitrile. We performed assays to study the inhibition of tumor cell growth [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromid (MTT) assay], effects on microtubules (immunofluorescence), cell cycle (flow-activated cell sorting analysis), angiogenesis (zebrafish model), and MYB activity (luciferase reporter assay). Fluorescence microscopy was applied for localization studies via copper-catalyzed azide-alkyne click reaction of an alkyne-tagged drug derivative. Results: Compounds 2A-C and 2F exhibited robust antiproliferative activities against several human cancer cell lines (50% inhibitory concentrations in the low nanomolar range) and showed potent MYB inhibition. The alkyne derivative 3 was localized in the cytoplasm after only 10 min of incubation. Substantial microtubule disruption and G2/M cell-cycle arrest were observed, where compound 2F stood out as a promising microtubule-disrupting agent. The study of anti-angiogenic properties showed that 2A was the only candidate with a high potential to inhibit blood vessel formation in vivo. Conclusion: The close interplay of various mechanisms, including cell-cycle arrest, MYB inhibition, and anti-angiogenic activity, led to identifying promising multimodal anticancer drug candidates.
{"title":"Multimodal 4-arylchromene derivatives with microtubule-destabilizing, anti-angiogenic, and MYB-inhibitory activities.","authors":"Leonhard H F Köhler, Sebastian Reich, Maria Yusenko, Karl-Heinz Klempnauer, Gerrit Begemann, Rainer Schobert, Bernhard Biersack","doi":"10.20517/cdr.2022.90","DOIUrl":"https://doi.org/10.20517/cdr.2022.90","url":null,"abstract":"<p><p><b>Aim:</b> Efficient and readily available anticancer drugs are sought as treatment options. For this reason, chromene derivatives were prepared using the one-pot reaction and tested for their anticancer and anti-angiogenic properties. <b>Methods:</b> 2-Amino-3-cyano-4-(aryl)-7-methoxy-4H-chromene compounds (2A-R) were repurposed or newly synthesized via a three-component reaction of 3-methoxyphenol, various aryl aldehydes, and malononitrile. We performed assays to study the inhibition of tumor cell growth [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromid (MTT) assay], effects on microtubules (immunofluorescence), cell cycle (flow-activated cell sorting analysis), angiogenesis (zebrafish model), and MYB activity (luciferase reporter assay). Fluorescence microscopy was applied for localization studies via copper-catalyzed azide-alkyne click reaction of an alkyne-tagged drug derivative. <b>Results:</b> Compounds 2A-C and 2F exhibited robust antiproliferative activities against several human cancer cell lines (50% inhibitory concentrations in the low nanomolar range) and showed potent MYB inhibition. The alkyne derivative 3 was localized in the cytoplasm after only 10 min of incubation. Substantial microtubule disruption and G2/M cell-cycle arrest were observed, where compound 2F stood out as a promising microtubule-disrupting agent. The study of anti-angiogenic properties showed that 2A was the only candidate with a high potential to inhibit blood vessel formation <i>in vivo</i>. <b>Conclusion:</b> The close interplay of various mechanisms, including cell-cycle arrest, MYB inhibition, and anti-angiogenic activity, led to identifying promising multimodal anticancer drug candidates.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 1","pages":"59-77"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9317813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaling Jiang, Valentina Donati, Godefridus J Peters, Elisa Giovannetti, Dong Mei Deng
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late diagnosis and poor response to treatments. The tumor microenvironment (TME) of PDAC is characterized by a distinctive, suppressive immune profile, which inhibits the protective functions of anti-tumor immunity and thereby contributes to PDAC progression. Recently, the study of Alam et al. discovered for the first time that the intratumoral fungal mycobiome could contribute to the recruitment and activation of type 2 immune cells in the TME of PDAC via enhancing the secretion of a chemoattractant, interleukin (IL-) 33. In this article, we reviewed the important findings of this study. Together with our findings, we synthetically discussed the role of the fungal mycobiome in orchestrating the immune response and thereby modulating tumor progression.
{"title":"Fungal mycobiome-mediated immune response: a non-negligible promoter in pancreatic oncogenesis and chemoresistance.","authors":"Yaling Jiang, Valentina Donati, Godefridus J Peters, Elisa Giovannetti, Dong Mei Deng","doi":"10.20517/cdr.2023.06","DOIUrl":"https://doi.org/10.20517/cdr.2023.06","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late diagnosis and poor response to treatments. The tumor microenvironment (TME) of PDAC is characterized by a distinctive, suppressive immune profile, which inhibits the protective functions of anti-tumor immunity and thereby contributes to PDAC progression. Recently, the study of Alam <i>et al.</i> discovered for the first time that the intratumoral fungal mycobiome could contribute to the recruitment and activation of type 2 immune cells in the TME of PDAC via enhancing the secretion of a chemoattractant, interleukin (IL-) 33. In this article, we reviewed the important findings of this study. Together with our findings, we synthetically discussed the role of the fungal mycobiome in orchestrating the immune response and thereby modulating tumor progression.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 2","pages":"284-290"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9823119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: The nuclear pregnane X receptor (PXR) is a pivotal regulator of steroid and xenobiotics metabolism and plays an important role in shaping tumor cell responses to chemotherapy. Hypoxia within tumor tissue has multifaceted effects, including multiple drug resistance. The goal of this study was to determine whether PXR contributes to hypoxia-induced drug resistance. Methods: Metastatic prostate cancer cells were used to study the interaction of PXR and hypoxia-inducible factor-1 (HIF-1 in drug resistance associated with hypoxia. The activities of PXR and HIF-1 were determined by assays for its reporter gene or target gene expression. Co-immunoprecipitation (Co-IP) was used to determine the interaction of PXR and HIF-1. Ablation or inhibition of PXR or HIF-1 was used to determine their roles in hypoxia-induced chemoresistance. Results: PXR was activated by hypoxia, leading to increased expression of multidrug resistance protein 1 (MDR1). Inhibition of PXR by pharmacological compounds or depletion by shRNAs reduced the hypoxic induction of MDR1 and sensitized prostate cancer cells to chemotherapy under hypoxia. HIF-1 was required for PXR activation under hypoxia. Co-immunoprecipitation results showed that HIF-1 and PXR could physically interact with each other, leading to crosstalk between these two transcription factors. Conclusion: PXR contributes to hypoxia-induced drug resistance in prostate cancer cells through its interaction with HIF-1.
目的:核孕激素X受体(nuclear pregnane X receptor, PXR)是类固醇和外源药物代谢的关键调节因子,在形成肿瘤细胞对化疗的反应中起重要作用。肿瘤组织缺氧具有多方面的影响,包括多重耐药。本研究的目的是确定PXR是否与缺氧诱导的耐药有关。方法:采用转移性前列腺癌细胞,研究PXR与缺氧诱导因子-1 (HIF-1)在缺氧相关耐药中的相互作用。通过检测PXR和HIF-1的报告基因或靶基因的表达来测定其活性。采用共免疫沉淀法(Co-IP)测定PXR与HIF-1的相互作用。消融或抑制PXR或HIF-1被用来确定它们在缺氧诱导的化疗耐药中的作用。结果:PXR被缺氧激活,导致多药耐药蛋白1 (MDR1)表达增加。药理化合物抑制PXR或shRNAs耗竭可降低MDR1的缺氧诱导,使前列腺癌细胞对缺氧下的化疗敏感。缺氧条件下PXR的激活需要HIF-1。共免疫沉淀结果显示HIF-1和PXR可以相互作用,导致这两个转录因子之间的串扰。结论:PXR通过与HIF-1的相互作用参与缺氧诱导的前列腺癌细胞耐药。
{"title":"Interaction of pregnane X receptor with hypoxia-inducible factor-1 regulates chemoresistance of prostate cancer cells.","authors":"Jiuhui Wang, Daotai Nie","doi":"10.20517/cdr.2023.14","DOIUrl":"https://doi.org/10.20517/cdr.2023.14","url":null,"abstract":"<p><p><b>Aim:</b> The nuclear pregnane X receptor (PXR) is a pivotal regulator of steroid and xenobiotics metabolism and plays an important role in shaping tumor cell responses to chemotherapy. Hypoxia within tumor tissue has multifaceted effects, including multiple drug resistance. The goal of this study was to determine whether PXR contributes to hypoxia-induced drug resistance. <b>Methods:</b> Metastatic prostate cancer cells were used to study the interaction of PXR and hypoxia-inducible factor-1 (HIF-1 in drug resistance associated with hypoxia. The activities of PXR and HIF-1 were determined by assays for its reporter gene or target gene expression. Co-immunoprecipitation (Co-IP) was used to determine the interaction of PXR and HIF-1. Ablation or inhibition of PXR or HIF-1 was used to determine their roles in hypoxia-induced chemoresistance. <b>Results:</b> PXR was activated by hypoxia, leading to increased expression of multidrug resistance protein 1 (MDR1). Inhibition of PXR by pharmacological compounds or depletion by shRNAs reduced the hypoxic induction of MDR1 and sensitized prostate cancer cells to chemotherapy under hypoxia. HIF-1 was required for PXR activation under hypoxia. Co-immunoprecipitation results showed that HIF-1 and PXR could physically interact with each other, leading to crosstalk between these two transcription factors. <b>Conclusion:</b> PXR contributes to hypoxia-induced drug resistance in prostate cancer cells through its interaction with HIF-1.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 2","pages":"378-389"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander M Scherbakov, Anna A Basharina, Danila V Sorokin, Ekaterina I Mikhaevich, Iman E Mizaeva, Alexandra L Mikhaylova, Tatiana A Bogush, Mikhail A Krasil'nikov
Aim: The study aims to analyze the effect of long-term incubation of ERα-positive MCF7 breast cancer cells with 4-hydroxytamoxifen (HT) on their sensitivity to tubulin polymerization inhibitor docetaxel. Methods: The analysis of cell viability was performed by the MTT method. The expression of signaling proteins was analyzed by immunoblotting and flow cytometry. ERα activity was evaluated by gene reporter assay. To establish hormone-resistant subline MCF7, breast cancer cells were treated with 4-hydroxytamoxifen for 12 months. Results: The developed MCF7/HT subline has lost sensitivity to 4-hydroxytamoxifen, and the resistance index was 2. Increased Akt activity (2.2-fold) and decreased ERα expression (1.5-fold) were revealed in MCF7/HT cells. The activity of the estrogen receptor α was reduced (1.5-fold) in MCF7/HT. Evaluation of class III β-tubulin expression (TUBB3), a marker associated with metastasis, revealed the following trends: higher expression of TUBB3 was detected in triple-negative breast cancer MDA-MB-231 cells compared to hormone-responsive MCF7 cells (P < 0.05). The lowest expression of TUBB3 was found in hormone-resistant MCF7/HT cells (MCF7/HT < MCF7 < MDA-MB-231, approximately 1:2:4). High TUBB3 expression strongly correlated with docetaxel resistance: IC50 value of docetaxel for MDA-MB-231 cells was greater than that for MCF7 cells, whereas resistant MCF7/HT cells were the most sensitive to the drug. The accumulation of cleaved PARP (a 1.6-fold increase) and Bcl-2 downregulation (1.8-fold) were more pronounced in docetaxel-treated resistant cells (P < 0.05). The expression of cyclin D1 decreased (2.8-fold) only in resistant cells after 4 nM docetaxel treatment, while this marker was unchanged in parental MCF7 breast cancer cells. Conclusion: Further development of taxane-based chemotherapy for hormone-resistant cancer looks highly promising, especially for cancers with low TUBB3 expression.
{"title":"Targeting hormone-resistant breast cancer cells with docetaxel: a look inside the resistance.","authors":"Alexander M Scherbakov, Anna A Basharina, Danila V Sorokin, Ekaterina I Mikhaevich, Iman E Mizaeva, Alexandra L Mikhaylova, Tatiana A Bogush, Mikhail A Krasil'nikov","doi":"10.20517/cdr.2022.96","DOIUrl":"https://doi.org/10.20517/cdr.2022.96","url":null,"abstract":"<p><p><b>Aim:</b> The study aims to analyze the effect of long-term incubation of ERα-positive MCF7 breast cancer cells with 4-hydroxytamoxifen (HT) on their sensitivity to tubulin polymerization inhibitor docetaxel. <b>Methods:</b> The analysis of cell viability was performed by the MTT method. The expression of signaling proteins was analyzed by immunoblotting and flow cytometry. ERα activity was evaluated by gene reporter assay. To establish hormone-resistant subline MCF7, breast cancer cells were treated with 4-hydroxytamoxifen for 12 months. <b>Results:</b> The developed MCF7/HT subline has lost sensitivity to 4-hydroxytamoxifen, and the resistance index was 2. Increased Akt activity (2.2-fold) and decreased ERα expression (1.5-fold) were revealed in MCF7/HT cells. The activity of the estrogen receptor α was reduced (1.5-fold) in MCF7/HT. Evaluation of class III β-tubulin expression (TUBB3), a marker associated with metastasis, revealed the following trends: higher expression of TUBB3 was detected in triple-negative breast cancer MDA-MB-231 cells compared to hormone-responsive MCF7 cells (<i>P</i> < 0.05). The lowest expression of TUBB3 was found in hormone-resistant MCF7/HT cells (MCF7/HT < MCF7 < MDA-MB-231, approximately 1:2:4). High TUBB3 expression strongly correlated with docetaxel resistance: IC<sub>50</sub> value of docetaxel for MDA-MB-231 cells was greater than that for MCF7 cells, whereas resistant MCF7/HT cells were the most sensitive to the drug. The accumulation of cleaved PARP (a 1.6-fold increase) and Bcl-2 downregulation (1.8-fold) were more pronounced in docetaxel-treated resistant cells (<i>P</i> < 0.05). The expression of cyclin D1 decreased (2.8-fold) only in resistant cells after 4 nM docetaxel treatment, while this marker was unchanged in parental MCF7 breast cancer cells. <b>Conclusion:</b> Further development of taxane-based chemotherapy for hormone-resistant cancer looks highly promising, especially for cancers with low TUBB3 expression.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 1","pages":"103-115"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9310605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P-glycoprotein (ABCB1) is the first discovered mammalian member of the large family of ATP binding cassette (ABC) transporters. It facilitates the movement of compounds (called allocrites) across membranes, using the energy of ATP binding and hydrolysis. Here, we review the thermodynamics of allocrite binding and the kinetics of ATP hydrolysis by ABCB1. In combination with our previous molecular dynamics simulations, these data lead to a new model for allocrite transport by ABCB1. In contrast to previous models, we take into account that the transporter was evolutionarily optimized to operate within a membrane, which dictates the nature of interactions. Hydrophobic interactions drive lipid-water partitioning of allocrites, the transport process’s first step. Weak dipolar interactions (including hydrogen bonding, π-π stacking, and π-cation interactions) drive allocrite recognition, binding, and transport by ABCB1 within the membrane. Increasing the lateral membrane packing density reduces allocrite partitioning but enhances dipolar interactions between allocrites and ABCB1. Allocrite flopping (or reorientation of the polar part towards the extracellular aqueous phase) occurs after hydrolysis of one ATP molecule and opening of ABCB1 at the extracellular side. Rebinding of ATP re-closes the transporter at the extracellular side and expels the potentially remaining allocrite into the membrane. The high sensitivity of the steady-state ATP hydrolysis rate to the nature and number of dipolar interactions, as well as to the dielectric constant of the membrane, points to a flopping process, which occurs to a large extent at the membrane-transporter interface. The proposed unidirectional ABCB1 transport cycle, driven by weak dipolar interactions, is consistent with membrane biophysics.
p -糖蛋白(ABCB1)是在哺乳动物中首次发现的ATP结合盒转运蛋白大家族成员。它利用ATP结合和水解的能量,促进化合物(称为同种异体)跨膜的运动。本文综述了异源体结合的热力学和ABCB1水解ATP的动力学。结合我们之前的分子动力学模拟,这些数据导致ABCB1的异基因转运的新模型。与以前的模型相反,我们考虑到转运体在进化上被优化为在膜内运行,这决定了相互作用的性质。疏水相互作用驱动同种异体的脂水分配,这是运输过程的第一步。弱偶极相互作用(包括氢键、π-π堆叠和π-阳离子相互作用)驱动ABCB1在膜内识别、结合和运输同种异体。增加侧膜堆积密度会减少异体分配,但会增强异体与ABCB1之间的偶极相互作用。同种异体翻转(或极性部分向细胞外水相重新定向)发生在一个ATP分子水解和细胞外侧ABCB1打开后。ATP的重新结合重新关闭细胞外侧的转运蛋白,并将可能剩余的同种异体驱逐到膜内。稳态ATP水解速率对偶极相互作用的性质和数量以及膜的介电常数的高敏感性表明,在很大程度上发生在膜-转运体界面的一个翻转过程。ABCB1由弱偶极相互作用驱动的单向转运周期符合膜生物物理学。
{"title":"P-glycoprotein (ABCB1) - weak dipolar interactions provide the key to understanding allocrite recognition, binding, and transport.","authors":"Anna Seelig, Xiaochun Li-Blatter","doi":"10.20517/cdr.2022.59","DOIUrl":"https://doi.org/10.20517/cdr.2022.59","url":null,"abstract":"P-glycoprotein (ABCB1) is the first discovered mammalian member of the large family of ATP binding cassette (ABC) transporters. It facilitates the movement of compounds (called allocrites) across membranes, using the energy of ATP binding and hydrolysis. Here, we review the thermodynamics of allocrite binding and the kinetics of ATP hydrolysis by ABCB1. In combination with our previous molecular dynamics simulations, these data lead to a new model for allocrite transport by ABCB1. In contrast to previous models, we take into account that the transporter was evolutionarily optimized to operate within a membrane, which dictates the nature of interactions. Hydrophobic interactions drive lipid-water partitioning of allocrites, the transport process’s first step. Weak dipolar interactions (including hydrogen bonding, π-π stacking, and π-cation interactions) drive allocrite recognition, binding, and transport by ABCB1 within the membrane. Increasing the lateral membrane packing density reduces allocrite partitioning but enhances dipolar interactions between allocrites and ABCB1. Allocrite flopping (or reorientation of the polar part towards the extracellular aqueous phase) occurs after hydrolysis of one ATP molecule and opening of ABCB1 at the extracellular side. Rebinding of ATP re-closes the transporter at the extracellular side and expels the potentially remaining allocrite into the membrane. The high sensitivity of the steady-state ATP hydrolysis rate to the nature and number of dipolar interactions, as well as to the dielectric constant of the membrane, points to a flopping process, which occurs to a large extent at the membrane-transporter interface. The proposed unidirectional ABCB1 transport cycle, driven by weak dipolar interactions, is consistent with membrane biophysics.","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 1","pages":"1-29"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9693650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vincenzo Sammartano, Marta Franceschini, Sara Fredducci, Federico Caroni, Sara Ciofini, Paola Pacelli, Monica Bocchia, Alessandro Gozzetti
Recent advances in multiple myeloma therapy have increased the depth of response and ultimately survivals; however, the prognosis remains poor. The BCMA antigen is highly expressed in myeloma cells, thus representing a target for novel therapies. Several agents that target BCMA through different mechanisms, including bispecific T cell engagers drug conjugated to antibody and CAR-T cells, are now available or under development. Immunotherapies targeting BCMA have shown good results in efficacy and safety in multiple myeloma patients previously treated with several lines of therapy. This review will discuss the recent development of anti-BCMA targeted treatments in myeloma, with a special focus on currently available agents.
{"title":"Anti-BCMA novel therapies for multiple myeloma.","authors":"Vincenzo Sammartano, Marta Franceschini, Sara Fredducci, Federico Caroni, Sara Ciofini, Paola Pacelli, Monica Bocchia, Alessandro Gozzetti","doi":"10.20517/cdr.2022.138","DOIUrl":"https://doi.org/10.20517/cdr.2022.138","url":null,"abstract":"<p><p>Recent advances in multiple myeloma therapy have increased the depth of response and ultimately survivals; however, the prognosis remains poor. The BCMA antigen is highly expressed in myeloma cells, thus representing a target for novel therapies. Several agents that target BCMA through different mechanisms, including bispecific T cell engagers drug conjugated to antibody and CAR-T cells, are now available or under development. Immunotherapies targeting BCMA have shown good results in efficacy and safety in multiple myeloma patients previously treated with several lines of therapy. This review will discuss the recent development of anti-BCMA targeted treatments in myeloma, with a special focus on currently available agents.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 1","pages":"169-181"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9310607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HER2-positive breast cancer is an aggressive disease. As a result of the development of specific HER2-targeted therapies, such as trastuzumab, more than 20 years ago, the prognosis of these patients has improved. Metastatic HER2-positive breast cancer patients are achieving better survival rates upon treatment with anti-HER2 therapies than patients with HER2-negative disease. Double HER2 blockade with trastuzumab and pertuzumab combined with a taxane achieved an unprecedented survival of over 57 months in first-line patients. Trastuzumab emtansine, the first antibody-drug conjugate approved for patients in second-line treatment was a potent cytotoxic agent bound to trastuzumab and is currently a standard therapeutic strategy. Despite the progress in treatment development, most patients develop resistance and eventually relapse. Advances in the design of antibody-drug conjugates have led to the development of new generation drugs with enhanced properties, such as trastuzumab deruxtecan and trastuzumab duocarmazine, which are significantly changing the paradigm in the treatment of HER2-positive metastatic breast cancer.
{"title":"The change of paradigm in the treatment of HER2-positive breast cancer with the development of new generation antibody-drug conjugates.","authors":"Santiago Escrivá-de-Romaní, Cristina Saura","doi":"10.20517/cdr.2022.52","DOIUrl":"https://doi.org/10.20517/cdr.2022.52","url":null,"abstract":"<p><p>HER2-positive breast cancer is an aggressive disease. As a result of the development of specific HER2-targeted therapies, such as trastuzumab, more than 20 years ago, the prognosis of these patients has improved. Metastatic HER2-positive breast cancer patients are achieving better survival rates upon treatment with anti-HER2 therapies than patients with HER2-negative disease. Double HER2 blockade with trastuzumab and pertuzumab combined with a taxane achieved an unprecedented survival of over 57 months in first-line patients. Trastuzumab emtansine, the first antibody-drug conjugate approved for patients in second-line treatment was a potent cytotoxic agent bound to trastuzumab and is currently a standard therapeutic strategy. Despite the progress in treatment development, most patients develop resistance and eventually relapse. Advances in the design of antibody-drug conjugates have led to the development of new generation drugs with enhanced properties, such as trastuzumab deruxtecan and trastuzumab duocarmazine, which are significantly changing the paradigm in the treatment of HER2-positive metastatic breast cancer.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 1","pages":"45-58"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9317814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The clinical treatment of DNA-repair defective tumours has been revolutionised by the use of poly(ADP) ribose polymerase (PARP) inhibitors. However, the efficacy of these compounds is hampered by resistance, which is attributed to numerous mechanisms including rewiring of the DNA damage response to favour pathways that repair PARP inhibitor-mediated damage. Here, we comment on recent findings by our group identifying the lysine methyltransferase SETD1A as a novel factor that conveys PARPi resistance. We discuss the implications, with a particular focus on epigenetic modifications and H3K4 methylation. We also deliberate on the mechanisms responsible, the consequences for the refinement of PARP inhibitor use in the clinic, and future possibilities to circumvent drug resistance in DNA-repair deficient cancers.
{"title":"New perspectives on epigenetic modifications and PARP inhibitor resistance in HR-deficient cancers.","authors":"Rachel Bayley, Ellie Sweatman, Martin R Higgs","doi":"10.20517/cdr.2022.73","DOIUrl":"https://doi.org/10.20517/cdr.2022.73","url":null,"abstract":"<p><p>The clinical treatment of DNA-repair defective tumours has been revolutionised by the use of poly(ADP) ribose polymerase (PARP) inhibitors. However, the efficacy of these compounds is hampered by resistance, which is attributed to numerous mechanisms including rewiring of the DNA damage response to favour pathways that repair PARP inhibitor-mediated damage. Here, we comment on recent findings by our group identifying the lysine methyltransferase SETD1A as a novel factor that conveys PARPi resistance. We discuss the implications, with a particular focus on epigenetic modifications and H3K4 methylation. We also deliberate on the mechanisms responsible, the consequences for the refinement of PARP inhibitor use in the clinic, and future possibilities to circumvent drug resistance in DNA-repair deficient cancers.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 1","pages":"35-44"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9769040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and despite advancements in therapeutics, most women unfortunately still succumb to their disease. Immunotherapies, in particular immune checkpoint inhibitors (ICI), have been therapeutically transformative in many tumour types, including gynaecological malignancies such as cervical and endometrial cancer. Unfortunately, these therapeutic successes have not been mirrored in ovarian cancer clinical studies. This review provides an overview of the ovarian tumour microenvironment (TME), particularly factors associated with survival, and explores current research into immunotherapeutic strategies in EOC, with an exploratory focus on novel therapeutics in navigating drug resistance.
{"title":"Immune checkpoint inhibitors in ovarian cancer: where do we go from here?","authors":"Won-Hee Yoon, Anna DeFazio, Lawrence Kasherman","doi":"10.20517/cdr.2023.13","DOIUrl":"https://doi.org/10.20517/cdr.2023.13","url":null,"abstract":"<p><p>Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and despite advancements in therapeutics, most women unfortunately still succumb to their disease. Immunotherapies, in particular immune checkpoint inhibitors (ICI), have been therapeutically transformative in many tumour types, including gynaecological malignancies such as cervical and endometrial cancer. Unfortunately, these therapeutic successes have not been mirrored in ovarian cancer clinical studies. This review provides an overview of the ovarian tumour microenvironment (TME), particularly factors associated with survival, and explores current research into immunotherapeutic strategies in EOC, with an exploratory focus on novel therapeutics in navigating drug resistance.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 2","pages":"358-377"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}