首页 > 最新文献

Acta Mechanica Sinica最新文献

英文 中文
Asynchronous deployment scheme and multibody modeling of a ring-truss mesh reflector antenna 环形桁架网状反射天线的异步部署方案和多体建模
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-11-13 DOI: 10.1007/s10409-024-24147-x
Baiyan He  (, ), Kangkang Li  (, ), Lijun Jia  (, ), Rui Nie  (, ), Yesen Fan  (, ), Guobiao Wang  (, )

Mesh reflector antennas are the mainstream of large space-borne antennas, and the stretching of the truss achieves their deployment. Currently, the truss is commonly designed to be a single degree of freedom (DOF) deployable mechanism with synchronization constraints. However, each deployable unit’s drive distribution and resistance load are uneven, and the forced synchronization constraints lead to the flexible deformation of rods and difficulties in the deployment scheme design. This paper introduces an asynchronous deployment scheme with a multi-DOF closed-chain deployable truss. The DOF of the truss is calculated, and the kinematic and dynamic models are established, considering the truss’s and cable net’s real-time coupling. An integrated solving algorithm for implicit differential-algebraic equations is proposed to solve the dynamic models. A prototype of a six-unit antenna was fabricated, and the experiment was carried out. The dynamic performances in synchronous and asynchronous deployment schemes are analyzed, and the results show that the cable resistance and truss kinetic energy impact under the asynchronous deployment scheme are minor, and the antenna is more straightforward to deploy. The work provides a new asynchronous deployment scheme and a universal antenna modeling method for dynamic design and performance improvement.

网状反射天线是大型星载天线的主流,桁架的伸展实现了它们的部署。目前,桁架通常被设计为具有同步约束的单自由度(DOF)可展开机构。然而,每个可布放单元的驱动力分布和阻力载荷不均匀,强制同步约束导致杆件柔性变形,给布放方案设计带来困难。本文介绍了一种采用多 DOF 闭链可展开桁架的异步展开方案。考虑到桁架和索网的实时耦合,计算了桁架的 DOF,并建立了运动学和动力学模型。为求解动态模型,提出了隐式微分代数方程的综合求解算法。制作了六单元天线的原型,并进行了实验。结果表明,异步部署方案下的电缆阻力和桁架动能影响较小,天线部署更简单。该研究为动态设计和性能改进提供了一种新的异步展开方案和通用天线建模方法。
{"title":"Asynchronous deployment scheme and multibody modeling of a ring-truss mesh reflector antenna","authors":"Baiyan He \u0000 (,&nbsp;),&nbsp;Kangkang Li \u0000 (,&nbsp;),&nbsp;Lijun Jia \u0000 (,&nbsp;),&nbsp;Rui Nie \u0000 (,&nbsp;),&nbsp;Yesen Fan \u0000 (,&nbsp;),&nbsp;Guobiao Wang \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24147-x","DOIUrl":"10.1007/s10409-024-24147-x","url":null,"abstract":"<div><p>Mesh reflector antennas are the mainstream of large space-borne antennas, and the stretching of the truss achieves their deployment. Currently, the truss is commonly designed to be a single degree of freedom (DOF) deployable mechanism with synchronization constraints. However, each deployable unit’s drive distribution and resistance load are uneven, and the forced synchronization constraints lead to the flexible deformation of rods and difficulties in the deployment scheme design. This paper introduces an asynchronous deployment scheme with a multi-DOF closed-chain deployable truss. The DOF of the truss is calculated, and the kinematic and dynamic models are established, considering the truss’s and cable net’s real-time coupling. An integrated solving algorithm for implicit differential-algebraic equations is proposed to solve the dynamic models. A prototype of a six-unit antenna was fabricated, and the experiment was carried out. The dynamic performances in synchronous and asynchronous deployment schemes are analyzed, and the results show that the cable resistance and truss kinetic energy impact under the asynchronous deployment scheme are minor, and the antenna is more straightforward to deploy. The work provides a new asynchronous deployment scheme and a universal antenna modeling method for dynamic design and performance improvement.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromechanical coupling vibration characteristics of high-speed train transmission system considering gear eccentricity and running resistance 考虑齿轮偏心和运行阻力的高速列车传动系统机电耦合振动特性
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-11-13 DOI: 10.1007/s10409-024-24307-x
Yeping Yuan  (, ), Junguo Wang  (, )

The gear transmission system directly affects the operational performance of high-speed trains (HST). However, current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance, and the dynamic models of gear transmission system are not sufficiently comprehensive. This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics, in which the internal excitation factors such as gear eccentricity, time-varying meshing stiffness, backlash, meshing error, and external excitation factors such as electromagnetic torque and running resistance are stressed. The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system, and gear eccentricity leads to intensified system vibration and decreased anti-interference ability. In addition, the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection, and electrical signals can also be used to monitor changes in train running resistance in real time. The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.

齿轮传动系统直接影响高速列车(HST)的运行性能。然而,目前对高速列车齿轮传动系统的研究往往忽略了齿轮偏心和运行阻力的影响,齿轮传动系统的动态模型也不够全面。本文旨在建立 HST 牵引传动系统的机电耦合动态模型,研究其机电耦合振动特性,其中强调了齿轮偏心、时变啮合刚度、反向间隙、啮合误差等内部激励因素和电磁转矩、运行阻力等外部激励因素。研究结果表明,齿轮偏心和运行阻力对系统的稳定性有显著影响,齿轮偏心会导致系统振动加剧,抗干扰能力下降。此外,可以从机械信号和电流信号中提取齿轮偏心的特征频率,作为偏心检测的初步依据,还可以利用电信号实时监测列车运行阻力的变化。这项研究的结果为设计 HST 传动系统的动态性能参数和监测列车运行状态提供了一些有益的启示。
{"title":"Electromechanical coupling vibration characteristics of high-speed train transmission system considering gear eccentricity and running resistance","authors":"Yeping Yuan \u0000 (,&nbsp;),&nbsp;Junguo Wang \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24307-x","DOIUrl":"10.1007/s10409-024-24307-x","url":null,"abstract":"<div><p>The gear transmission system directly affects the operational performance of high-speed trains (HST). However, current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance, and the dynamic models of gear transmission system are not sufficiently comprehensive. This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics, in which the internal excitation factors such as gear eccentricity, time-varying meshing stiffness, backlash, meshing error, and external excitation factors such as electromagnetic torque and running resistance are stressed. The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system, and gear eccentricity leads to intensified system vibration and decreased anti-interference ability. In addition, the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection, and electrical signals can also be used to monitor changes in train running resistance in real time. The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoindentation behavior in T-carbon thin films: a molecular dynamics study T 型碳薄膜的纳米压痕行为:分子动力学研究
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.1007/s10409-024-24222-x
Runhua Zhou  (, ), Changjin Huang  (, ), Narasimalu Srikanth, Lichun Bai  (, ), Mao See Wu  (, )

T-carbon is a new allotrope of carbon materials, and it displays high hardness and low density. Nevertheless, the hardening mechanisms of T-carbon thin films under nanoindentation remain elusive. This work utilizes molecular dynamics simulation to explore the hardening mechanisms of T-carbon thin films under nanoindentation with variations of loading velocities and temperatures. The results reveal that a loading velocity increase at a given temperature raises the nanoindentation force. The increase in nanoindentation force is due to graphitization, which is related to the fracture of tetrahedral structures in T-carbon thin films. However, increased graphitization caused by an increased temperature lowers the nanoindentation force at a given loading velocity. The increased graphitization is influenced by both the fractured tetrahedrons and the deformation of inter-tetrahedron bond angles. This is attributed to the loss of thermal stability and the lower density of T-carbon thin films as the temperature increases. These findings have significant implications for the design of nanodevices for specific application requirements.

T 碳是碳材料的一种新同素异形体,具有高硬度和低密度的特点。然而,T-碳薄膜在纳米压痕作用下的硬化机理仍然难以捉摸。本研究利用分子动力学模拟探讨了 T 碳薄膜在纳米压痕作用下随加载速度和温度变化的硬化机理。结果表明,在给定温度下,加载速度的增加会提高纳米压痕力。纳米压痕力增加的原因是石墨化,而石墨化与 T 型碳薄膜中四面体结构的断裂有关。然而,温度升高导致的石墨化增加会降低给定加载速度下的纳米压痕力。石墨化的增加既受四面体断裂的影响,也受四面体间键角变形的影响。这归因于温度升高时 T 碳薄膜热稳定性的丧失和密度的降低。这些发现对设计满足特定应用要求的纳米器件具有重要意义。
{"title":"Nanoindentation behavior in T-carbon thin films: a molecular dynamics study","authors":"Runhua Zhou \u0000 (,&nbsp;),&nbsp;Changjin Huang \u0000 (,&nbsp;),&nbsp;Narasimalu Srikanth,&nbsp;Lichun Bai \u0000 (,&nbsp;),&nbsp;Mao See Wu \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24222-x","DOIUrl":"10.1007/s10409-024-24222-x","url":null,"abstract":"<div><p>T-carbon is a new allotrope of carbon materials, and it displays high hardness and low density. Nevertheless, the hardening mechanisms of T-carbon thin films under nanoindentation remain elusive. This work utilizes molecular dynamics simulation to explore the hardening mechanisms of T-carbon thin films under nanoindentation with variations of loading velocities and temperatures. The results reveal that a loading velocity increase at a given temperature raises the nanoindentation force. The increase in nanoindentation force is due to graphitization, which is related to the fracture of tetrahedral structures in T-carbon thin films. However, increased graphitization caused by an increased temperature lowers the nanoindentation force at a given loading velocity. The increased graphitization is influenced by both the fractured tetrahedrons and the deformation of inter-tetrahedron bond angles. This is attributed to the loss of thermal stability and the lower density of T-carbon thin films as the temperature increases. These findings have significant implications for the design of nanodevices for specific application requirements.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadband tunable acoustic metasurface based on Helmholtz resonators 基于亥姆霍兹谐振器的宽带可调谐声学超表面
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-10-31 DOI: 10.1007/s10409-024-24531-x
Peixin Han  (, ), Zhanyu Li  (, ), Yonghui Zhang  (, ), Xiaoming Zhou  (, ), Dongwei Wang  (, ), Kai Zhang  (, )

A broadband tunable acoustic metasurface (BTAM) is conceived with Helmholtz resonators (HRs). The tunability of HRs’ neck enables precise control over the phase shift of the unit cell. Through careful arrangement of unit cells, the BTAMs are engineered to exhibit various phase differences, thereby inducing anomalous reflections and acoustic focusing. Numerical simulations demonstrate the BTAM’s remarkable efficacy in manipulating the angle of reflection wave and achieving wave focusing across a broadband frequency range. Experimental investigations of the phase shift and anomalous reflection further validate the design of metasurface. This work contributes to the fields of broadband and tunable acoustic wave manipulation and provides a flexible and efficient approach for acoustic control devices.

利用亥姆霍兹谐振器(HRs)设计了一种宽带可调谐声学超表面(BTAM)。HRs颈部的可调性使得精确控制单元的相移成为可能。通过仔细排列单元,btam被设计成具有不同的相位差,从而引起异常反射和声聚焦。数值模拟表明,BTAM在控制反射波的角度和实现波在宽带频率范围内聚焦方面具有显著的效果。相移和异常反射的实验研究进一步验证了超表面的设计。这项工作有助于宽带和可调谐声波控制领域的发展,为声学控制装置提供了一种灵活有效的方法。
{"title":"Broadband tunable acoustic metasurface based on Helmholtz resonators","authors":"Peixin Han \u0000 (,&nbsp;),&nbsp;Zhanyu Li \u0000 (,&nbsp;),&nbsp;Yonghui Zhang \u0000 (,&nbsp;),&nbsp;Xiaoming Zhou \u0000 (,&nbsp;),&nbsp;Dongwei Wang \u0000 (,&nbsp;),&nbsp;Kai Zhang \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24531-x","DOIUrl":"10.1007/s10409-024-24531-x","url":null,"abstract":"<div><p>A broadband tunable acoustic metasurface (BTAM) is conceived with Helmholtz resonators (HRs). The tunability of HRs’ neck enables precise control over the phase shift of the unit cell. Through careful arrangement of unit cells, the BTAMs are engineered to exhibit various phase differences, thereby inducing anomalous reflections and acoustic focusing. Numerical simulations demonstrate the BTAM’s remarkable efficacy in manipulating the angle of reflection wave and achieving wave focusing across a broadband frequency range. Experimental investigations of the phase shift and anomalous reflection further validate the design of metasurface. This work contributes to the fields of broadband and tunable acoustic wave manipulation and provides a flexible and efficient approach for acoustic control devices.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Failure prediction of thermal barrier coatings on turbine blades under calcium-magnesium-alumina-silicate corrosion and thermal shock 涡轮叶片隔热涂层在钙镁铝硅酸盐腐蚀和热冲击下的失效预测
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-10-29 DOI: 10.1007/s10409-024-24285-x
Zhiyuan Liu  (, ), Yiqi Xiao  (, ), Li Yang  (, ), Wei Liu  (, ), Gang Yan  (, ), Yu Sun  (, ), Yichun Zhou  (, )

Failure of thermal barrier coatings (TBCs) can reduce the safety of aero-engines. Predicting the lifetime of TBCs on turbine blades under real service conditions is challenging due to the complex multiscale computation required and the chemo-thermo-mechanically coupled mechanisms involved. This paper proposes a multiscale deep-learning method for TBC failure prediction under typical thermal shock conditions involving calcium-magnesium-alumina-silicate (CMAS) corrosion. A micro-scale model is used to describe local stress and damage with consideration of the TBC microstructure and CMAS infiltration and corrosion mechanisms. A deep learning network is developed to reveal the effect of microscale corrosion on TBC lifetime. The modeled spalling mechanism and area are consistent with the experimental results, with the predicted lifetime being within 20% of that observed. This work provides an effective method for predicting the lifetime of TBCs under real service conditions.

隔热涂层(TBC)的失效会降低航空发动机的安全性。由于需要进行复杂的多尺度计算,且涉及化学热力学耦合机制,因此预测涡轮叶片上的热障涂层在实际使用条件下的使用寿命具有挑战性。本文提出了一种多尺度深度学习方法,用于预测典型热冲击条件下涉及钙镁铝硅酸盐(CMAS)腐蚀的 TBC 失效。微尺度模型用于描述局部应力和损伤,同时考虑到 TBC 的微观结构以及 CMAS 的渗透和腐蚀机制。开发了一个深度学习网络,以揭示微尺度腐蚀对 TBC 寿命的影响。建模的剥落机理和面积与实验结果一致,预测的寿命在观测结果的 20% 以内。这项工作为预测 TBC 在实际使用条件下的寿命提供了一种有效的方法。
{"title":"Failure prediction of thermal barrier coatings on turbine blades under calcium-magnesium-alumina-silicate corrosion and thermal shock","authors":"Zhiyuan Liu \u0000 (,&nbsp;),&nbsp;Yiqi Xiao \u0000 (,&nbsp;),&nbsp;Li Yang \u0000 (,&nbsp;),&nbsp;Wei Liu \u0000 (,&nbsp;),&nbsp;Gang Yan \u0000 (,&nbsp;),&nbsp;Yu Sun \u0000 (,&nbsp;),&nbsp;Yichun Zhou \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24285-x","DOIUrl":"10.1007/s10409-024-24285-x","url":null,"abstract":"<div><p>Failure of thermal barrier coatings (TBCs) can reduce the safety of aero-engines. Predicting the lifetime of TBCs on turbine blades under real service conditions is challenging due to the complex multiscale computation required and the chemo-thermo-mechanically coupled mechanisms involved. This paper proposes a multiscale deep-learning method for TBC failure prediction under typical thermal shock conditions involving calcium-magnesium-alumina-silicate (CMAS) corrosion. A micro-scale model is used to describe local stress and damage with consideration of the TBC microstructure and CMAS infiltration and corrosion mechanisms. A deep learning network is developed to reveal the effect of microscale corrosion on TBC lifetime. The modeled spalling mechanism and area are consistent with the experimental results, with the predicted lifetime being within 20% of that observed. This work provides an effective method for predicting the lifetime of TBCs under real service conditions.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of quadratic thermal radiation on MHD nanofluid flow across a stretching sheet with variable thickness: Xue and Yamado-Ota thermophysical model 二次热辐射对厚度可变的拉伸片上 MHD 纳米流体流动的影响:Xue 和 Yamado-Ota 热物理模型
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-10-28 DOI: 10.1007/s10409-024-24405-x
Kandavkovi Mallikarjuna Nihaal, Ulavathi Shettar Mahabaleshwar, Dia Zeidan, Sang Woo Joo

The work comparing the Yamada-Ota and Xue models for nanoparticle flow across a stretching surface has benefits in nanotechnology, medicinal treatments, environmental engineering, renewable energy, and heat exchangers. Most published nanofluid flow models assumed constant thermal conductivity and viscosity. With such great physiognomies in mind, the novelty of this work focuses on comparing the performance of the nanofluid models, Xue, and Yamada-Ota models on a stretched sheet with variable thickness under the influence of a magnetic field and quadratic thermal radiation. The altered boundary layer equations for momentum and temperature, subject to adequate boundary conditions, are numerically solved using an optimized, efficient, and extensive bvp-4c approach. The effects of non-dimensional constraints such as magnetic field, power index of velocity, wall thickness parameter, and quadratic radiation parameter on momentum and temperature profile in the boundary layer area are analyzed thoroughly and outcomes were illustrated graphically. Additionally, the consequences of certain distinctive parameters over engineering factors are also examined and results were presented in tabular form. From the outcomes, it is seen that fluid velocity slows down in the presence of a magnetic field but the opposite nature is observed in the case of temperature profile. With a higher index of velocity, the velocity profile decreases and the temperature field elevates. It has been found that the presence of quadratic convection improves the temperature field. The outcomes of the two models are compared. The Yamada-Ota model performed far better than the Xue model in the heat transfer analysis.

Yamada-Ota 模型与 Xue 模型在纳米粒子流过拉伸表面时的比较研究成果对纳米技术、药物治疗、环境工程、可再生能源和热交换器等领域都有益处。大多数已发表的纳米流体流动模型都假定热导率和粘度恒定不变。考虑到这种巨大的物理特性,这项工作的新颖之处在于比较纳米流体模型、Xue 模型和 Yamada-Ota 模型在磁场和二次热辐射影响下在厚度可变的拉伸片上的性能。采用优化、高效和广泛的 bvp-4c 方法,在适当的边界条件下,对改变的动量和温度边界层方程进行了数值求解。对磁场、速度功率指数、壁厚参数和二次辐射参数等非尺寸约束对边界层区域动量和温度分布的影响进行了深入分析,并用图形对结果进行了说明。此外,还研究了某些独特参数对工程因素的影响,并以表格形式展示了结果。从结果中可以看出,在磁场存在的情况下,流体速度会减慢,但在温度曲线的情况下则相反。速度指数越高,速度曲线越小,温度场越大。研究发现,二次对流的存在改善了温度场。对两个模型的结果进行了比较。在传热分析中,Yamada-Ota 模型的性能远远优于 Xue 模型。
{"title":"Impact of quadratic thermal radiation on MHD nanofluid flow across a stretching sheet with variable thickness: Xue and Yamado-Ota thermophysical model","authors":"Kandavkovi Mallikarjuna Nihaal,&nbsp;Ulavathi Shettar Mahabaleshwar,&nbsp;Dia Zeidan,&nbsp;Sang Woo Joo","doi":"10.1007/s10409-024-24405-x","DOIUrl":"10.1007/s10409-024-24405-x","url":null,"abstract":"<div><p>The work comparing the Yamada-Ota and Xue models for nanoparticle flow across a stretching surface has benefits in nanotechnology, medicinal treatments, environmental engineering, renewable energy, and heat exchangers. Most published nanofluid flow models assumed constant thermal conductivity and viscosity. With such great physiognomies in mind, the novelty of this work focuses on comparing the performance of the nanofluid models, Xue, and Yamada-Ota models on a stretched sheet with variable thickness under the influence of a magnetic field and quadratic thermal radiation. The altered boundary layer equations for momentum and temperature, subject to adequate boundary conditions, are numerically solved using an optimized, efficient, and extensive bvp-4c approach. The effects of non-dimensional constraints such as magnetic field, power index of velocity, wall thickness parameter, and quadratic radiation parameter on momentum and temperature profile in the boundary layer area are analyzed thoroughly and outcomes were illustrated graphically. Additionally, the consequences of certain distinctive parameters over engineering factors are also examined and results were presented in tabular form. From the outcomes, it is seen that fluid velocity slows down in the presence of a magnetic field but the opposite nature is observed in the case of temperature profile. With a higher index of velocity, the velocity profile decreases and the temperature field elevates. It has been found that the presence of quadratic convection improves the temperature field. The outcomes of the two models are compared. The Yamada-Ota model performed far better than the Xue model in the heat transfer analysis.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 6","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on the deformation tracking methods in vision-based tactile sensing technology 基于视觉的触觉传感技术中变形跟踪方法研究进展
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-10-24 DOI: 10.1007/s10409-024-24436-x
Benzhu Guo  (, ), Shengyu Duan  (, ), Panding Wang  (, ), Hongshuai Lei  (, ), Zeang Zhao  (, ), Daining Fang  (, )

In daily life, human need various senses to obtain information about their surroundings, and touch is one of the five major human sensing signals. Similarly, it is extremely important for robots to be endowed with tactile sensing ability. In recent years, vision-based tactile sensing technology has been the research hotspot and frontier in the field of tactile perception. Compared to conventional tactile sensing technologies, vision-based tactile sensing technologies are capable of obtaining high-quality and high-resolution tactile information at a lower cost, while not being limited by the size and shape of sensors. Several previous articles have reviewed the sensing mechanism and electrical components of vision-based sensors, greatly promoting the innovation of tactile sensing. Different from existing reviews, this article concentrates on the underlying tracking method which converts real-time images into deformation information, including contact, sliding and friction. We will show the history and development of both model-based and model-free tracking methods, among which model-based approaches rely on schematic mechanical theories, and model-free approaches mainly involve machine learning algorithms. Comparing the efficiency and accuracy of existing deformation tracking methods, future research directions of vision-based tactile sensors for smart manipulations and robots are also discussed.

在日常生活中,人类需要各种感官来获取周围环境的信息,触觉是人类五大感知信号之一。同样,赋予机器人触觉感知能力也是极其重要的。近年来,基于视觉的触觉传感技术一直是触觉感知领域的研究热点和前沿。与传统触觉传感技术相比,基于视觉的触觉传感技术能够以较低的成本获得高质量、高分辨率的触觉信息,且不受传感器尺寸和形状的限制。之前的几篇文章对基于视觉的传感器的传感机理和电子元件进行了综述,极大地促进了触觉传感的创新。与已有的文献不同,本文主要研究底层跟踪方法,将实时图像转换为包括接触、滑动和摩擦在内的变形信息。我们将展示基于模型和无模型的跟踪方法的历史和发展,其中基于模型的方法依赖于原理图力学理论,无模型的方法主要涉及机器学习算法。比较了现有变形跟踪方法的效率和精度,讨论了面向智能操作和机器人的基于视觉的触觉传感器的未来研究方向。
{"title":"A review on the deformation tracking methods in vision-based tactile sensing technology","authors":"Benzhu Guo \u0000 (,&nbsp;),&nbsp;Shengyu Duan \u0000 (,&nbsp;),&nbsp;Panding Wang \u0000 (,&nbsp;),&nbsp;Hongshuai Lei \u0000 (,&nbsp;),&nbsp;Zeang Zhao \u0000 (,&nbsp;),&nbsp;Daining Fang \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24436-x","DOIUrl":"10.1007/s10409-024-24436-x","url":null,"abstract":"<div><p>In daily life, human need various senses to obtain information about their surroundings, and touch is one of the five major human sensing signals. Similarly, it is extremely important for robots to be endowed with tactile sensing ability. In recent years, vision-based tactile sensing technology has been the research hotspot and frontier in the field of tactile perception. Compared to conventional tactile sensing technologies, vision-based tactile sensing technologies are capable of obtaining high-quality and high-resolution tactile information at a lower cost, while not being limited by the size and shape of sensors. Several previous articles have reviewed the sensing mechanism and electrical components of vision-based sensors, greatly promoting the innovation of tactile sensing. Different from existing reviews, this article concentrates on the underlying tracking method which converts real-time images into deformation information, including contact, sliding and friction. We will show the history and development of both model-based and model-free tracking methods, among which model-based approaches rely on schematic mechanical theories, and model-free approaches mainly involve machine learning algorithms. Comparing the efficiency and accuracy of existing deformation tracking methods, future research directions of vision-based tactile sensors for smart manipulations and robots are also discussed.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10409-024-24436-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of low-frequency vibration isolators with high-static-low-dynamic characteristic via functionally graded beam systems 基于功能梯度梁系统的高静低动特性低频隔振器设计
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-10-23 DOI: 10.1007/s10409-024-23501-x
Yixin Huang  (, ), Yikun Yuan  (, ), Yichen Jia  (, ), Yang Zhao  (, )

This paper presents a novel and simple approach to designing low-frequency vibration isolators via functionally graded beam systems. Without complex mechanisms and nonlinear devices, high-static stiffness and wide anti-resonance frequency bands can be achieved by optimizing material gradients and auxiliary masses. The discrete equation governing the bending and vibration of the beam system is established by employing Timoshenko’s theory and a Chebyshev spectral method. The dynamic characteristics, steady-state frequency response, and bending under static loads, are numerically calculated and used to evaluate its vibration isolation performance and support stiffness. The effects of the material gradient and auxiliary masses on the force transmissibility and static stiffness were investigated. It was found that adjusting the auxiliary masses can change the position of anti-resonance peaks, and tailoring axial material gradient can broaden the anti-resonance frequency bands. Exploiting these effects and describing the axial material distribution by the Chebyshev expansions, the constrained particle swarm optimization algorithm is adopted to design two low-frequency vibration isolators, in order to demonstrate the feasibility of using functionally graded materials to isolate low-frequency vibration and maintain structural stiffness. The results show that near the operating frequency, the transmissibility decays more than 93%, more importantly, the static stiffness is larger than 190 kN/m. This work shows a promising approach to vibration isolator design, i.e., tailoring functionally graded materials to precisely manipulate structural dynamic responses.

本文提出了一种通过功能梯度梁系统设计低频隔振器的新颖而简单的方法。不需要复杂的机构和非线性器件,通过优化材料梯度和辅助质量可以实现高静刚度和宽抗共振频带。采用Timoshenko理论和切比雪夫谱法建立了控制梁系统弯曲和振动的离散方程。对其动态特性、稳态频率响应和静载荷下的弯曲进行了数值计算,并用于评估其隔振性能和支撑刚度。研究了材料梯度和辅助质量对力传递率和静刚度的影响。研究发现,调整辅助质量可以改变抗共振峰的位置,调整轴向材料梯度可以拓宽抗共振频带。利用这些效应,利用切比雪夫展开描述材料轴向分布,采用约束粒子群优化算法设计了两个低频隔振器,以验证使用功能梯度材料隔离低频振动并保持结构刚度的可行性。结果表明,在工作频率附近,传递率衰减超过93%,静刚度大于190 kN/m。这项工作显示了一种很有前途的隔振设计方法,即剪裁功能梯度材料以精确地操纵结构动态响应。
{"title":"Design of low-frequency vibration isolators with high-static-low-dynamic characteristic via functionally graded beam systems","authors":"Yixin Huang \u0000 (,&nbsp;),&nbsp;Yikun Yuan \u0000 (,&nbsp;),&nbsp;Yichen Jia \u0000 (,&nbsp;),&nbsp;Yang Zhao \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-23501-x","DOIUrl":"10.1007/s10409-024-23501-x","url":null,"abstract":"<div><p>This paper presents a novel and simple approach to designing low-frequency vibration isolators via functionally graded beam systems. Without complex mechanisms and nonlinear devices, high-static stiffness and wide anti-resonance frequency bands can be achieved by optimizing material gradients and auxiliary masses. The discrete equation governing the bending and vibration of the beam system is established by employing Timoshenko’s theory and a Chebyshev spectral method. The dynamic characteristics, steady-state frequency response, and bending under static loads, are numerically calculated and used to evaluate its vibration isolation performance and support stiffness. The effects of the material gradient and auxiliary masses on the force transmissibility and static stiffness were investigated. It was found that adjusting the auxiliary masses can change the position of anti-resonance peaks, and tailoring axial material gradient can broaden the anti-resonance frequency bands. Exploiting these effects and describing the axial material distribution by the Chebyshev expansions, the constrained particle swarm optimization algorithm is adopted to design two low-frequency vibration isolators, in order to demonstrate the feasibility of using functionally graded materials to isolate low-frequency vibration and maintain structural stiffness. The results show that near the operating frequency, the transmissibility decays more than 93%, more importantly, the static stiffness is larger than 190 kN/m. This work shows a promising approach to vibration isolator design, i.e., tailoring functionally graded materials to precisely manipulate structural dynamic responses.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 9","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-scale mechanical manipulation of mobile charges in centrosymmetric semiconductors via interplay between piezoelectricity and flexoelectricity 通过压电和挠性电之间的相互作用在中心对称半导体中移动电荷的跨尺度机械操纵
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-10-23 DOI: 10.1007/s10409-024-24328-x
Chao Wei  (, ), Ziwen Guo  (, ), Jian Tang  (, ), Wenbin Huang  (, )

Flexoelectricity, an electromechanical coupling between strain gradient and electrical polarization in dielectrics or semiconductors, has attracted significant scientific interest. It is reported that large flexoelectric behaviors can be obtained at the nanoscale because of the size effect. However, the flexoelectric responses of centrosymmetric semiconductors (CSs) are extremely weak under a conventional beam-bending approach, owing to weak flexoelectric coefficients and small strain gradients. The flexoelectric-like effect is an enhanced electromechanical effect coupling the flexoelectricity and piezoelectricity. In this paper, a composite structure consisting of piezoelectric dielectric layers and a CS layer is proposed. The electromechanical response of the CS is significantly enhanced via antisymmetric piezoelectric polarization. Consequently, the cross-scale mechanically tuned carrier distribution in the semiconductor is realized. Meanwhile, the significant size dependence of the electromechanical fields in the semiconductor is demonstrated. The flexoelectronics suppression is found when the semiconductor thickness reaches a critical size (0.8 µm). In addition, the first-order carrier density of the composite structure under local loads is illustrated. Our results can suggest the structural design for flexoelectric semiconductor devices.

柔性电是电介质或半导体中应变梯度和电极化之间的机电耦合,已经引起了重大的科学兴趣。据报道,由于尺寸效应,在纳米尺度上可以获得较大的挠曲电行为。然而,在传统的光束弯曲方法下,由于挠曲电系数弱和应变梯度小,中心对称半导体(CSs)的挠曲电响应非常弱。类挠性电效应是挠性电和压电耦合的一种增强的机电效应。本文提出了一种由压电介质层和CS层组成的复合材料结构。通过反对称压电极化,CS的机电响应显著增强。从而实现了半导体中跨尺度机械调谐载流子分布。同时,证明了半导体中机电场的显著尺寸依赖性。当半导体厚度达到临界尺寸(0.8µm)时,发现挠曲电子学抑制。此外,还分析了局部载荷作用下复合材料结构的一阶载流子密度。我们的研究结果可以为柔性电子半导体器件的结构设计提供参考。
{"title":"Cross-scale mechanical manipulation of mobile charges in centrosymmetric semiconductors via interplay between piezoelectricity and flexoelectricity","authors":"Chao Wei \u0000 (,&nbsp;),&nbsp;Ziwen Guo \u0000 (,&nbsp;),&nbsp;Jian Tang \u0000 (,&nbsp;),&nbsp;Wenbin Huang \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24328-x","DOIUrl":"10.1007/s10409-024-24328-x","url":null,"abstract":"<div><p>Flexoelectricity, an electromechanical coupling between strain gradient and electrical polarization in dielectrics or semiconductors, has attracted significant scientific interest. It is reported that large flexoelectric behaviors can be obtained at the nanoscale because of the size effect. However, the flexoelectric responses of centrosymmetric semiconductors (CSs) are extremely weak under a conventional beam-bending approach, owing to weak flexoelectric coefficients and small strain gradients. The flexoelectric-like effect is an enhanced electromechanical effect coupling the flexoelectricity and piezoelectricity. In this paper, a composite structure consisting of piezoelectric dielectric layers and a CS layer is proposed. The electromechanical response of the CS is significantly enhanced via antisymmetric piezoelectric polarization. Consequently, the cross-scale mechanically tuned carrier distribution in the semiconductor is realized. Meanwhile, the significant size dependence of the electromechanical fields in the semiconductor is demonstrated. The flexoelectronics suppression is found when the semiconductor thickness reaches a critical size (0.8 µm). In addition, the first-order carrier density of the composite structure under local loads is illustrated. Our results can suggest the structural design for flexoelectric semiconductor devices.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 9","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear stability characteristics of piezoelectric cylindrical shells with flexoelectric effects 具有挠性电效应的压电圆柱壳的非线性稳定特性
IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Pub Date : 2024-10-22 DOI: 10.1007/s10409-024-24412-x
Wei Wang  (, ), Huilin Yin  (, ), Junlin Zhang  (, ), Jiabin Sun  (, ), Zhenhuan Zhou  (, ), Xinsheng Xu  (, )

Unlike the post-buckling behaviors of classical piezoelectric cylindrical shell, the size-dependent effect of flexoelectric material and high strain gradient in the post-buckling process play an important role in the stability analysis of the micro/nano cylindrical shells. To reveal the impacts on the post-buckling of flexoelectric cylindrical shells, an accurate post-buckling model for the flexoelectric cylindrical shells under axial compression is proposed based on the higher-order shear deformation shell theory and von Karman geometrical nonlinearity. The size-dependent post-buckling equilibrium path with mode-jumping phenomena is obtained by using Galerkin’s method and Newton-Raphson method. The predicted results are in agreement with those reported in the open literature. A detailed parametric study is also carried out to investigate the influence of geometrical parameters, flexoelectric coefficients, and electric voltage on the size-dependent post-buckling behaviors of flexoelectric cylindrical shells.

与经典压电圆柱壳的后屈曲行为不同,柔性电材料的尺寸依赖效应和后屈曲过程中的高应变梯度在微纳圆柱壳的稳定性分析中起着重要作用。为了揭示对挠性电圆柱壳后屈曲的影响,基于高阶剪切变形壳理论和von Karman几何非线性,提出了轴压作用下挠性电圆柱壳后屈曲的精确模型。采用伽辽金法和牛顿-拉夫逊法,得到了具有跳模现象的随尺寸变化的后屈曲平衡路径。预测结果与公开文献报道的结果一致。详细的参数化研究还探讨了几何参数、挠曲电系数和电压对挠曲电圆柱壳尺寸依赖性后屈曲行为的影响。
{"title":"Nonlinear stability characteristics of piezoelectric cylindrical shells with flexoelectric effects","authors":"Wei Wang \u0000 (,&nbsp;),&nbsp;Huilin Yin \u0000 (,&nbsp;),&nbsp;Junlin Zhang \u0000 (,&nbsp;),&nbsp;Jiabin Sun \u0000 (,&nbsp;),&nbsp;Zhenhuan Zhou \u0000 (,&nbsp;),&nbsp;Xinsheng Xu \u0000 (,&nbsp;)","doi":"10.1007/s10409-024-24412-x","DOIUrl":"10.1007/s10409-024-24412-x","url":null,"abstract":"<div><p>Unlike the post-buckling behaviors of classical piezoelectric cylindrical shell, the size-dependent effect of flexoelectric material and high strain gradient in the post-buckling process play an important role in the stability analysis of the micro/nano cylindrical shells. To reveal the impacts on the post-buckling of flexoelectric cylindrical shells, an accurate post-buckling model for the flexoelectric cylindrical shells under axial compression is proposed based on the higher-order shear deformation shell theory and von Karman geometrical nonlinearity. The size-dependent post-buckling equilibrium path with mode-jumping phenomena is obtained by using Galerkin’s method and Newton-Raphson method. The predicted results are in agreement with those reported in the open literature. A detailed parametric study is also carried out to investigate the influence of geometrical parameters, flexoelectric coefficients, and electric voltage on the size-dependent post-buckling behaviors of flexoelectric cylindrical shells.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 9","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Mechanica Sinica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1