Childhood obesity is a major public health challenge. Early prediction and identification of the children at an elevated risk of developing childhood obesity may help in engaging earlier and more effective interventions to prevent and manage obesity. Most existing predictive tools for childhood obesity primarily rely on traditional regression-type methods using only a few hand-picked features and without exploiting longitudinal patterns of children's data. Deep learning methods allow the use of high-dimensional longitudinal datasets. In this paper, we present a deep learning model designed for predicting future obesity patterns from generally available items on children's medical history. To do this, we use a large unaugmented electronic health records dataset from a large pediatric health system in the US. We adopt a general LSTM network architecture and train our proposed model using both static and dynamic EHR data. To add interpretability, we have additionally included an attention layer to calculate the attention scores for the timestamps and rank features of each timestamp. Our model is used to predict obesity for ages between 3-20 years using the data from 1-3 years in advance. We compare the performance of our LSTM model with a series of existing studies in the literature and show it outperforms their performance in most age ranges.
In this study, we introduce and validate a computational method to detect lifestyle change that occurs in response to a multi-domain healthy brain aging intervention. To detect behavior change, digital behavior markers (DM) are extracted from smartwatch sensor data and a Permutation-based Change Detection (PCD) algorithm quantifies the change in marker-based behavior from a pre-intervention, one-week baseline. To validate the method, we verify that changes are successfully detected from synthetic data with known pattern differences. Next, we employ this method to detect overall behavior change for n=28 BHI subjects and n=17 age-matched control subjects. For these individuals, we observe a monotonic increase in behavior change from the baseline week with a slope of 0.7460 for the intervention group and a slope of 0.0230 for the control group. Finally, we utilize a random forest algorithm to perform leave-one-subject-out prediction of intervention versus control subjects based on digital marker delta values. The random forest predicts whether the subject is in the intervention or control group with an accuracy of 0.87. This work has implications for capturing objective, continuous data to inform our understanding of intervention adoption and impact.
Many modern entity recognition systems, including the current state-of-the-art de-identification systems, are based on bidirectional long short-term memory (biLSTM) units augmented by a conditional random field (CRF) sequence optimizer. These systems process the input sentence by sentence. This approach prevents the systems from capturing dependencies over sentence boundaries and makes accurate sentence boundary detection a prerequisite. Since sentence boundary detection can be problematic especially in clinical reports, where dependencies and co-references across sentence boundaries are abundant, these systems have clear limitations. In this study, we built a new system on the framework of one of the current state-of-the-art de-identification systems, NeuroNER, to overcome these limitations. This new system incorporates context embeddings through forward and backward n -grams without using sentence boundaries. Our context-enhanced de-identification (CEDI) system captures dependencies over sentence boundaries and bypasses the sentence boundary detection problem altogether. We enhanced this system with deep affix features and an attention mechanism to capture the pertinent parts of the input. The CEDI system outperforms NeuroNER on the 2006 i2b2 de-identification challenge dataset, the 2014 i2b2 shared task de-identification dataset, and the 2016 CEGS N-GRID de-identification dataset (p < 0.01). All datasets comprise narrative clinical reports in English but contain different note types varying from discharge summaries to psychiatric notes. Enhancing CEDI with deep affix features and the attention mechanism further increased performance.