首页 > 最新文献

Acta Mechanica Sinica最新文献

英文 中文
Aerodynamic/control coupling optimization of reentry vehicle under wide speed range 再入飞行器在宽速度范围内的空气动力/控制耦合优化
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-21 DOI: 10.1007/s10409-024-24259-x
Lulu Jiang  (, ), Chao Dong  (, ), Xin Pan  (, ), Gang Chen  (, )

The high-speed reentry vehicle operates across a broad range of speeds and spatial domains, where optimal aerodynamic shapes for different speeds are contradictory. This makes it challenging for a single-Mach optimization design to meet aerodynamic performance requirements throughout the vehicle’s flight envelope. Additionally, the strong coupling between aerodynamics and control adds complexity, as fluctuations in aerodynamic parameters due to speed variations complicate control system design. To address these challenges, this study proposes an aerodynamic/control coupling optimization design approach. This method, based on aerodynamic optimization principles, incorporates active control technology, treating aerodynamic layout and control system design as primary components during the conceptual design phase. By integrating the design and evaluation of aerodynamics and control, the approach aims to reduce design iterations and enhance overall flight performance. The comprehensive design of the rotary reentry vehicle, using this optimization strategy, effectively balances performance at supersonic and hypersonic speeds. The results show that the integrated design model meets aerodynamic and control performance requirements over a broader range of Mach numbers, preventing performance degradation due to deviations from the design Mach number, and providing a practical solution for high-speed reentry vehicle design.

高速再入飞行器的运行速度和空间域范围很广,不同速度下的最佳气动外形相互矛盾。因此,要在飞行器的整个飞行包线内满足气动性能要求,对单一机械优化设计来说是一项挑战。此外,空气动力学和控制之间的强耦合增加了复杂性,因为速度变化导致的空气动力学参数波动使控制系统设计变得复杂。为了应对这些挑战,本研究提出了一种空气动力学/控制耦合优化设计方法。该方法以空气动力学优化原理为基础,结合主动控制技术,将空气动力学布局和控制系统设计作为概念设计阶段的主要组成部分。通过整合空气动力学和控制的设计与评估,该方法旨在减少设计迭代,提高整体飞行性能。旋转再入飞行器的综合设计采用了这种优化策略,有效地平衡了超音速和高超声速的性能。结果表明,综合设计模型在更大的马赫数范围内满足了气动和控制性能要求,防止了因偏离设计马赫数而导致的性能下降,为高速再入飞行器设计提供了实用的解决方案。
{"title":"Aerodynamic/control coupling optimization of reentry vehicle under wide speed range","authors":"Lulu Jiang \u0000 (,&nbsp;),&nbsp;Chao Dong \u0000 (,&nbsp;),&nbsp;Xin Pan \u0000 (,&nbsp;),&nbsp;Gang Chen \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24259-x","DOIUrl":"10.1007/s10409-024-24259-x","url":null,"abstract":"<div><p>The high-speed reentry vehicle operates across a broad range of speeds and spatial domains, where optimal aerodynamic shapes for different speeds are contradictory. This makes it challenging for a single-Mach optimization design to meet aerodynamic performance requirements throughout the vehicle’s flight envelope. Additionally, the strong coupling between aerodynamics and control adds complexity, as fluctuations in aerodynamic parameters due to speed variations complicate control system design. To address these challenges, this study proposes an aerodynamic/control coupling optimization design approach. This method, based on aerodynamic optimization principles, incorporates active control technology, treating aerodynamic layout and control system design as primary components during the conceptual design phase. By integrating the design and evaluation of aerodynamics and control, the approach aims to reduce design iterations and enhance overall flight performance. The comprehensive design of the rotary reentry vehicle, using this optimization strategy, effectively balances performance at supersonic and hypersonic speeds. The results show that the integrated design model meets aerodynamic and control performance requirements over a broader range of Mach numbers, preventing performance degradation due to deviations from the design Mach number, and providing a practical solution for high-speed reentry vehicle design.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A body-fitted adaptive mesh and Helmholtz-type filter based parameterized level-set method for structural topology optimization 基于体拟合自适应网格和亥姆霍兹型滤波器的参数化水平集方法,用于结构拓扑优化
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-21 DOI: 10.1007/s10409-024-24119-x
Yijie Lu  (, ), Xueying Chang  (, ), Zhengwei Zhang  (, ), Hui Liu  (, ), Yanguo Zhou  (, ), Hao Li  (, )

Parameterized level-set method (PLSM) has been proposed and developed for many years, and is renowned for its efficacy in addressing topology optimization challenges associated with intricate boundaries and nucleation of new holes. However, most pertinent investigations in the field rely predominantly on fixed background mesh, which is never remeshed. Consequently, the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties. This paper introduces a novel approach to topology optimization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter. Primarily, combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface. This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process, but also improves the accuracy of calculation. Additionally, the incorporation of a Helmholtz-type partial differential equation filter, relying solely on mesh information essential for finite element discretization, serves to regulate the topological complexity and the minimum feature size of the optimized structure. Leveraging these advantages, the topology optimization program demonstrates its versatility by successfully addressing various design problems, encompassing the minimum mean compliance problem and minimum energy dissipation problem. Ultimately, the result of numerical example indicates that the optimized structure exhibits a distinct and smooth boundary, affirming the effective control over both topological complexity and the minimum feature size of the optimized structure.

参数化水平集法(PLSM)已提出并发展多年,因其在解决与错综复杂的边界和新孔成核相关的拓扑优化难题方面的功效而闻名。然而,该领域的大多数相关研究都主要依赖于固定的背景网格,而这种网格是永远不会重修的。因此,在优化过程中,按材料界面划分的网格元素必须使用人工插值模型进行近似,以获得其元素刚度或其他属性。本文介绍了一种拓扑优化的新方法,它将 PLSM 与体拟自适应网格和 Helmholtz 型滤波器相结合。首先,将 PLSM 与体拟合自适应网格相结合,可实现基于零水平集界面的网格再生。这不仅避免了在拓扑优化过程中通过网格元素直接遍历材料界面,还提高了计算精度。此外,亥姆霍兹型偏微分方程滤波器的加入,仅仅依靠有限元离散化所必需的网格信息,就能调节拓扑复杂性和优化结构的最小特征尺寸。利用这些优势,拓扑优化程序成功解决了各种设计问题,包括最小平均顺应性问题和最小能量耗散问题,展示了其多功能性。最终,数值示例结果表明,优化后的结构呈现出明显而平滑的边界,证实了对拓扑复杂性和优化结构最小特征尺寸的有效控制。
{"title":"A body-fitted adaptive mesh and Helmholtz-type filter based parameterized level-set method for structural topology optimization","authors":"Yijie Lu \u0000 (,&nbsp;),&nbsp;Xueying Chang \u0000 (,&nbsp;),&nbsp;Zhengwei Zhang \u0000 (,&nbsp;),&nbsp;Hui Liu \u0000 (,&nbsp;),&nbsp;Yanguo Zhou \u0000 (,&nbsp;),&nbsp;Hao Li \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24119-x","DOIUrl":"10.1007/s10409-024-24119-x","url":null,"abstract":"<div><p>Parameterized level-set method (PLSM) has been proposed and developed for many years, and is renowned for its efficacy in addressing topology optimization challenges associated with intricate boundaries and nucleation of new holes. However, most pertinent investigations in the field rely predominantly on fixed background mesh, which is never remeshed. Consequently, the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties. This paper introduces a novel approach to topology optimization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter. Primarily, combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface. This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process, but also improves the accuracy of calculation. Additionally, the incorporation of a Helmholtz-type partial differential equation filter, relying solely on mesh information essential for finite element discretization, serves to regulate the topological complexity and the minimum feature size of the optimized structure. Leveraging these advantages, the topology optimization program demonstrates its versatility by successfully addressing various design problems, encompassing the minimum mean compliance problem and minimum energy dissipation problem. Ultimately, the result of numerical example indicates that the optimized structure exhibits a distinct and smooth boundary, affirming the effective control over both topological complexity and the minimum feature size of the optimized structure.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cyclic self-enhancement technique for complex defect profile reconstruction based on thermographic evaluation 基于热成像评估的复杂缺陷轮廓重建循环自增强技术
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-21 DOI: 10.1007/s10409-024-24076-x
Haochen Liu  (, ), Shuozhi Wang  (, ), Yifan Zhao  (, ), Kailun Deng  (, ), Zhenmao Chen  (, )

Although machine Learning has demonstrated exceptional applicability in thermographic inspection, precise defect reconstruction is still challenging, especially for complex defect profiles with limited defect sample diversity. Thus, this paper proposes a self-enhancement defect reconstruction technique based on cycle-consistent generative adversarial network (Cycle-GAN) that accurately characterises complex defect profiles and generates reliable artificial thermal images for dataset augmentation, enhancing defect characterisation. By using a synthetic dataset from simulation and experiments, the network overcomes the limited samples problem by learning the diversity of complex defects from finite element modelling and obtaining the thermography uncertainty patterns from practical experiments. Then, an iterative strategy with a self-enhancement capability optimises the characterisation accuracy and data generation performance. The designed loss function structure with cycle consistency and identity loss constrains the GAN’s transfer variation to guarantee augmented data quality and defect reconstruction accuracy simultaneously, while the self-enhancement results significantly improve accuracy in thermal images and defect profile reconstruction. The experimental results demonstrate the feasibility of the proposed method by attaining high accuracy with optimal loss norm for defect profile reconstruction with a Recall score over 0.92. The scalability investigation of different materials and defect types is also discussed, highlighting its capability for diverse thermography quantification and automated inspection scenarios.

尽管机器学习在热成像检测领域已显示出卓越的适用性,但精确的缺陷重构仍具有挑战性,尤其是对于缺陷样本多样性有限的复杂缺陷剖面。因此,本文提出了一种基于循环一致性生成对抗网络(Cycle-GAN)的自增强缺陷重构技术,该技术可准确表征复杂的缺陷轮廓,并生成可靠的人工热图像用于数据集扩增,从而增强缺陷表征能力。通过使用来自模拟和实验的合成数据集,该网络从有限元建模中学习复杂缺陷的多样性,并从实际实验中获取热成像不确定性模式,从而克服了样本有限的问题。然后,一种具有自我增强能力的迭代策略优化了表征精度和数据生成性能。所设计的损失函数结构具有周期一致性和身份损失,可限制 GAN 的转移变化,从而同时保证增强的数据质量和缺陷重构精度,而自我增强的结果则显著提高了热图像和缺陷轮廓重构的精度。实验结果证明了所提方法的可行性,该方法在缺陷轮廓重建中以最佳损失规范获得了较高的精度,召回得分超过 0.92。此外,还讨论了不同材料和缺陷类型的可扩展性研究,突出了该方法在各种热成像量化和自动检测场景中的能力。
{"title":"A cyclic self-enhancement technique for complex defect profile reconstruction based on thermographic evaluation","authors":"Haochen Liu \u0000 (,&nbsp;),&nbsp;Shuozhi Wang \u0000 (,&nbsp;),&nbsp;Yifan Zhao \u0000 (,&nbsp;),&nbsp;Kailun Deng \u0000 (,&nbsp;),&nbsp;Zhenmao Chen \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24076-x","DOIUrl":"10.1007/s10409-024-24076-x","url":null,"abstract":"<div><p>Although machine Learning has demonstrated exceptional applicability in thermographic inspection, precise defect reconstruction is still challenging, especially for complex defect profiles with limited defect sample diversity. Thus, this paper proposes a self-enhancement defect reconstruction technique based on cycle-consistent generative adversarial network (Cycle-GAN) that accurately characterises complex defect profiles and generates reliable artificial thermal images for dataset augmentation, enhancing defect characterisation. By using a synthetic dataset from simulation and experiments, the network overcomes the limited samples problem by learning the diversity of complex defects from finite element modelling and obtaining the thermography uncertainty patterns from practical experiments. Then, an iterative strategy with a self-enhancement capability optimises the characterisation accuracy and data generation performance. The designed loss function structure with cycle consistency and identity loss constrains the GAN’s transfer variation to guarantee augmented data quality and defect reconstruction accuracy simultaneously, while the self-enhancement results significantly improve accuracy in thermal images and defect profile reconstruction. The experimental results demonstrate the feasibility of the proposed method by attaining high accuracy with optimal loss norm for defect profile reconstruction with a Recall score over 0.92. The scalability investigation of different materials and defect types is also discussed, highlighting its capability for diverse thermography quantification and automated inspection scenarios.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impacts of variable nonlocal, length-scale factors and surface energy on hygro-thermo-mechanical vibration and buckling behaviors of viscoelastic FGP nanosheet on viscoelastic medium 粘弹性 FGP 纳米片在粘弹性介质上的非局部、长度尺度因子和表面能变量对湿热机械振动和屈曲行为的影响
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-21 DOI: 10.1007/s10409-024-24135-x
Hong Hieu Le, Van Ke Tran, Nhan Thinh Hoang, Nguyen Ngoc My Huong

The main goal of this paper is to present the free vibration and buckling of viscoelastic functionally graded porous (FGP) nanosheet based on nonlocal strain gradient (NSGT) and surface elasticity theories. The nanosheets are placed on a visco-Pasternak medium in a hygro-temperature environment with nonlinear rules. The viscoelastic material characteristics of nanosheets are based on Kelvin’s model. The unique point of this study is to consider the change of nonlocal and length-scale coefficients according to thickness, similar to the laws of the material properties. The Galerkin approach based on the Kirchhoff-love plate theory is applied to determine the natural frequency and critical buckling load of the viscoelastic FGP nanosheet with various boundary conditions. The accuracy of the proposed method is verified through reliable publications. The outcome of this study highlights the significant effects of the nonlocal and length-scale parameters on the vibration and buckling behaviors of viscoelastic FGP nanosheets.

本文的主要目的是基于非局部应变梯度(NSGT)和表面弹性理论,介绍粘弹性功能梯度多孔(FGP)纳米片的自由振动和屈曲。纳米片被置于具有非线性规则的湿温环境中的粘弹性帕斯捷尔纳克介质上。纳米片的粘弹性材料特性基于开尔文模型。这项研究的独特之处在于考虑了非局部系数和长度尺度系数随厚度的变化,这与材料特性的规律相似。基于 Kirchhoff-love 板理论的 Galerkin 方法被应用于确定各种边界条件下粘弹性 FGP 纳米板的固有频率和临界屈曲载荷。通过可靠的出版物验证了所提出方法的准确性。本研究的结果凸显了非局部参数和长度尺度参数对粘弹性 FGP 纳米板振动和屈曲行为的显著影响。
{"title":"The impacts of variable nonlocal, length-scale factors and surface energy on hygro-thermo-mechanical vibration and buckling behaviors of viscoelastic FGP nanosheet on viscoelastic medium","authors":"Hong Hieu Le,&nbsp;Van Ke Tran,&nbsp;Nhan Thinh Hoang,&nbsp;Nguyen Ngoc My Huong","doi":"10.1007/s10409-024-24135-x","DOIUrl":"10.1007/s10409-024-24135-x","url":null,"abstract":"<div><p>The main goal of this paper is to present the free vibration and buckling of viscoelastic functionally graded porous (FGP) nanosheet based on nonlocal strain gradient (NSGT) and surface elasticity theories. The nanosheets are placed on a visco-Pasternak medium in a hygro-temperature environment with nonlinear rules. The viscoelastic material characteristics of nanosheets are based on Kelvin’s model. The unique point of this study is to consider the change of nonlocal and length-scale coefficients according to thickness, similar to the laws of the material properties. The Galerkin approach based on the Kirchhoff-love plate theory is applied to determine the natural frequency and critical buckling load of the viscoelastic FGP nanosheet with various boundary conditions. The accuracy of the proposed method is verified through reliable publications. The outcome of this study highlights the significant effects of the nonlocal and length-scale parameters on the vibration and buckling behaviors of viscoelastic FGP nanosheets.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A step-by-step Chebyshev space-time spectral method for force vibration of functionally graded structures 功能分级结构力振动的分步切比雪夫时空谱方法
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-20 DOI: 10.1007/s10409-024-24193-x
Haizhou Liu  (, ), Yixin Huang  (, ), Yang Zhao  (, )

This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures. Although traditional space-time spectral methods can reduce the accuracy mismatch between temporal low-order finite difference and spatial high-order discretization, their time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration, which results in a surge in computing time and a decrease in accuracy. To address this problem, we introduced the step-by-step idea in the space-time spectral method. The Chebyshev polynomials and Lagrange’s equation were applied to derive discrete spatial governing equations, and a matrix projection method was used to map the calculation results of previous steps as the initial conditions of the subsequent steps. A series of numerical experiments were carried out. The results of the proposed method were compared with those obtained by traditional space-time spectral methods, which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.

本文提出了一种新的分步切比雪夫时空谱方法来分析功能梯度材料结构的受力振动。传统的时空谱方法虽然可以减小时间低阶有限差分与空间高阶离散之间的精度不匹配,但要求解结构振动的高振荡解,其时间配置点必须大幅增加,从而导致计算时间激增,精度下降。为解决这一问题,我们在时空谱方法中引入了分步思想。应用切比雪夫多项式和拉格朗日方程推导出离散空间控制方程,并采用矩阵投影法将前一步的计算结果映射为后一步的初始条件。进行了一系列数值实验。实验结果与传统时空谱方法的结果进行了比较,结果表明,在高度振荡的情况下,前者能以比后者更短的计算时间获得更高的精度。
{"title":"A step-by-step Chebyshev space-time spectral method for force vibration of functionally graded structures","authors":"Haizhou Liu \u0000 (,&nbsp;),&nbsp;Yixin Huang \u0000 (,&nbsp;),&nbsp;Yang Zhao \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24193-x","DOIUrl":"10.1007/s10409-024-24193-x","url":null,"abstract":"<div><p>This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures. Although traditional space-time spectral methods can reduce the accuracy mismatch between temporal low-order finite difference and spatial high-order discretization, their time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration, which results in a surge in computing time and a decrease in accuracy. To address this problem, we introduced the step-by-step idea in the space-time spectral method. The Chebyshev polynomials and Lagrange’s equation were applied to derive discrete spatial governing equations, and a matrix projection method was used to map the calculation results of previous steps as the initial conditions of the subsequent steps. A series of numerical experiments were carried out. The results of the proposed method were compared with those obtained by traditional space-time spectral methods, which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 4","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative measure and visualization for local shock strength in two-dimensional flow 二维流动中局部冲击强度的定量测量和可视化
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-20 DOI: 10.1007/s10409-024-24255-x
Jiashuo Li  (, ), Aiming Shi  (, ), Earl H. Dowell

The concept of local shock strength and a quantitative measure index str of local shock strength are proposed, derived from the oblique shock relation and the monotonic relationship between total pressure loss ratio and normal Mach number. Utilizing the high density gradient characteristic of shock waves and the oblique shock relation, a post-processing algorithm for two-dimensional flow field data is developed. The objective of the post-processing algorithm is to obtain specific shock wave location coordinates and calculate the corresponding str from flow filed data under the calibration of the oblique shock relation. Validation of this post-processing algorithm is conducted using a standard model example that can be solved analytically. Combining the concept of local shock strength with the post-processing algorithm, a local shock strength quantitative mapping approach is established for the first time. This approach enables a quantitative measure and visualization of local shock strength at distinct locations, represented by color mapping on the shock structures. The approach can be applied to post-processing numerical simulation data of two-dimensional flows. Applications to the intersection of two left-running oblique shock waves (straight shock waves), the bow shock in front of a cylinder (curved shock wave), and Mach reflection (mixed straight and curved shock waves) demonstrate the accuracy, and effectiveness of the mapping approach in investigating diverse shock wave phenomena. The quantitative mapping approach of str may be a valuable tool in the design of supersonic/hypersonic vehicles and the exploration of shock wave evolution.

根据斜冲击关系和总压力损失比与正常马赫数之间的单调关系,提出了局部冲击强度的概念和局部冲击强度的定量测量指数。利用冲击波的高密度梯度特征和斜冲击关系,开发了一种二维流场数据后处理算法。后处理算法的目的是在斜冲击关系的校准下,从流场数据中获取具体的冲击波位置坐标并计算相应的str。利用一个可以分析求解的标准模型示例对该后处理程序进行了验证。结合局部冲击强度概念和后处理程序,首次建立了局部冲击强度定量映射方法。这种方法可以对不同位置的局部冲击强度进行定量测量和可视化,并通过冲击结构上的颜色映射来表示。该方法可用于二维流动数值模拟数据的后处理。在两个左旋斜冲击波(直线冲击波)的交叉点、圆柱体前的弓形冲击波(曲线冲击波)和马赫反射(直线和曲线混合冲击波)中的应用,证明了该映射方法在研究各种冲击波现象时的准确性和有效性。Str 的定量映射方法可能是设计超音速/超音速飞行器和探索冲击波演变的宝贵工具。
{"title":"Quantitative measure and visualization for local shock strength in two-dimensional flow","authors":"Jiashuo Li \u0000 (,&nbsp;),&nbsp;Aiming Shi \u0000 (,&nbsp;),&nbsp;Earl H. Dowell","doi":"10.1007/s10409-024-24255-x","DOIUrl":"10.1007/s10409-024-24255-x","url":null,"abstract":"<div><p>The concept of local shock strength and a quantitative measure index <i>str</i> of local shock strength are proposed, derived from the oblique shock relation and the monotonic relationship between total pressure loss ratio and normal Mach number. Utilizing the high density gradient characteristic of shock waves and the oblique shock relation, a post-processing algorithm for two-dimensional flow field data is developed. The objective of the post-processing algorithm is to obtain specific shock wave location coordinates and calculate the corresponding <i>str</i> from flow filed data under the calibration of the oblique shock relation. Validation of this post-processing algorithm is conducted using a standard model example that can be solved analytically. Combining the concept of local shock strength with the post-processing algorithm, a local shock strength quantitative mapping approach is established for the first time. This approach enables a quantitative measure and visualization of local shock strength at distinct locations, represented by color mapping on the shock structures. The approach can be applied to post-processing numerical simulation data of two-dimensional flows. Applications to the intersection of two left-running oblique shock waves (straight shock waves), the bow shock in front of a cylinder (curved shock wave), and Mach reflection (mixed straight and curved shock waves) demonstrate the accuracy, and effectiveness of the mapping approach in investigating diverse shock wave phenomena. The quantitative mapping approach of <i>str</i> may be a valuable tool in the design of supersonic/hypersonic vehicles and the exploration of shock wave evolution.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the effect of shape parameters and initiation points of rectangular high explosive on the spatial distribution of blast loads 研究矩形高爆炸药的形状参数和起爆点对爆炸荷载空间分布的影响
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-18 DOI: 10.1007/s10409-024-23470-x
Longkui Chen  (, ), Hongyu Zhao  (, ), Yongliang Zhang  (, ), Shenghong Huang  (, ), Chunhai Li  (, )

Rectangular explosive charges are usually used in military or civilian explosive transportation and storage. The effects of shape parameters and detonation positions on the peak overpressure and maximum impulse of blasts lack comprehensive investigation, which is significant for the design of blast-resistant structures. In this paper, the side-length ratio of the rectangle, orientation, and detonation position of the charge are chosen as controlling parameters to investigate their influence on blast loads in the scaled distances of the gauges ranging from 0.63 to 10.54 m/kg1/3 with well validated 3D numerical simulations. The results show that there is a large difference in the near-field spatial distribution of the blast load of the rectangular charge; if the blast load of the rectangular charge is simply evaluated with the spherical charge, the maximum peak overpressure (maximum impulse) will be underestimated by a factor of 7.46 (4.84). This must be taken seriously by blast-resistant structure designers. With the increase in the scaled distance, when the critical scaled distance is greater than 6.32 (7.38) m/kg1/3, the influence of the charge shape on the maximum peak overpressure (maximum impulse) of the spatial blast load can be ignored. In general, the impact of detonation of the charge at the end on the maximum peak overpressure is greater compared with central detonation, but for the impact of the maximum impulse, it is necessary to pay attention to the side-length ratio of the rectangular charge and the specific detonation position on the end face. Furthermore, the structural response of steel plates placed at different azimuths under the blast load of a rectangular charge is preliminarily analyzed, and the results show that the deformation and energy of the plates are consistent with the distribution of the blast load. These analysis results provide a reference for the explosion protection design in near-field air explosions.

矩形炸药通常用于军用或民用炸药的运输和储存。形状参数和起爆位置对爆炸峰值超压和最大冲量的影响缺乏全面的研究,这对抗爆结构的设计意义重大。本文选择矩形的边长比、方向和装药的起爆位置作为控制参数,研究它们在 0.63 至 10.54 m/kg1/3 的量规比例距离内对爆炸荷载的影响,并进行了有效的三维数值模拟。结果表明,矩形装药爆炸荷载的近场空间分布存在很大差异;如果简单地用球形装药评估矩形装药的爆炸荷载,最大峰值超压(最大冲量)将被低估 7.46(4.84)倍。这一点必须引起抗爆结构设计人员的重视。随着缩放距离的增加,当临界缩放距离大于 6.32 (7.38) m/kg1/3 时,可以忽略装药形状对空间爆炸荷载最大峰值超压(最大脉冲)的影响。一般来说,与中心起爆相比,端部起爆的装药对最大峰值超压的影响更大,但对于最大冲量的影响,需要注意矩形装药的边长比和端面的具体起爆位置。此外,初步分析了在矩形装药爆炸荷载作用下,不同方位角放置的钢板的结构响应,结果表明钢板的变形和能量与爆炸荷载的分布是一致的。这些分析结果为近场空气爆炸中的防爆设计提供了参考。
{"title":"Study on the effect of shape parameters and initiation points of rectangular high explosive on the spatial distribution of blast loads","authors":"Longkui Chen \u0000 (,&nbsp;),&nbsp;Hongyu Zhao \u0000 (,&nbsp;),&nbsp;Yongliang Zhang \u0000 (,&nbsp;),&nbsp;Shenghong Huang \u0000 (,&nbsp;),&nbsp;Chunhai Li \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-23470-x","DOIUrl":"10.1007/s10409-024-23470-x","url":null,"abstract":"<div><p>Rectangular explosive charges are usually used in military or civilian explosive transportation and storage. The effects of shape parameters and detonation positions on the peak overpressure and maximum impulse of blasts lack comprehensive investigation, which is significant for the design of blast-resistant structures. In this paper, the side-length ratio of the rectangle, orientation, and detonation position of the charge are chosen as controlling parameters to investigate their influence on blast loads in the scaled distances of the gauges ranging from 0.63 to 10.54 m/kg<sup>1/3</sup> with well validated 3D numerical simulations. The results show that there is a large difference in the near-field spatial distribution of the blast load of the rectangular charge; if the blast load of the rectangular charge is simply evaluated with the spherical charge, the maximum peak overpressure (maximum impulse) will be underestimated by a factor of 7.46 (4.84). This must be taken seriously by blast-resistant structure designers. With the increase in the scaled distance, when the critical scaled distance is greater than 6.32 (7.38) m/kg<sup>1/3</sup>, the influence of the charge shape on the maximum peak overpressure (maximum impulse) of the spatial blast load can be ignored. In general, the impact of detonation of the charge at the end on the maximum peak overpressure is greater compared with central detonation, but for the impact of the maximum impulse, it is necessary to pay attention to the side-length ratio of the rectangular charge and the specific detonation position on the end face. Furthermore, the structural response of steel plates placed at different azimuths under the blast load of a rectangular charge is preliminarily analyzed, and the results show that the deformation and energy of the plates are consistent with the distribution of the blast load. These analysis results provide a reference for the explosion protection design in near-field air explosions.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discussion on isolation of flexible beams with various support configurations 讨论采用不同支撑结构的柔性梁的隔离问题
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-18 DOI: 10.1007/s10409-024-23474-x
Jun-Ning Zhang  (, ), Xiao-Ye Mao  (, ), Hu Ding  (, ), Li-Qun Chen  (, )

This work discusses the strain and acceleration suppression of a flexible beam subjected to different supports analytically. As classical protection, the beam is mounted on a vertical linear spring together with a linear damper in parallel. This is called linear isolation. To enhance isolation performance, nonlinearity is employed in the boundary. In addition, quasi-zero isolation is established based on the non-linearly enhanced one by adjusting the installation length of the horizontal spring. To discuss their performance fully and fairly, the amplitude, the acceleration, the potential energy of the beam, the input work of the excitation, the dissipation work of the beam, and the dynamics stress along the beam are investigated based on the same parameters. The comparison shows that all these isolations can protect the beam with high efficiency, even when the basement excitation is tiny. Although the linear isolation and the nonlinearly enhanced one will arouse two resonance peaks on both sides of the primary resonance of the beam without isolation, the maximum amplitudes of them are reduced a lot. But for the low frequency excitation, the quasi-zero isolation has the best performance as it drives the primary resonance to the high frequency region. The simulation shows that the beam needs a relatively soft isolation to avoid the damage caused by the shock vibration, including the quasi-zero one. In general, the quasi-zero isolation shows the best performance. The nonlinearly enhanced one is the suboptimal choice. The present work shows the capacities of three isolations for a flexible beam by the steady-state response and the shock vibration. It provides design suggestions for the isolation of flexible beams.

本研究通过分析讨论了承受不同支撑的柔性梁的应变和加速度抑制问题。作为传统的保护措施,梁安装在垂直线性弹簧上,同时并联一个线性阻尼器。这被称为线性隔离。为了提高隔离性能,在边界中采用了非线性。此外,还通过调整水平弹簧的安装长度,在非线性增强隔离的基础上建立准零隔离。为了全面、公正地讨论它们的性能,我们基于相同的参数研究了振幅、加速度、梁的势能、激励的输入功、梁的耗散功和沿梁的动态应力。比较结果表明,所有这些隔离装置都能高效地保护横梁,即使基底激励很小。虽然线性隔振和非线性增强隔振会在没有隔振的梁主共振两侧产生两个共振峰,但其最大振幅会大大减小。但对于低频激励,准零隔离性能最好,因为它能将主谐振推向高频区域。模拟结果表明,梁需要相对较软的隔振来避免冲击振动造成的损坏,包括准零隔振。一般来说,准零隔离性能最好。非线性增强型隔离装置是次优选择。本研究通过稳态响应和冲击振动显示了柔性梁的三种隔振能力。它为柔性梁的隔离提供了设计建议。
{"title":"Discussion on isolation of flexible beams with various support configurations","authors":"Jun-Ning Zhang \u0000 (,&nbsp;),&nbsp;Xiao-Ye Mao \u0000 (,&nbsp;),&nbsp;Hu Ding \u0000 (,&nbsp;),&nbsp;Li-Qun Chen \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-23474-x","DOIUrl":"10.1007/s10409-024-23474-x","url":null,"abstract":"<div><p>This work discusses the strain and acceleration suppression of a flexible beam subjected to different supports analytically. As classical protection, the beam is mounted on a vertical linear spring together with a linear damper in parallel. This is called linear isolation. To enhance isolation performance, nonlinearity is employed in the boundary. In addition, quasi-zero isolation is established based on the non-linearly enhanced one by adjusting the installation length of the horizontal spring. To discuss their performance fully and fairly, the amplitude, the acceleration, the potential energy of the beam, the input work of the excitation, the dissipation work of the beam, and the dynamics stress along the beam are investigated based on the same parameters. The comparison shows that all these isolations can protect the beam with high efficiency, even when the basement excitation is tiny. Although the linear isolation and the nonlinearly enhanced one will arouse two resonance peaks on both sides of the primary resonance of the beam without isolation, the maximum amplitudes of them are reduced a lot. But for the low frequency excitation, the quasi-zero isolation has the best performance as it drives the primary resonance to the high frequency region. The simulation shows that the beam needs a relatively soft isolation to avoid the damage caused by the shock vibration, including the quasi-zero one. In general, the quasi-zero isolation shows the best performance. The nonlinearly enhanced one is the suboptimal choice. The present work shows the capacities of three isolations for a flexible beam by the steady-state response and the shock vibration. It provides design suggestions for the isolation of flexible beams.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contact behaviors of rough surfaces under tension and bending 拉伸和弯曲下粗糙表面的接触行为
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-13 DOI: 10.1007/s10409-024-24067-x
Xiaoyu Tang  (, ), Wurui Ta  (, ), Youhe Zhou  (, )

The contact problem of deformed rough surfaces exists widely in complex engineering structures. How to reveal the influence mechanism of surface deformation on the contact properties is a key issue in evaluating the interface performances of the engineering structures. In this paper, a contact model is established, which is suitable for tensile and bending deformed contact surfaces. Four contact forms of asperities are proposed, and their distribution characteristics are analyzed. This model reveals the mechanism of friction generation from the perspective of the force balance of asperity. The results show the contact behaviors of the deformed contact surface are significantly different from that of the plane contact, which is mainly reflected in the change in the number of contact asperities and the real contact area. This study suggests that the real contact area of the interface can be altered by applying tensile and bending strains, thereby regulating its contact mechanics and conductive behavior.

变形粗糙表面的接触问题广泛存在于复杂的工程结构中。如何揭示表面变形对接触性能的影响机理,是评价工程结构界面性能的关键问题。本文建立了一个适用于拉伸和弯曲变形接触表面的接触模型。提出了四种接触形式的尖角,并分析了它们的分布特征。该模型从尖面受力平衡的角度揭示了摩擦产生的机理。结果表明,变形接触面的接触行为与平面接触的接触行为有显著不同,主要体现在接触表面的渐尖数量和实际接触面积的变化上。这项研究表明,可以通过施加拉伸和弯曲应变来改变界面的实际接触面积,从而调节其接触力学和导电行为。
{"title":"Contact behaviors of rough surfaces under tension and bending","authors":"Xiaoyu Tang \u0000 (,&nbsp;),&nbsp;Wurui Ta \u0000 (,&nbsp;),&nbsp;Youhe Zhou \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24067-x","DOIUrl":"10.1007/s10409-024-24067-x","url":null,"abstract":"<div><p>The contact problem of deformed rough surfaces exists widely in complex engineering structures. How to reveal the influence mechanism of surface deformation on the contact properties is a key issue in evaluating the interface performances of the engineering structures. In this paper, a contact model is established, which is suitable for tensile and bending deformed contact surfaces. Four contact forms of asperities are proposed, and their distribution characteristics are analyzed. This model reveals the mechanism of friction generation from the perspective of the force balance of asperity. The results show the contact behaviors of the deformed contact surface are significantly different from that of the plane contact, which is mainly reflected in the change in the number of contact asperities and the real contact area. This study suggests that the real contact area of the interface can be altered by applying tensile and bending strains, thereby regulating its contact mechanics and conductive behavior.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study of postcritical deformation stage realization in layered composites during tension using digital image correlation and acoustic emission 利用数字图像相关性和声发射对层状复合材料在拉伸过程中实现临界后变形阶段的实验研究
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-09-13 DOI: 10.1007/s10409-023-23468-x
Valeriy Wildemann, Elena Strungar, Dmitrii Lobanov, Artur Mugatarov, Ekaterina Chebotareva

Creating conditions to implement equilibrium processes of damage accumulation under a predictable scenario enables control over the failure of structural elements in critical states. It improves safety and reduces the probability of catastrophic behavior in case of accidents. Equilibrium damage accumulation in some cases leads to a falling part (called a postcritical stage) on the material’s stress-strain curve. It must be taken into account to assess the strength and deformation limits of composite structures. Digital image correlation method, acoustic emission (AE) signals recording, and optical microscopy were used in this paper to study the deformation and failure processes of an orthogonal-layup composite during tension in various directions to orthotropy axes. An elastic-plastic deformation model was proposed for the composite in a plane stress condition. The evolution of strain fields and neck formation were analyzed. The staging of the postcritical deformation process was described. AE signals obtained during tests were studied; characteristic damage types of a material were defined. The rationality and necessity of polymer composites’ postcritical deformation stage taken into account in refined strength analysis of structures were concluded.

在可预测的情况下,创造条件实现损伤累积的平衡过程,可以控制结构元件在临界状态下的失效。它提高了安全性,降低了发生事故时灾难性行为的概率。平衡损伤累积在某些情况下会导致材料应力-应变曲线上的下降部分(称为后临界阶段)。在评估复合材料结构的强度和变形极限时必须考虑到这一点。本文采用数字图像相关法、声发射(AE)信号记录和光学显微镜研究了正交铺层复合材料在正交轴不同方向拉伸时的变形和破坏过程。提出了复合材料在平面应力条件下的弹塑性变形模型。分析了应变场的演变和颈部的形成。描述了临界后变形过程的分期。研究了试验过程中获得的 AE 信号;定义了材料的特征损伤类型。得出结论认为,在结构的精细强度分析中考虑聚合物复合材料的临界后变形阶段是合理和必要的。
{"title":"Experimental study of postcritical deformation stage realization in layered composites during tension using digital image correlation and acoustic emission","authors":"Valeriy Wildemann,&nbsp;Elena Strungar,&nbsp;Dmitrii Lobanov,&nbsp;Artur Mugatarov,&nbsp;Ekaterina Chebotareva","doi":"10.1007/s10409-023-23468-x","DOIUrl":"10.1007/s10409-023-23468-x","url":null,"abstract":"<div><p>Creating conditions to implement equilibrium processes of damage accumulation under a predictable scenario enables control over the failure of structural elements in critical states. It improves safety and reduces the probability of catastrophic behavior in case of accidents. Equilibrium damage accumulation in some cases leads to a falling part (called a postcritical stage) on the material’s stress-strain curve. It must be taken into account to assess the strength and deformation limits of composite structures. Digital image correlation method, acoustic emission (AE) signals recording, and optical microscopy were used in this paper to study the deformation and failure processes of an orthogonal-layup composite during tension in various directions to orthotropy axes. An elastic-plastic deformation model was proposed for the composite in a plane stress condition. The evolution of strain fields and neck formation were analyzed. The staging of the postcritical deformation process was described. AE signals obtained during tests were studied; characteristic damage types of a material were defined. The rationality and necessity of polymer composites’ postcritical deformation stage taken into account in refined strength analysis of structures were concluded.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Mechanica Sinica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1