Tumor heterogeneity can contribute to the development of therapeutic resistance in cancer, including advanced breast cancers. The object of the Halifax project was to identify new treatments that would address mechanisms of therapeutic resistance through tumor heterogeneity by uncovering combinations of therapeutics that could target the hallmarks of cancer rather than focusing on individual gene products. A taskforce of 180 cancer researchers, used molecular profiling to highlight key targets responsible for each of the hallmarks of cancer and then find existing therapeutic agents that could be used to reach those targets with limited toxicity. In many cases, natural health products and re-purposed pharmaceuticals were identified as potential agents. Hence, by combining the molecular profiling of tumors with therapeutics that target the hallmark features of cancer, the heterogeneity of advanced-stage breast cancers can be addressed.
{"title":"Tackling heterogeneity in treatment-resistant breast cancer using a broad-spectrum therapeutic approach.","authors":"Leroy Lowe, J William LaValley, Dean W Felsher","doi":"10.20517/cdr.2022.40","DOIUrl":"https://doi.org/10.20517/cdr.2022.40","url":null,"abstract":"<p><p>Tumor heterogeneity can contribute to the development of therapeutic resistance in cancer, including advanced breast cancers. The object of the Halifax project was to identify new treatments that would address mechanisms of therapeutic resistance through tumor heterogeneity by uncovering combinations of therapeutics that could target the hallmarks of cancer rather than focusing on individual gene products. A taskforce of 180 cancer researchers, used molecular profiling to highlight key targets responsible for each of the hallmarks of cancer and then find existing therapeutic agents that could be used to reach those targets with limited toxicity. In many cases, natural health products and re-purposed pharmaceuticals were identified as potential agents. Hence, by combining the molecular profiling of tumors with therapeutics that target the hallmark features of cancer, the heterogeneity of advanced-stage breast cancers can be addressed.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"5 4","pages":"917-925"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9705330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current therapeutic protocols and prognosis of gliomas still depend on clinicopathologic and radiographic characteristics. For high-grade gliomas, the standard of care is resection followed by radiotherapy plus temozolomide chemotherapy. However, treatment resistance develops due to different mechanisms, among which is the dynamic interplay between the tumor and its microenvironment. Different signaling pathways cause the proliferation of so-called glioma stem cells, a minor cancer cell population with stem cell-like characteristics and aggressive phenotype. In the last decades, numerous studies have indicated that Notch is a crucial pathway that maintains the characteristics of resistant glioma stem cells. Data obtained from preclinical models indicate that downregulation of the Notch pathway could induce multifaceted drug sensitivity, acting on the expression of drug-transporter proteins, inducing epithelial-mesenchymal transition, and shaping the tumor microenvironment. This review provides a brief overview of the published data supporting the roles of Notch in drug resistance and demonstrates how potential novel strategies targeting Notch could become an efficacious action to improve the therapy of high-grade glioma to overcome drug resistance.
{"title":"Aberrant Notch signaling in gliomas: a potential landscape of actionable converging targets for combination approach in therapies resistance.","authors":"Maria D'Amico, Francesca De Amicis","doi":"10.20517/cdr.2022.46","DOIUrl":"https://doi.org/10.20517/cdr.2022.46","url":null,"abstract":"<p><p>The current therapeutic protocols and prognosis of gliomas still depend on clinicopathologic and radiographic characteristics. For high-grade gliomas, the standard of care is resection followed by radiotherapy plus temozolomide chemotherapy. However, treatment resistance develops due to different mechanisms, among which is the dynamic interplay between the tumor and its microenvironment. Different signaling pathways cause the proliferation of so-called glioma stem cells, a minor cancer cell population with stem cell-like characteristics and aggressive phenotype. In the last decades, numerous studies have indicated that Notch is a crucial pathway that maintains the characteristics of resistant glioma stem cells. Data obtained from preclinical models indicate that downregulation of the Notch pathway could induce multifaceted drug sensitivity, acting on the expression of drug-transporter proteins, inducing epithelial-mesenchymal transition, and shaping the tumor microenvironment. This review provides a brief overview of the published data supporting the roles of Notch in drug resistance and demonstrates how potential novel strategies targeting Notch could become an efficacious action to improve the therapy of high-grade glioma to overcome drug resistance.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"5 4","pages":"939-953"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10574043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-05eCollection Date: 2021-01-01DOI: 10.20517/cdr.2021.66
Swetha Kambhampati, Joo Y Song, Alex F Herrera, Wing C Chan
Lymphoma is a diverse disease with a variety of different subtypes, each characterized by unique pathophysiology, tumor microenvironment, and underlying signaling pathways leading to oncogenesis. With our increasing understanding of the molecular biology of lymphoma, there have been a number of novel targeted therapies and immunotherapy approaches that have been developed for the treatment of this complex disease. Despite rapid progress in the field, however, many patients still relapse largely due to the development of drug resistance to these therapies. A better understanding of the mechanisms underlying resistance is needed to develop more novel treatment strategies that circumvent these mechanisms and design better treatment algorithms that personalize therapies to patients and sequence these therapies in the most optimal manner. This review focuses on the recent advances in therapies in lymphoma, including targeted therapies, monoclonal antibodies, antibody-drug conjugates, cellular therapy, bispecific antibodies, and checkpoint inhibitors. We discuss the genetic and cellular principles of drug resistance that span across all the therapies, as well as some of the unique mechanisms of resistance that are specific to these individual classes of therapies and the strategies that have been developed to address these modes of resistance.
{"title":"Barriers to achieving a cure in lymphoma.","authors":"Swetha Kambhampati, Joo Y Song, Alex F Herrera, Wing C Chan","doi":"10.20517/cdr.2021.66","DOIUrl":"10.20517/cdr.2021.66","url":null,"abstract":"<p><p>Lymphoma is a diverse disease with a variety of different subtypes, each characterized by unique pathophysiology, tumor microenvironment, and underlying signaling pathways leading to oncogenesis. With our increasing understanding of the molecular biology of lymphoma, there have been a number of novel targeted therapies and immunotherapy approaches that have been developed for the treatment of this complex disease. Despite rapid progress in the field, however, many patients still relapse largely due to the development of drug resistance to these therapies. A better understanding of the mechanisms underlying resistance is needed to develop more novel treatment strategies that circumvent these mechanisms and design better treatment algorithms that personalize therapies to patients and sequence these therapies in the most optimal manner. This review focuses on the recent advances in therapies in lymphoma, including targeted therapies, monoclonal antibodies, antibody-drug conjugates, cellular therapy, bispecific antibodies, and checkpoint inhibitors. We discuss the genetic and cellular principles of drug resistance that span across all the therapies, as well as some of the unique mechanisms of resistance that are specific to these individual classes of therapies and the strategies that have been developed to address these modes of resistance.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"4 1","pages":"965-983"},"PeriodicalIF":4.6,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47799870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-26eCollection Date: 2021-01-01DOI: 10.20517/cdr.2021.62
Alfred Buhagiar, Elisa Seria, Miriana Borg, Joseph Borg, Duncan Ayers
Colorectal cancer (CRC) is the third most common cancer worldwide. It has also been demonstrated that over the last ten years the incidence of CRC among younger people below the age of 50 is also increasing. Screening for colorectal cancer is of utmost importance; the rationale behind screening is to target the malignancy and reduce the incidence and mortality of the disease. Diagnostic methods to screen for incidence or relapse are therefore a requisite to detect cancer as early as possible. Scientific findings demonstrate that many deaths are due to lack of screening and therefore early identification will lead to greater survivability. In colorectal cancer, diagnostic tests include liquid biopsy biomarkers. Since the discovery of microRNAs (miRNAs), many studies have demonstrated the relationship between miRNAs and the various sub-types of CRC. Several miRNAs have been identified after analysing serum or plasma samples in patients, and such miRNAs were found to be significantly dysregulated. Such findings place the possibility of miRNAs to be at the epicentre of novel diagnostic techniques for CRC identification and sub-type stratification, including other characteristics associated with CRC development such as patient prognosis. The following review serves to underline the latest findings for miRNAs with such potential for routine diagnostic employment in CRC diagnostics and treatments.
{"title":"Overview of microRNAs as liquid biopsy biomarkers for colorectal cancer sub-type profiling and chemoresistance.","authors":"Alfred Buhagiar, Elisa Seria, Miriana Borg, Joseph Borg, Duncan Ayers","doi":"10.20517/cdr.2021.62","DOIUrl":"10.20517/cdr.2021.62","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the third most common cancer worldwide. It has also been demonstrated that over the last ten years the incidence of CRC among younger people below the age of 50 is also increasing. Screening for colorectal cancer is of utmost importance; the rationale behind screening is to target the malignancy and reduce the incidence and mortality of the disease. Diagnostic methods to screen for incidence or relapse are therefore a requisite to detect cancer as early as possible. Scientific findings demonstrate that many deaths are due to lack of screening and therefore early identification will lead to greater survivability. In colorectal cancer, diagnostic tests include liquid biopsy biomarkers. Since the discovery of microRNAs (miRNAs), many studies have demonstrated the relationship between miRNAs and the various sub-types of CRC. Several miRNAs have been identified after analysing serum or plasma samples in patients, and such miRNAs were found to be significantly dysregulated. Such findings place the possibility of miRNAs to be at the epicentre of novel diagnostic techniques for CRC identification and sub-type stratification, including other characteristics associated with CRC development such as patient prognosis. The following review serves to underline the latest findings for miRNAs with such potential for routine diagnostic employment in CRC diagnostics and treatments.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"4 1","pages":"934-945"},"PeriodicalIF":4.6,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42603660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-07eCollection Date: 2021-01-01DOI: 10.20517/cdr.2021.75
Fuyuhiko Motoi
Gemcitabine has been used as a key drug for the treatment of pancreatic ductal adenocarcinoma. Although surgery remains the mainstay for cure of this lethal disease, the effect is quite limited, even for resectable disease, if there is no collaboration with chemotherapy. In the cases with unresectable disease, conversion surgery after a favorable response to chemotherapy might show encouraging results. Potentiation of chemotherapeutic agent is urgently needed in almost all stages of pancreatic cancer. Further efforts must be paid on overcoming chemo-resistance by understanding tumor diversity and developing biomarkers that follow recent success of modified conventional agents by drug delivery technology.
{"title":"Overcoming acquired chemo-resistance to gemcitabine: implications from the perspective of multi-modal therapy including surgery for pancreatic cancer.","authors":"Fuyuhiko Motoi","doi":"10.20517/cdr.2021.75","DOIUrl":"10.20517/cdr.2021.75","url":null,"abstract":"<p><p>Gemcitabine has been used as a key drug for the treatment of pancreatic ductal adenocarcinoma. Although surgery remains the mainstay for cure of this lethal disease, the effect is quite limited, even for resectable disease, if there is no collaboration with chemotherapy. In the cases with unresectable disease, conversion surgery after a favorable response to chemotherapy might show encouraging results. Potentiation of chemotherapeutic agent is urgently needed in almost all stages of pancreatic cancer. Further efforts must be paid on overcoming chemo-resistance by understanding tumor diversity and developing biomarkers that follow recent success of modified conventional agents by drug delivery technology.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"4 1","pages":"881-884"},"PeriodicalIF":4.6,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43147895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-13eCollection Date: 2021-01-01DOI: 10.20517/cdr.2021.55
Sandra Martínez-Martín, Laura Soucek
The importance of MYC function in cancer was discovered in the late 1970s when the sequence of the avian retrovirus that causes myelocytic leukemia was identified. Since then, over 40 years of unceasing research have highlighted the significance of this protein in malignant transformation, especially in hematologic diseases. Indeed, some of the earliest connections among the higher expression of proto-oncogenes (such as MYC), genetic rearrangements and their relation to cancer development were made in Burkitt lymphoma, chronic myeloid leukemia and mouse plasmacytomas. Multiple myeloma (MM), in particular, is a plasma cell malignancy strictly associated with MYC deregulation, suggesting that therapeutic strategies against it would be beneficial in treating this disease. However, targeting MYC was - and, somehow, still is - challenging due to its unique properties: lack of defined three-dimensional structure, nuclear localization and absence of a targetable enzymatic pocket. Despite these difficulties, however, many studies have shown the potential therapeutic impact of direct or indirect MYC inhibition. Different molecules have been tested, in fact, in the context of MM. In this review, we summarize the current status of the different compounds, including the results of their clinical testing, and propose to continue with the efforts to identify, repurpose, redesign or improve drug candidates to combine them with standard of care therapies to overcome resistance and enable better management of myeloma treatment.
{"title":"MYC inhibitors in multiple myeloma.","authors":"Sandra Martínez-Martín, Laura Soucek","doi":"10.20517/cdr.2021.55","DOIUrl":"10.20517/cdr.2021.55","url":null,"abstract":"<p><p>The importance of MYC function in cancer was discovered in the late 1970s when the sequence of the avian retrovirus that causes myelocytic leukemia was identified. Since then, over 40 years of unceasing research have highlighted the significance of this protein in malignant transformation, especially in hematologic diseases. Indeed, some of the earliest connections among the higher expression of proto-oncogenes (such as <i>MYC</i>), genetic rearrangements and their relation to cancer development were made in Burkitt lymphoma, chronic myeloid leukemia and mouse plasmacytomas. Multiple myeloma (MM), in particular, is a plasma cell malignancy strictly associated with MYC deregulation, suggesting that therapeutic strategies against it would be beneficial in treating this disease. However, targeting MYC was - and, somehow, still is - challenging due to its unique properties: lack of defined three-dimensional structure, nuclear localization and absence of a targetable enzymatic pocket. Despite these difficulties, however, many studies have shown the potential therapeutic impact of direct or indirect MYC inhibition. Different molecules have been tested, in fact, in the context of MM. In this review, we summarize the current status of the different compounds, including the results of their clinical testing, and propose to continue with the efforts to identify, repurpose, redesign or improve drug candidates to combine them with standard of care therapies to overcome resistance and enable better management of myeloma treatment.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"4 1","pages":"842-865"},"PeriodicalIF":4.6,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47542784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-08eCollection Date: 2021-01-01DOI: 10.20517/cdr.2021.59
Paola Perego
{"title":"Tackling cisplatin resistance in ovarian cancer: what can we do?","authors":"Paola Perego","doi":"10.20517/cdr.2021.59","DOIUrl":"10.20517/cdr.2021.59","url":null,"abstract":"","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"4 1","pages":"755-757"},"PeriodicalIF":4.6,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49066909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-19eCollection Date: 2021-01-01DOI: 10.20517/cdr.2020.115
Yang Meng, Lei Qiu, Su Zhang, Junhong Han
Epithelial cancer of the ovary exhibits the highest mortality rate of all gynecological malignancies in women today, since the disease is often diagnosed in advanced stages. While the treatment of cancer with specific chemical agents or drugs is the favored treatment regimen, chemotherapy resistance greatly impedes successful ovarian cancer chemotherapy. Thus, chemoresistance becomes one of the most critical clinical issues confronted when treating patients with ovarian cancer. Convincing evidence hints that dysregulation of E3 ubiquitin ligases is a key factor in the development and maintenance of ovarian cancer chemoresistance. This review outlines recent advancement in our understanding of the emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. We also highlight currently available inhibitors targeting E3 ligase activities and discuss their potential for clinical applications in treating chemoresistant ovarian cancer patients.
{"title":"The emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance.","authors":"Yang Meng, Lei Qiu, Su Zhang, Junhong Han","doi":"10.20517/cdr.2020.115","DOIUrl":"10.20517/cdr.2020.115","url":null,"abstract":"<p><p>Epithelial cancer of the ovary exhibits the highest mortality rate of all gynecological malignancies in women today, since the disease is often diagnosed in advanced stages. While the treatment of cancer with specific chemical agents or drugs is the favored treatment regimen, chemotherapy resistance greatly impedes successful ovarian cancer chemotherapy. Thus, chemoresistance becomes one of the most critical clinical issues confronted when treating patients with ovarian cancer. Convincing evidence hints that dysregulation of E3 ubiquitin ligases is a key factor in the development and maintenance of ovarian cancer chemoresistance. This review outlines recent advancement in our understanding of the emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. We also highlight currently available inhibitors targeting E3 ligase activities and discuss their potential for clinical applications in treating chemoresistant ovarian cancer patients.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"4 1","pages":"365-381"},"PeriodicalIF":4.6,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49541730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-19eCollection Date: 2021-01-01DOI: 10.20517/cdr.2020.106
Norman Fultang, Madhuparna Chakraborty, Bela Peethambaran
Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes. These CSCs are enriched in TNBC compared to non-TNBC breast cancers. The mechanisms underlying CSC accumulation have been well-characterized and discussed in other reviews. In this review, we focus on TNBC-specific mechanisms that allow the expansion and activity of self-renewing CSCs. We highlight cellular signaling pathways and transcription factors, specifically enriched in TNBC over non-TNBC breast cancer, contributing to stemness. We also analyze publicly available single-cell RNA-seq data from basal breast cancer tumors to highlight the potential of emerging bioinformatic approaches in identifying novel drivers of stemness in TNBC and other cancers.
{"title":"Regulation of cancer stem cells in triple negative breast cancer.","authors":"Norman Fultang, Madhuparna Chakraborty, Bela Peethambaran","doi":"10.20517/cdr.2020.106","DOIUrl":"10.20517/cdr.2020.106","url":null,"abstract":"<p><p>Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes. These CSCs are enriched in TNBC compared to non-TNBC breast cancers. The mechanisms underlying CSC accumulation have been well-characterized and discussed in other reviews. In this review, we focus on TNBC-specific mechanisms that allow the expansion and activity of self-renewing CSCs. We highlight cellular signaling pathways and transcription factors, specifically enriched in TNBC over non-TNBC breast cancer, contributing to stemness. We also analyze publicly available single-cell RNA-seq data from basal breast cancer tumors to highlight the potential of emerging bioinformatic approaches in identifying novel drivers of stemness in TNBC and other cancers.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"4 1","pages":"321-342"},"PeriodicalIF":4.6,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49214770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-11eCollection Date: 2021-01-01DOI: 10.20517/cdr.2021.20
Alice Romagnoli, Cristina Maracci, Mattia D'Agostino, Anna La Teana, Daniele Di Marino
Ovarian carcinoma is one of the most common causes for cancer death in women; lack of early diagnosis and acquired resistance to platinum-based chemotherapy account for its poor prognosis and high mortality rate. As with other cancer types, ovarian cancer is characterized by dysregulated signaling pathways and protein synthesis, which together contribute to rapid cellular growth and invasiveness. The mechanistic/mammalian target of rapamycin (mTOR) pathway represents the core of different signaling pathways regulating a number of essential steps in the cell, among which protein synthesis and the eukaryotic initiation factor 4E (eIF4E), the mRNA cap binding protein, is one of its downstream effectors. eIF4E is a limiting factor in translation initiation and its overexpression is a hallmark in many cancers. Because its action is regulated by a number of factors that compete for the same binding site, eIF4E is an ideal target for developing novel antineoplastic drugs. Several inhibitors targeting the mTOR signaling pathway have been designed thus far, however most of these molecules show poor stability and high toxicity in vivo. This minireview explores the possibility of targeting mTOR and eIF4E proteins, thus impacting on translation initiation in ovarian cancer, describing the most promising experimental strategies and specific inhibitors that have been shown to have an effect on other kinds of cancers.
卵巢癌是妇女癌症死亡的最常见原因之一;缺乏早期诊断和获得性耐药是其预后差、死亡率高的原因。与其他类型的癌症一样,卵巢癌的特点是信号通路和蛋白质合成失调,它们共同导致细胞快速生长和侵袭性。rapamycin (mTOR)通路的机制/哺乳动物靶点(mechanistic/哺乳动物target of rapamycin, mTOR)是调控细胞中许多重要步骤的不同信号通路的核心,其中蛋白质合成和真核起始因子4E (eIF4E, mRNA帽结合蛋白)是其下游效应物之一。eIF4E是翻译起始的限制因子,其过表达是许多癌症的标志。由于eIF4E的作用受到许多竞争同一结合位点的因子的调节,因此它是开发新型抗肿瘤药物的理想靶点。目前已经设计了几种靶向mTOR信号通路的抑制剂,但大多数这些分子在体内稳定性差且毒性高。这篇小型综述探讨了靶向mTOR和eIF4E蛋白的可能性,从而影响卵巢癌的翻译起始,描述了最有希望的实验策略和已被证明对其他类型癌症有影响的特异性抑制剂。
{"title":"Targeting mTOR and eIF4E: a feasible scenario in ovarian cancer therapy.","authors":"Alice Romagnoli, Cristina Maracci, Mattia D'Agostino, Anna La Teana, Daniele Di Marino","doi":"10.20517/cdr.2021.20","DOIUrl":"10.20517/cdr.2021.20","url":null,"abstract":"<p><p>Ovarian carcinoma is one of the most common causes for cancer death in women; lack of early diagnosis and acquired resistance to platinum-based chemotherapy account for its poor prognosis and high mortality rate. As with other cancer types, ovarian cancer is characterized by dysregulated signaling pathways and protein synthesis, which together contribute to rapid cellular growth and invasiveness. The mechanistic/mammalian target of rapamycin (mTOR) pathway represents the core of different signaling pathways regulating a number of essential steps in the cell, among which protein synthesis and the eukaryotic initiation factor 4E (eIF4E), the mRNA cap binding protein, is one of its downstream effectors. eIF4E is a limiting factor in translation initiation and its overexpression is a hallmark in many cancers. Because its action is regulated by a number of factors that compete for the same binding site, eIF4E is an ideal target for developing novel antineoplastic drugs. Several inhibitors targeting the mTOR signaling pathway have been designed thus far, however most of these molecules show poor stability and high toxicity <i>in vivo</i>. This minireview explores the possibility of targeting mTOR and eIF4E proteins, thus impacting on translation initiation in ovarian cancer, describing the most promising experimental strategies and specific inhibitors that have been shown to have an effect on other kinds of cancers.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"4 1","pages":"596-606"},"PeriodicalIF":4.6,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42668864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}