Aim: Glioblastoma (GBM) is the most malignant grade of glioma, characterized by high recurrence, poor prognosis, and frequent chemoresistance. There is an urgent need for alternative treatment strategies. In this study, we evaluated the effects of THZ2, a covalent inhibitor targeting the super-enhancer (SE) component CDK7, on GBM growth and chemoresistance. We also used another SE inhibitor, JQ1, to further validate the inhibitory effects of targeting SEs in GBM, thereby providing new treatment strategies for patients. Methods: A variety of in vitro and in vivo assays were performed to explore the anti-GBM effects of SE inhibitors. We assessed the effects of SE inhibitors in combination with temozolomide (TMZ) on GBM cells and calculated the combination index. Additionally, CUT&RUN assays were conducted to examine protein-DNA interactions. Results: THZ2 inhibited the proliferation, migration, and invasion of GBM cells and induced cell cycle arrest and apoptosis. Furthermore, both THZ2 and JQ1 exhibited synergistic antitumor effects when combined with TMZ in GBM cells. Notably, THZ2 reversed TMZ resistance in GBM cells by suppressing the expression of the SE-associated gene SOX9. We also found that SOX9, CDK7, and BRD4 interact with histone H3K27ac. Conclusion: Our findings demonstrate that SE inhibitors exert antitumor effects in GBM and act synergistically with TMZ. THZ2 may enhance chemosensitivity by downregulating the SE-related gene SOX9, and it holds promise as a novel therapeutic agent for GBM patients.
{"title":"Super-enhancer inhibitors THZ2 and JQ1 reverse temozolomide resistance in glioblastoma by suppressing SE-driven SOX9 expression.","authors":"Xinqi Teng, Yiming Wang, Qiang Qu, Weixin Xu, Haihui Zhuang, Yiwen Wei, Yinghuan Dai, Jian Qu","doi":"10.20517/cdr.2025.105","DOIUrl":"10.20517/cdr.2025.105","url":null,"abstract":"<p><p><b>Aim:</b> Glioblastoma (GBM) is the most malignant grade of glioma, characterized by high recurrence, poor prognosis, and frequent chemoresistance. There is an urgent need for alternative treatment strategies. In this study, we evaluated the effects of THZ2, a covalent inhibitor targeting the super-enhancer (SE) component CDK7, on GBM growth and chemoresistance. We also used another SE inhibitor, JQ1, to further validate the inhibitory effects of targeting SEs in GBM, thereby providing new treatment strategies for patients. <b>Methods:</b> A variety of <i>in vitro</i> and <i>in vivo</i> assays were performed to explore the anti-GBM effects of SE inhibitors. We assessed the effects of SE inhibitors in combination with temozolomide (TMZ) on GBM cells and calculated the combination index. Additionally, CUT&RUN assays were conducted to examine protein-DNA interactions. <b>Results:</b> THZ2 inhibited the proliferation, migration, and invasion of GBM cells and induced cell cycle arrest and apoptosis. Furthermore, both THZ2 and JQ1 exhibited synergistic antitumor effects when combined with TMZ in GBM cells. Notably, THZ2 reversed TMZ resistance in GBM cells by suppressing the expression of the SE-associated gene <i>SOX9</i>. We also found that <i>SOX9</i>, <i>CDK7</i>, and <i>BRD4</i> interact with histone H3K27ac. <b>Conclusion:</b> Our findings demonstrate that SE inhibitors exert antitumor effects in GBM and act synergistically with TMZ. THZ2 may enhance chemosensitivity by downregulating the SE-related gene <i>SOX9</i>, and it holds promise as a novel therapeutic agent for GBM patients.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"37"},"PeriodicalIF":4.6,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-21eCollection Date: 2025-01-01DOI: 10.20517/cdr.2025.69
Suryendu Saha, Samikshya Mahapatra, Sinjan Khanra, Barnalee Mishra, Biswajit Swain, Diksha Malhotra, Swarnali Saha, Venketesh K Panda, Kavita Kumari, Sarmistha Jena, Sandeep Thakur, Pawan K Singh, Gopal C Kundu
Breast cancer continues to be the primary cause of cancer-related deaths among women globally, with increased rates of incidence and mortality, highlighting the critical need for effective treatment strategies. Recent developments have introduced a variety of treatment options that address the molecular diversity of breast cancer; nonetheless, drug resistance remains a significant barrier to achieving favorable results. This review explains the crucial role of genetic and epigenetic changes in contributing to therapeutic resistance, in addition to other factors such as increased drug efflux, enhanced DNA repair, evasion of senescence, tumor heterogeneity, the tumor microenvironment (TME), and epithelial-to-mesenchymal transition (EMT). Genetic modifications, including mutations in oncogenes and tumor suppressor genes, disrupt essential signaling pathways, facilitating resistance to chemotherapy and targeted therapies. At the same time, epigenetic modifications - like DNA methylation, alterations to histones, and dysregulation of non-coding RNAs - reprogram gene expression, supporting adaptive resistance mechanisms. These molecular abnormalities contribute to the plasticity of tumors, allowing cancer cells to evade therapeutic approaches. This review consolidates recent discoveries regarding how these genetic and epigenetic modifications affect treatment responses and resistance in breast cancer, highlighting their interaction with disease advancement. By pinpointing new drug targets, including immunotherapeutic strategies, this article seeks to shed light on the molecular underpinnings of chemoresistance, aiding in the refinement of existing treatment protocols. A more profound understanding of these mechanisms offers the potential for developing precision therapies to overcome resistance, reduce relapse rates, and improve clinical outcomes for breast cancer patients.
{"title":"Decoding breast cancer treatment resistance through genetic, epigenetic, and immune-regulatory mechanisms: from molecular insights to translational perspectives.","authors":"Suryendu Saha, Samikshya Mahapatra, Sinjan Khanra, Barnalee Mishra, Biswajit Swain, Diksha Malhotra, Swarnali Saha, Venketesh K Panda, Kavita Kumari, Sarmistha Jena, Sandeep Thakur, Pawan K Singh, Gopal C Kundu","doi":"10.20517/cdr.2025.69","DOIUrl":"10.20517/cdr.2025.69","url":null,"abstract":"<p><p>Breast cancer continues to be the primary cause of cancer-related deaths among women globally, with increased rates of incidence and mortality, highlighting the critical need for effective treatment strategies. Recent developments have introduced a variety of treatment options that address the molecular diversity of breast cancer; nonetheless, drug resistance remains a significant barrier to achieving favorable results. This review explains the crucial role of genetic and epigenetic changes in contributing to therapeutic resistance, in addition to other factors such as increased drug efflux, enhanced DNA repair, evasion of senescence, tumor heterogeneity, the tumor microenvironment (TME), and epithelial-to-mesenchymal transition (EMT). Genetic modifications, including mutations in oncogenes and tumor suppressor genes, disrupt essential signaling pathways, facilitating resistance to chemotherapy and targeted therapies. At the same time, epigenetic modifications - like DNA methylation, alterations to histones, and dysregulation of non-coding RNAs - reprogram gene expression, supporting adaptive resistance mechanisms. These molecular abnormalities contribute to the plasticity of tumors, allowing cancer cells to evade therapeutic approaches. This review consolidates recent discoveries regarding how these genetic and epigenetic modifications affect treatment responses and resistance in breast cancer, highlighting their interaction with disease advancement. By pinpointing new drug targets, including immunotherapeutic strategies, this article seeks to shed light on the molecular underpinnings of chemoresistance, aiding in the refinement of existing treatment protocols. A more profound understanding of these mechanisms offers the potential for developing precision therapies to overcome resistance, reduce relapse rates, and improve clinical outcomes for breast cancer patients.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"36"},"PeriodicalIF":4.6,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-15eCollection Date: 2025-01-01DOI: 10.20517/cdr.2025.76
Charles Chidi Okechukwu, William H Gmeiner
Aim: Acquired resistance to 5-fluorouracil/leucovorin (5-FU/LV) frequently develops during treatment of metastatic colorectal (mCRC), but the causes are incompletely understood. We aim to: (i) identify the causes of 5-FU/LV resistance under physiological folate; and (ii) determine if a polymeric fluoropyrimidine (FP) CF10 remains potent to CRC cells selected for 5-FU/LV resistance. Methods: 5-FU/LV-resistant CRC cells were selected by repeated passaging with increasing 5-FU/LV concentrations, and resistance factors were calculated from dose-response studies. Basal and treatment-induced thymidylate synthase (TS), Myc, and ABCB5 were determined by RT-qPCR and Western blot. TS activity was determined using an in situ3H-release assay. DNA topoisomerase 1 cleavage complexes (Top1cc) and DNA double-strand breaks (DSBs) were determined by immunofluorescence. Results: Acquired resistance to 5-FU/LV with physiological folate was associated with a <1.5-fold increase in basal TS levels; however, with either 5-FU/LV or CF10/LV treatment, TS levels were elevated ~5-fold by Western blot but only ~2-fold by RT-qPCR. CF10 remained very potent to CRC cells selected for 5-FU/LV resistance, and CF10 effectively induced TS ternary complex formation and inhibited TS catalytic activity in 5-FU/LV-resistant CRC cells. c-Myc was expressed at ~4-fold higher levels in 5-FU/LV-resistant CRC cells, but Myc was barely detectable with CF10/LV treatment. The Myc-target ABCB5, which is an established factor in resistance to 5-FU and other drugs, was substantially downregulated with CF10/LV but not 5-FU/LV treatment. Conclusion: Acquired 5-FU/LV resistance was associated with FP-induced TS and elevated Myc and ABCB5. There is minimal cross-resistance to CF10 in 5-FU/LV-resistant CRC cells, consistent with its use in treating 5-FU/LV-resistant mCRC.
{"title":"CF10/LV overcomes acquired resistance to 5-FU/LV in colorectal cancer cells through downregulation of the c-Myc/ABCB5 axis.","authors":"Charles Chidi Okechukwu, William H Gmeiner","doi":"10.20517/cdr.2025.76","DOIUrl":"10.20517/cdr.2025.76","url":null,"abstract":"<p><p><b>Aim:</b> Acquired resistance to 5-fluorouracil/leucovorin (5-FU/LV) frequently develops during treatment of metastatic colorectal (mCRC), but the causes are incompletely understood. We aim to: (i) identify the causes of 5-FU/LV resistance under physiological folate; and (ii) determine if a polymeric fluoropyrimidine (FP) CF10 remains potent to CRC cells selected for 5-FU/LV resistance. <b>Methods:</b> 5-FU/LV-resistant CRC cells were selected by repeated passaging with increasing 5-FU/LV concentrations, and resistance factors were calculated from dose-response studies. Basal and treatment-induced thymidylate synthase (TS), Myc, and ABCB5 were determined by RT-qPCR and Western blot. TS activity was determined using an <i>in situ</i> <sup>3</sup>H-release assay. DNA topoisomerase 1 cleavage complexes (Top1cc) and DNA double-strand breaks (DSBs) were determined by immunofluorescence. <b>Results:</b> Acquired resistance to 5-FU/LV with physiological folate was associated with a <1.5-fold increase in basal TS levels; however, with either 5-FU/LV or CF10/LV treatment, TS levels were elevated ~5-fold by Western blot but only ~2-fold by RT-qPCR. CF10 remained very potent to CRC cells selected for 5-FU/LV resistance, and CF10 effectively induced TS ternary complex formation and inhibited TS catalytic activity in 5-FU/LV-resistant CRC cells. c-Myc was expressed at ~4-fold higher levels in 5-FU/LV-resistant CRC cells, but Myc was barely detectable with CF10/LV treatment. The Myc-target ABCB5, which is an established factor in resistance to 5-FU and other drugs, was substantially downregulated with CF10/LV but not 5-FU/LV treatment. <b>Conclusion:</b> Acquired 5-FU/LV resistance was associated with FP-induced TS and elevated Myc and ABCB5. There is minimal cross-resistance to CF10 in 5-FU/LV-resistant CRC cells, consistent with its use in treating 5-FU/LV-resistant mCRC.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"35"},"PeriodicalIF":4.6,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antibody-Drug Conjugates (ADCs) have achieved significant success in cancer therapy by combining the targeting specificity of monoclonal antibodies with cytotoxic payloads. However, the concomitant issue of drug resistance has become increasingly prominent, with primary mechanisms including alterations in target antigen expression, impaired drug transport, and inhibition of cell death pathways. ADCs have also shown emerging therapeutic potential in the treatment of autoimmune diseases; for instance, ABBV-3373 has achieved initial success in this area, yet it also faces unique challenges such as the safety of long-term administration, immunogenicity, and heterogeneity of target cells. Addressing these challenges requires multidimensional innovations, including optimizing molecular design, exploring combination therapy strategies, and introducing artificial intelligence (AI)-assisted development. These efforts aim to transition ADCs from the traditional "targeted killing" paradigm to intelligent and personalized precision delivery systems, thereby offering more therapeutic options for patients with cancer and autoimmune diseases.
{"title":"The next frontier in antibody-drug conjugates: challenges and opportunities in cancer and autoimmune therapy.","authors":"Meijiang Zhou, Zhiwen Huang, Zijun Ma, Jun Chen, Shunping Lin, Xuwei Yang, Quan Gong, Zachary Braunstein, Yingying Wei, Xiaoquan Rao, Jixin Zhong","doi":"10.20517/cdr.2025.49","DOIUrl":"10.20517/cdr.2025.49","url":null,"abstract":"<p><p>Antibody-Drug Conjugates (ADCs) have achieved significant success in cancer therapy by combining the targeting specificity of monoclonal antibodies with cytotoxic payloads. However, the concomitant issue of drug resistance has become increasingly prominent, with primary mechanisms including alterations in target antigen expression, impaired drug transport, and inhibition of cell death pathways. ADCs have also shown emerging therapeutic potential in the treatment of autoimmune diseases; for instance, ABBV-3373 has achieved initial success in this area, yet it also faces unique challenges such as the safety of long-term administration, immunogenicity, and heterogeneity of target cells. Addressing these challenges requires multidimensional innovations, including optimizing molecular design, exploring combination therapy strategies, and introducing artificial intelligence (AI)-assisted development. These efforts aim to transition ADCs from the traditional \"targeted killing\" paradigm to intelligent and personalized precision delivery systems, thereby offering more therapeutic options for patients with cancer and autoimmune diseases.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"34"},"PeriodicalIF":4.6,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-02eCollection Date: 2025-01-01DOI: 10.20517/cdr.2024.212
Maria Stella Franzè, Francesca Saffioti, Vasileios K Mavroeidis
Hepatocellular carcinoma (HCC) is a malignant tumor originating from hepatocytes, often developing against a backdrop of chronic inflammation and liver fibrosis. The primary risk factor for HCC is cirrhosis, and early detection is crucial for improving outcomes. Despite advances in treatment, the prognosis remains poor, with a 5-year survival rate of approximately 15%-38%. Growing evidence highlights the critical role of the tumor microenvironment (TME) in modulating tumor initiation, growth, progression, and, in some cases, suppression. The TME is a complex ecosystem composed of immune cells, cancer-associated fibroblasts, extracellular matrix components, and other factors such as growth factors and cytokines. By shaping tumor cell behavior, the TME facilitates immune evasion and contributes to resistance to treatment. Tumor-associated immune cells, including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages, contribute to immune suppression and progression. On the other hand, immune activation via immune checkpoint inhibition has shown promise in improving outcomes, especially when combined with other treatments such as transarterial chemoembolization (TACE), selective internal radiation therapy (SIRT), and systemic therapies. Studies have demonstrated the potential of targeting the TME to enhance treatment efficacy, with immune modulation emerging as a key therapeutic strategy. This review explores the complex interactions within the TME in HCC, highlighting its role in therapy resistance and immune evasion. It also discusses current therapeutic approaches to target the TME to improve clinical outcomes in HCC patients.
{"title":"Interactions between tumor microenvironment and resistance to transarterial and systemic treatments for HCC.","authors":"Maria Stella Franzè, Francesca Saffioti, Vasileios K Mavroeidis","doi":"10.20517/cdr.2024.212","DOIUrl":"10.20517/cdr.2024.212","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a malignant tumor originating from hepatocytes, often developing against a backdrop of chronic inflammation and liver fibrosis. The primary risk factor for HCC is cirrhosis, and early detection is crucial for improving outcomes. Despite advances in treatment, the prognosis remains poor, with a 5-year survival rate of approximately 15%-38%. Growing evidence highlights the critical role of the tumor microenvironment (TME) in modulating tumor initiation, growth, progression, and, in some cases, suppression. The TME is a complex ecosystem composed of immune cells, cancer-associated fibroblasts, extracellular matrix components, and other factors such as growth factors and cytokines. By shaping tumor cell behavior, the TME facilitates immune evasion and contributes to resistance to treatment. Tumor-associated immune cells, including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages, contribute to immune suppression and progression. On the other hand, immune activation via immune checkpoint inhibition has shown promise in improving outcomes, especially when combined with other treatments such as transarterial chemoembolization (TACE), selective internal radiation therapy (SIRT), and systemic therapies. Studies have demonstrated the potential of targeting the TME to enhance treatment efficacy, with immune modulation emerging as a key therapeutic strategy. This review explores the complex interactions within the TME in HCC, highlighting its role in therapy resistance and immune evasion. It also discusses current therapeutic approaches to target the TME to improve clinical outcomes in HCC patients.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"33"},"PeriodicalIF":4.6,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-01eCollection Date: 2025-01-01DOI: 10.20517/cdr.2025.34
Chengming Yang, Lushan Yang, Yuchen Feng, Xingyi Song, Shu Bai, Sheng Zhang, Mingjuan Sun
Tumor organoids were modeled in vitro to mimic in vivo culture conditions, allowing tumor-derived tissue cells or isolated and purified tumor stem cells to self-assemble into 3D preclinical models that are similar to tissues and organs in vivo. Compared with traditional models, tumor organoids not only resemble parental tumors in histology and genomics, capturing their heterogeneity and drug response, but also provide an efficient platform for long-term culture, maintaining genetic stability and enabling gene manipulation. Therefore, tumor organoids have unique advantages in cancer drug resistance research. The paper covers: (1) Modeling methods of epithelial and non-epithelial tumor organoids, with special emphasis on the modeling of drug-resistant organoids; (2) Their use in drug resistance research, split into i. Therapeutic exploration (drug testing and screening) and ii. Mechanism investigation (use drug-resistant organoids to study drug resistance), including methods and findings from various teams.
{"title":"Modeling methods of different tumor organoids and their application in tumor drug resistance research.","authors":"Chengming Yang, Lushan Yang, Yuchen Feng, Xingyi Song, Shu Bai, Sheng Zhang, Mingjuan Sun","doi":"10.20517/cdr.2025.34","DOIUrl":"10.20517/cdr.2025.34","url":null,"abstract":"<p><p>Tumor organoids were modeled <i>in vitro</i> to mimic <i>in vivo</i> culture conditions, allowing tumor-derived tissue cells or isolated and purified tumor stem cells to self-assemble into 3D preclinical models that are similar to tissues and organs <i>in vivo</i>. Compared with traditional models, tumor organoids not only resemble parental tumors in histology and genomics, capturing their heterogeneity and drug response, but also provide an efficient platform for long-term culture, maintaining genetic stability and enabling gene manipulation. Therefore, tumor organoids have unique advantages in cancer drug resistance research. The paper covers: (1) Modeling methods of epithelial and non-epithelial tumor organoids, with special emphasis on the modeling of drug-resistant organoids; (2) Their use in drug resistance research, split into i. Therapeutic exploration (drug testing and screening) and ii. Mechanism investigation (use drug-resistant organoids to study drug resistance), including methods and findings from various teams.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"32"},"PeriodicalIF":4.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Prostate cancer (PCa) continues to be a significant cause of mortality among men, with treatment resistance often influenced by the complexity of the tumor microenvironment (TME). This study aims to develop an immune-centric prognostic model that correlates TME dynamics, genomic instability, and the heterogeneity of drug resistance in PCa. Methods: Multi-omics data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were integrated, encompassing transcriptomic profiles of 554 TCGA-PRAD samples and 329 external validation samples. Immune cell infiltration was assessed using CIBERSORT and ESTIMATE. Weighted gene co-expression network analysis (WGCNA) was employed to identify immune-related modules. Single-cell RNA sequencing (ScRNA-seq) of 835 PCa cells uncovered subtype-specific resistance patterns. Prognostic models were constructed using least absolute shrinkage and selection operator (LASSO) regression and subsequently validated experimentally in PCa cell lines. Results: Two immune subtypes were identified: high-risk subgroups displayed TP53 mutations, increased tumor mutation burden (TMB), and enriched energy metabolism pathways. ScRNA-seq delineated three PCa cell clusters, with high-risk subtypes being sensitive to bendamustine/dacomitinib and resistant to apalutamide/neratinib. A 10-gene prognostic model (e.g., MUC5B, TREM1) categorized patients into high/low-risk groups with distinct survival outcomes (log-rank P < 0.0001). Validation in external datasets confirmed the robust predictive accuracy (AUC: 0.854-0.889). Experimental assays verified subtype-specific drug responses and dysregulation of key model genes. Discussion: This study establishes a TME-driven prognostic framework that connects immune heterogeneity, genomic instability, and therapeutic resistance in PCa. By pinpointing metabolic dependencies and subtype-specific vulnerabilities, our findings provide actionable strategies to circumvent treatment failure, such as targeting energy metabolism or tailoring therapies based on resistance signatures.
导读:前列腺癌(PCa)仍然是男性死亡的一个重要原因,其治疗耐药性通常受到肿瘤微环境(TME)复杂性的影响。本研究旨在建立一个以免疫为中心的预后模型,该模型将TME动力学、基因组不稳定性和前列腺癌耐药异质性联系起来。方法:整合来自Cancer Genome Atlas (TCGA)和Gene Expression Omnibus (GEO)数据库的多组学数据,包括554个TCGA- prad样本和329个外部验证样本的转录组学图谱。采用CIBERSORT和ESTIMATE评估免疫细胞浸润情况。采用加权基因共表达网络分析(Weighted gene co-expression network analysis, WGCNA)鉴定免疫相关模块。835个PCa细胞的单细胞RNA测序(ScRNA-seq)揭示了亚型特异性耐药模式。使用最小绝对收缩和选择算子(LASSO)回归构建预后模型,随后在PCa细胞系中进行实验验证。结果:确定了两种免疫亚型:高危亚组表现为TP53突变,肿瘤突变负担(TMB)增加,能量代谢途径丰富。ScRNA-seq描述了三种PCa细胞簇,其中高危亚型对苯达莫司汀/达科替尼敏感,对阿帕鲁胺/奈拉替尼耐药。10基因预后模型(如MUC5B, TREM1)将患者分为高风险/低风险组,具有不同的生存结果(log-rank P < 0.0001)。外部数据集的验证证实了稳健的预测准确性(AUC: 0.854-0.889)。实验分析证实了亚型特异性药物反应和关键模型基因的失调。讨论:本研究建立了一个tme驱动的预后框架,将前列腺癌的免疫异质性、基因组不稳定性和治疗耐药性联系起来。通过精确定位代谢依赖性和亚型特异性漏洞,我们的研究结果提供了可操作的策略来避免治疗失败,例如靶向能量代谢或根据抗性特征定制治疗。
{"title":"Integrated multi-omics profiling of immune microenvironment and drug resistance signatures for precision prognosis in prostate cancer.","authors":"Chao Li, Longxiang Wu, Bowen Zhong, Yu Gan, Lei Zhou, Shuo Tan, Weibin Hou, Kun Yao, Bingzhi Wang, Zhenyu Ou, Shengwang Zhang, Wei Xiong","doi":"10.20517/cdr.2025.47","DOIUrl":"10.20517/cdr.2025.47","url":null,"abstract":"<p><p><b>Introduction:</b> Prostate cancer (PCa) continues to be a significant cause of mortality among men, with treatment resistance often influenced by the complexity of the tumor microenvironment (TME). This study aims to develop an immune-centric prognostic model that correlates TME dynamics, genomic instability, and the heterogeneity of drug resistance in PCa. <b>Methods:</b> Multi-omics data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were integrated, encompassing transcriptomic profiles of 554 TCGA-PRAD samples and 329 external validation samples. Immune cell infiltration was assessed using CIBERSORT and ESTIMATE. Weighted gene co-expression network analysis (WGCNA) was employed to identify immune-related modules. Single-cell RNA sequencing (ScRNA-seq) of 835 PCa cells uncovered subtype-specific resistance patterns. Prognostic models were constructed using least absolute shrinkage and selection operator (LASSO) regression and subsequently validated experimentally in PCa cell lines. <b>Results:</b> Two immune subtypes were identified: high-risk subgroups displayed TP53 mutations, increased tumor mutation burden (TMB), and enriched energy metabolism pathways. ScRNA-seq delineated three PCa cell clusters, with high-risk subtypes being sensitive to bendamustine/dacomitinib and resistant to apalutamide/neratinib. A 10-gene prognostic model (e.g., MUC5B, TREM1) categorized patients into high/low-risk groups with distinct survival outcomes (log-rank <i>P</i> < 0.0001). Validation in external datasets confirmed the robust predictive accuracy (AUC: 0.854-0.889). Experimental assays verified subtype-specific drug responses and dysregulation of key model genes. <b>Discussion:</b> This study establishes a TME-driven prognostic framework that connects immune heterogeneity, genomic instability, and therapeutic resistance in PCa. By pinpointing metabolic dependencies and subtype-specific vulnerabilities, our findings provide actionable strategies to circumvent treatment failure, such as targeting energy metabolism or tailoring therapies based on resistance signatures.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"31"},"PeriodicalIF":4.6,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thyroid cancer, particularly papillary thyroid cancer (PTC), represents the most prevalent endocrine malignancy. Despite advancements in therapeutic strategies, drug resistance significantly hampers clinical outcomes. Autophagy, an evolutionarily conserved cellular degradation pathway, acts paradoxically in thyroid cancer by promoting either tumor cell survival or cell death, thus influencing therapeutic resistance. Increasing evidence highlights microRNAs (miRNAs), small non-coding RNAs, as critical regulators of autophagy through precise modulation of autophagy-related genes (ATGs) and signaling pathways. miRNA-mediated autophagy can either enhance chemotherapeutic efficacy or facilitate resistance, depending on the cellular context and miRNA targets. This review summarizes recent insights into miRNA-autophagy interactions underlying drug resistance in thyroid cancer, emphasizing key miRNAs, including miR-125b, miR-144, miR-30d, and miR-9-5p. Understanding the complex regulatory networks connecting miRNAs and autophagy provides promising avenues for developing novel therapeutic strategies to overcome resistance in refractory thyroid cancer.
{"title":"MicroRNA-mediated autophagy regulation in thyroid cancer drug resistance.","authors":"Dongye Huang, Qianwen Liu, Chang Liu, Jingna Cao, Senmin Zhang, Huijiao Cao, Wenkuan Chen","doi":"10.20517/cdr.2025.73","DOIUrl":"10.20517/cdr.2025.73","url":null,"abstract":"<p><p>Thyroid cancer, particularly papillary thyroid cancer (PTC), represents the most prevalent endocrine malignancy. Despite advancements in therapeutic strategies, drug resistance significantly hampers clinical outcomes. Autophagy, an evolutionarily conserved cellular degradation pathway, acts paradoxically in thyroid cancer by promoting either tumor cell survival or cell death, thus influencing therapeutic resistance. Increasing evidence highlights microRNAs (miRNAs), small non-coding RNAs, as critical regulators of autophagy through precise modulation of autophagy-related genes (ATGs) and signaling pathways. miRNA-mediated autophagy can either enhance chemotherapeutic efficacy or facilitate resistance, depending on the cellular context and miRNA targets. This review summarizes recent insights into miRNA-autophagy interactions underlying drug resistance in thyroid cancer, emphasizing key miRNAs, including miR-125b, miR-144, miR-30d, and miR-9-5p. Understanding the complex regulatory networks connecting miRNAs and autophagy provides promising avenues for developing novel therapeutic strategies to overcome resistance in refractory thyroid cancer.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"30"},"PeriodicalIF":4.6,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antibody-drug conjugates (ADCs), inspired by Paul Ehrlich's "magic bullet" concept to target cancer cells with cytotoxic drugs while sparing healthy cells, represent a transformative approach in breast cancer therapy. From early agents (e.g., gemtuzumab ozogamicin) to second-generation trastuzumab emtansine (T-DM1) and third-generation trastuzumab deruxtecan (T-DXd)/disitamab vedotin (RC48), ADCs have demonstrated significant clinical benefits, including improved progression-free survival (PFS) and overall survival (OS) in breast cancer, with several approved for clinical use. Ongoing preclinical and clinical studies are rigorously exploring ADC combinations with molecular targeted agents, chemotherapy, and immunotherapy. However, de novo and acquired resistance remains a critical barrier to maximizing therapeutic efficacy. This review summarizes ADC mechanisms and clinical outcomes in breast cancer, explores resistance mechanisms, and dissects the biological rationale for combination strategies, aiming to identify novel payloads that enhance patient outcomes.
{"title":"Antibody-drug conjugates in breast cancer: current resistance mechanisms and future combination strategies.","authors":"Ping Xing, Chenghui Yang, Hanwen Hu, Tianyi Qian, Bojian Xie, Jian Huang, Zhen Wang","doi":"10.20517/cdr.2025.26","DOIUrl":"10.20517/cdr.2025.26","url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs), inspired by Paul Ehrlich's \"magic bullet\" concept to target cancer cells with cytotoxic drugs while sparing healthy cells, represent a transformative approach in breast cancer therapy. From early agents (e.g., gemtuzumab ozogamicin) to second-generation trastuzumab emtansine (T-DM1) and third-generation trastuzumab deruxtecan (T-DXd)/disitamab vedotin (RC48), ADCs have demonstrated significant clinical benefits, including improved progression-free survival (PFS) and overall survival (OS) in breast cancer, with several approved for clinical use. Ongoing preclinical and clinical studies are rigorously exploring ADC combinations with molecular targeted agents, chemotherapy, and immunotherapy. However, <i>de novo</i> and acquired resistance remains a critical barrier to maximizing therapeutic efficacy. This review summarizes ADC mechanisms and clinical outcomes in breast cancer, explores resistance mechanisms, and dissects the biological rationale for combination strategies, aiming to identify novel payloads that enhance patient outcomes.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"29"},"PeriodicalIF":4.6,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-06eCollection Date: 2025-01-01DOI: 10.20517/cdr.2024.208
Ivan Li, Yuchen Huo, Ting Yang, Howard Gunawan, Ludmil B Alexandrov, Peter E Zage
Aim: The fibroblast growth factor receptor (FGFR) family receptors regulate cell proliferation, survival, and migration and are linked to cancer drug resistance. FGFR gene family alterations have been found in multiple adult cancers, for which FGFR inhibitors are in various stages of clinical development. This study aimed to delineate the FGFR alterations in pediatric tumors and provide a preclinical rationale for developing FGFR inhibitors for select pediatric patients. Methods: The prevalence of FGFR alterations in pediatric cancers was calculated from databases with available pediatric tumor data. Effects of the pan-FGFR inhibitor infigratinib (BGJ398) on pediatric cancer cell line viability and migration were evaluated by continuous live cell imaging and compared to FGFR gene expression. Effects on cell death and signaling pathway activity were evaluated by live cell imaging and Western blots. Results: Overall rates of FGFR1-4 gene alterations in pediatric cancers were rare, and the mutation profile substantially differs from that of adult tumors. Although FGFR genomic alterations are rare in pediatric neuroblastoma tumors, overexpression of FGFR1-4 is observed in tumor subsets and is associated with outcomes. Dose-dependent inhibition of cell proliferation and migration and promotion of cell death were achieved with BGJ398 treatment in neuroblastoma cell lines, accompanied by inhibition of RAS-MAPK pathway activity and induction of apoptosis. Conclusion: Adult and pediatric cancers share common mechanisms of FGFR activation but differ in overall alteration rates and relative abundance of specific aberrations. Preliminary experimental data indicate the therapeutic potential of FGFR inhibitors and suggest mechanisms of resistance in the treatment of pediatric cancers.
{"title":"Fibroblast growth factor receptor alterations and resistance mechanisms in the treatment of pediatric solid tumors.","authors":"Ivan Li, Yuchen Huo, Ting Yang, Howard Gunawan, Ludmil B Alexandrov, Peter E Zage","doi":"10.20517/cdr.2024.208","DOIUrl":"10.20517/cdr.2024.208","url":null,"abstract":"<p><p><b>Aim:</b> The fibroblast growth factor receptor (FGFR) family receptors regulate cell proliferation, survival, and migration and are linked to cancer drug resistance. FGFR gene family alterations have been found in multiple adult cancers, for which FGFR inhibitors are in various stages of clinical development. This study aimed to delineate the FGFR alterations in pediatric tumors and provide a preclinical rationale for developing FGFR inhibitors for select pediatric patients. <b>Methods:</b> The prevalence of FGFR alterations in pediatric cancers was calculated from databases with available pediatric tumor data. Effects of the pan-FGFR inhibitor infigratinib (BGJ398) on pediatric cancer cell line viability and migration were evaluated by continuous live cell imaging and compared to FGFR gene expression. Effects on cell death and signaling pathway activity were evaluated by live cell imaging and Western blots. <b>Results:</b> Overall rates of FGFR1-4 gene alterations in pediatric cancers were rare, and the mutation profile substantially differs from that of adult tumors. Although FGFR genomic alterations are rare in pediatric neuroblastoma tumors, overexpression of FGFR1-4 is observed in tumor subsets and is associated with outcomes. Dose-dependent inhibition of cell proliferation and migration and promotion of cell death were achieved with BGJ398 treatment in neuroblastoma cell lines, accompanied by inhibition of RAS-MAPK pathway activity and induction of apoptosis. <b>Conclusion:</b> Adult and pediatric cancers share common mechanisms of FGFR activation but differ in overall alteration rates and relative abundance of specific aberrations. Preliminary experimental data indicate the therapeutic potential of FGFR inhibitors and suggest mechanisms of resistance in the treatment of pediatric cancers.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"28"},"PeriodicalIF":4.6,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144287385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}