首页 > 最新文献

Advances in biological regulation最新文献

英文 中文
Splicing factor mutations in the myelodysplastic syndromes: Role of key aberrantly spliced genes in disease pathophysiology and treatment 剪接因子突变在骨髓增生异常综合征:关键异常剪接基因在疾病病理生理和治疗中的作用
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100920
Andrea Pellagatti, Jacqueline Boultwood

Mutations of splicing factor genes (including SF3B1, SRSF2, U2AF1 and ZRSR2) occur in more than half of all patients with myelodysplastic syndromes (MDS), a heterogeneous group of myeloid neoplasms. Splicing factor mutations lead to aberrant pre-mRNA splicing of many genes, some of which have been shown in functional studies to impact on hematopoiesis and to contribute to the MDS phenotype. This clearly demonstrates that impaired spliceosome function plays an important role in MDS pathophysiology. Recent studies that harnessed the power of induced pluripotent stem cell (iPSC) and CRISPR/Cas9 gene editing technologies to generate new iPSC-based models of splicing factor mutant MDS, have further illuminated the role of key downstream target genes. The aberrantly spliced genes and the dysregulated pathways associated with splicing factor mutations in MDS represent potential new therapeutic targets. Emerging data has shown that IRAK4 is aberrantly spliced in SF3B1 and U2AF1 mutant MDS, leading to hyperactivation of NF-κB signaling. Pharmacological inhibition of IRAK4 has shown efficacy in pre-clinical studies and in MDS clinical trials, with higher response rates in patients with splicing factor mutations. Our increasing knowledge of the effects of splicing factor mutations in MDS is leading to the development of new treatments that may benefit patients harboring these mutations.

剪接因子基因(包括SF3B1、SRSF2、U2AF1和ZRSR2)的突变发生在一半以上的骨髓增生异常综合征(MDS)患者中,MDS是一组异质性骨髓肿瘤。剪接因子突变导致许多基因的前信使核糖核酸剪接异常,其中一些基因已在功能研究中显示影响造血并导致MDS表型。这清楚地表明剪接体功能受损在MDS的病理生理学中起着重要作用。最近的研究利用诱导多能干细胞(iPSC)和CRISPR/Cas9基因编辑技术产生了新的基于iPSC的剪接因子突变体MDS模型,进一步阐明了关键下游靶基因的作用。MDS中异常剪接的基因和与剪接因子突变相关的失调途径代表了潜在的新治疗靶点。新出现的数据表明,IRAK4在SF3B1和U2AF1突变体MDS中异常剪接,导致NF-κB信号的过度激活。IRAK4的药理学抑制在临床前研究和MDS临床试验中显示出疗效,剪接因子突变患者的应答率更高。我们对MDS中剪接因子突变影响的了解不断增加,这导致了新的治疗方法的开发,这些治疗方法可能有利于携带这些突变的患者。
{"title":"Splicing factor mutations in the myelodysplastic syndromes: Role of key aberrantly spliced genes in disease pathophysiology and treatment","authors":"Andrea Pellagatti,&nbsp;Jacqueline Boultwood","doi":"10.1016/j.jbior.2022.100920","DOIUrl":"10.1016/j.jbior.2022.100920","url":null,"abstract":"<div><p>Mutations of splicing factor genes (including <em>SF3B1</em>, <em>SRSF2</em>, <em>U2AF1</em> and <em>ZRSR2</em>) occur in more than half of all patients with myelodysplastic syndromes (MDS), a heterogeneous group of myeloid neoplasms. Splicing factor mutations lead to aberrant pre-mRNA splicing of many genes, some of which have been shown in functional studies to impact on hematopoiesis and to contribute to the MDS phenotype. This clearly demonstrates that impaired spliceosome function plays an important role in MDS pathophysiology. Recent studies that harnessed the power of induced pluripotent stem cell (iPSC) and CRISPR/Cas9 gene editing technologies to generate new iPSC-based models of splicing factor mutant MDS, have further illuminated the role of key downstream target genes. The aberrantly spliced genes and the dysregulated pathways associated with splicing factor mutations in MDS represent potential new therapeutic targets. Emerging data has shown that <em>IRAK4</em> is aberrantly spliced in <em>SF3B1</em> and <em>U2AF1</em> mutant MDS, leading to hyperactivation of NF-κB signaling. Pharmacological inhibition of IRAK4 has shown efficacy in pre-clinical studies and in MDS clinical trials, with higher response rates in patients with splicing factor mutations. Our increasing knowledge of the effects of splicing factor mutations in MDS is leading to the development of new treatments that may benefit patients harboring these mutations.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100920"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10583466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase 肽基脯氨酸异构酶Pin1对真核蛋白激酶的调控
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100938
Xiao-Ru Chen, Tatyana I. Igumenova

The peptidyl-prolyl isomerase Pin1 cooperates with proline-directed kinases and phosphatases to regulate multiple oncogenic pathways. Pin1 specifically recognizes phosphorylated Ser/Thr-Pro motifs in proteins and catalyzes their cis-trans isomerization. The Pin1-catalyzed conformational changes determine the stability, activity, and subcellular localization of numerous protein substrates. We conducted a survey of eukaryotic protein kinases that are regulated by Pin1 and whose Pin1 binding sites have been identified. Our analyses reveal that Pin1 target sites in kinases do not fall exclusively within the intrinsically disordered regions of these enzymes. Rather, they fall into three groups based on their location: (i) within the catalytic kinase domain, (ii) in the C-terminal kinase region, and (iii) in regulatory domains. Some of the kinases downregulated by Pin1 activity are tumor-suppressing, and all kinases upregulated by Pin1 activity are functionally pro-oncogenic. These findings further reinforce the rationale for developing Pin1-specific inhibitors as attractive pharmaceuticals for cancer therapy.

肽基脯氨酰异构酶Pin1与脯氨酸导向的激酶和磷酸酶协同调节多种致癌途径。Pin1特异性识别蛋白质中磷酸化的Ser/Thr-Pro基序,并催化其顺反异构。Pin1催化的构象变化决定了许多蛋白质底物的稳定性、活性和亚细胞定位。我们对受Pin1调节的真核蛋白激酶进行了调查,其Pin1结合位点已被鉴定。我们的分析表明,激酶中的Pin1靶位点并不完全属于这些酶的内在无序区域。相反,根据它们的位置,它们分为三组:(i)在催化激酶结构域内,(ii)在C末端激酶区域内,以及(iii)在调节结构域内。一些被Pin1活性下调的激酶是肿瘤抑制的,而所有被Pin1活动上调的激酶在功能上都是致癌的。这些发现进一步强化了开发Pin1-特异性抑制剂作为癌症治疗的有吸引力的药物的基本原理。
{"title":"Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase","authors":"Xiao-Ru Chen,&nbsp;Tatyana I. Igumenova","doi":"10.1016/j.jbior.2022.100938","DOIUrl":"10.1016/j.jbior.2022.100938","url":null,"abstract":"<div><p>The peptidyl-prolyl isomerase Pin1 cooperates with proline-directed kinases and phosphatases to regulate multiple oncogenic pathways. Pin1 specifically recognizes phosphorylated Ser/Thr-Pro motifs in proteins and catalyzes their <em>cis</em>-<em>trans</em> isomerization. The Pin1-catalyzed conformational changes determine the stability, activity, and subcellular localization of numerous protein substrates. We conducted a survey of eukaryotic protein kinases that are regulated by Pin1 and whose Pin1 binding sites have been identified. Our analyses reveal that Pin1 target sites in kinases do not fall exclusively within the intrinsically disordered regions of these enzymes. Rather, they fall into three groups based on their location: (i) within the catalytic kinase domain, (ii) in the C-terminal kinase region, and (iii) in regulatory domains. Some of the kinases downregulated by Pin1 activity are tumor-suppressing, and all kinases upregulated by Pin1 activity are functionally pro-oncogenic. These findings further reinforce the rationale for developing Pin1-specific inhibitors as attractive pharmaceuticals for cancer therapy.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100938"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
IL-7 and IL-7R in health and disease: An update through COVID times IL-7和IL-7R在健康和疾病中的作用:通过COVID时代的更新
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100940
Marta B. Fernandes, João T. Barata

The role of IL-7 and IL-7R for normal lymphoid development and an adequately functioning immune system has been recognized for long, with severe immune deficiency and lymphoid leukemia as extreme examples of the consequences of deregulation of the IL-7-IL-7R axis. In this review, we provide an update (focusing on the past couple of years) on IL-7 and IL-7R in health and disease. We highlight the findings on IL-7/IL-7R signaling mechanisms and the, sometimes controversial, impact of IL-7 and its receptor on leukocyte biology, COVID-19, acute lymphoblastic leukemia, and different solid tumors, as well as their relevance as therapeutic tools or targets.

长期以来,人们一直认为IL-7和IL-7R在正常淋巴发育和功能充分的免疫系统中的作用,严重免疫缺陷和淋巴白血病是IL-7-IL-7R轴失调后果的极端例子。在这篇综述中,我们提供了IL-7和IL-7R在健康和疾病中的最新进展(重点关注过去几年)。我们强调了IL-7/IL-7R信号机制的发现,以及IL-7及其受体对白细胞生物学、新冠肺炎、急性淋巴细胞白血病和不同实体瘤的影响,有时是有争议的,以及它们作为治疗工具或靶点的相关性。
{"title":"IL-7 and IL-7R in health and disease: An update through COVID times","authors":"Marta B. Fernandes,&nbsp;João T. Barata","doi":"10.1016/j.jbior.2022.100940","DOIUrl":"10.1016/j.jbior.2022.100940","url":null,"abstract":"<div><p>The role of IL-7 and IL-7R for normal lymphoid development and an adequately functioning immune system has been recognized for long, with severe immune deficiency and lymphoid leukemia as extreme examples of the consequences of deregulation of the IL-7-IL-7R axis. In this review, we provide an update (focusing on the past couple of years) on IL-7 and IL-7R in health and disease. We highlight the findings on IL-7/IL-7R signaling mechanisms and the, sometimes controversial, impact of IL-7 and its receptor on leukocyte biology, COVID-19, acute lymphoblastic leukemia, and different solid tumors, as well as their relevance as therapeutic tools or targets.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100940"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Modified lipidomic profile of cancer-associated small extracellular vesicles facilitates tumorigenic behaviours and contributes to disease progression 癌症相关的细胞外小泡的脂质组学特征的改变促进了致瘤行为并有助于疾病进展
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100935
Jordan Fyfe, Pratibha Malhotra, Marco Falasca

Metabolic rewiring is a key feature of cancer cells, which involves the alteration of amino acids, glucose and lipids to support aggressive cancer phenotypes. Changes in lipid metabolism alter cancer growth characteristics, membrane integrity and signalling pathways. Small extracellular vesicles (sEVs) are membrane-bound vesicles secreted by cells into the extracellular environment, where they participate in cell-to-cell communication. Lipids are involved in the formation and cargo assortment of sEVs, resulting in their selective packaging in these vesicles. Further, sEVs participate in different aspects of cancer development, such as proliferation, migration and angiogenesis. Various lipidomic studies have indicated the enrichment of specific lipids in sEVs derived from tumour cells, which aid in their pathological functioning. This paper summarises how the modified lipid profile of sEVs contributes to carcinogenesis and disease progression.

代谢重组是癌症细胞的一个关键特征,它涉及氨基酸、葡萄糖和脂质的改变,以支持侵袭性癌症表型。脂质代谢的变化改变了癌症的生长特征、膜完整性和信号通路。细胞外小泡(sEV)是细胞分泌到细胞外环境中的膜结合小泡,它们在细胞外参与细胞间的通讯。脂质参与sEV的形成和货物分类,导致它们选择性地包装在这些囊泡中。此外,sEV参与癌症发展的不同方面,如增殖、迁移和血管生成。各种脂质组学研究表明,来源于肿瘤细胞的sEV中富集了特定的脂质,这有助于其病理功能。本文总结了sEV的修饰脂质图谱如何促进致癌和疾病进展。
{"title":"Modified lipidomic profile of cancer-associated small extracellular vesicles facilitates tumorigenic behaviours and contributes to disease progression","authors":"Jordan Fyfe,&nbsp;Pratibha Malhotra,&nbsp;Marco Falasca","doi":"10.1016/j.jbior.2022.100935","DOIUrl":"10.1016/j.jbior.2022.100935","url":null,"abstract":"<div><p>Metabolic rewiring is a key feature of cancer cells, which involves the alteration of amino acids, glucose and lipids to support aggressive cancer phenotypes. Changes in lipid metabolism alter cancer growth characteristics, membrane integrity and signalling pathways. Small extracellular vesicles (sEVs) are membrane-bound vesicles secreted by cells into the extracellular environment, where they participate in cell-to-cell communication. Lipids are involved in the formation and cargo assortment of sEVs, resulting in their selective packaging in these vesicles. Further, sEVs participate in different aspects of cancer development, such as proliferation, migration and angiogenesis. Various lipidomic studies have indicated the enrichment of specific lipids in sEVs derived from tumour cells, which aid in their pathological functioning. This paper summarises how the modified lipid profile of sEVs contributes to carcinogenesis and disease progression.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100935"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9173507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
PIP kinases: A versatile family that demands further therapeutic attention PIP激酶:一个多功能家族,需要进一步的治疗关注
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100939
Alicia Llorente, Gurpreet K. Arora , Shea F. Grenier , Brooke M. Emerling
{"title":"PIP kinases: A versatile family that demands further therapeutic attention","authors":"Alicia Llorente,&nbsp;Gurpreet K. Arora ,&nbsp;Shea F. Grenier ,&nbsp;Brooke M. Emerling","doi":"10.1016/j.jbior.2022.100939","DOIUrl":"10.1016/j.jbior.2022.100939","url":null,"abstract":"","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100939"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992244/pdf/nihms-1864105.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10164153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
From form to function: m6A methylation links mRNA structure to metabolism 从形式到功能:m6A甲基化将mRNA结构与代谢联系起来
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100926
Braulio Martinez De La Cruz, Marousa Darsinou, Antonella Riccio

Reversible N6-methyladenosine (m6A) RNA modification is a posttranscriptional epigenetic modification of the RNA that regulates many key aspects of RNA metabolism and function. In this review, we highlight major recent advances in the field, with special emphasis on the potential link between m6A modifications and RNA structure. We will also discuss the role of RNA methylation of neuronal transcripts, and the emerging evidence of a potential role in RNA transport and local translation in dendrites and axons of transcripts involved in synaptic functions and axon growth.

可逆N6-甲基腺苷(m6A)RNA修饰是RNA的转录后表观遗传学修饰,调节RNA代谢和功能的许多关键方面。在这篇综述中,我们强调了该领域的最新进展,特别强调了m6A修饰和RNA结构之间的潜在联系。我们还将讨论神经元转录物的RNA甲基化的作用,以及参与突触功能和轴突生长的转录物在树突和轴突中的RNA转运和局部翻译中潜在作用的新证据。
{"title":"From form to function: m6A methylation links mRNA structure to metabolism","authors":"Braulio Martinez De La Cruz,&nbsp;Marousa Darsinou,&nbsp;Antonella Riccio","doi":"10.1016/j.jbior.2022.100926","DOIUrl":"https://doi.org/10.1016/j.jbior.2022.100926","url":null,"abstract":"<div><p>Reversible N6-methyladenosine (m<sup>6</sup>A) RNA modification is a posttranscriptional epigenetic modification of the RNA that regulates many key aspects of RNA metabolism and function. In this review, we highlight major recent advances in the field, with special emphasis on the potential link between m<sup>6</sup>A modifications and RNA structure. We will also discuss the role of RNA methylation of neuronal transcripts, and the emerging evidence of a potential role in RNA transport and local translation in dendrites and axons of transcripts involved in synaptic functions and axon growth.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100926"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49812923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Advances in MDS/AML and inositide signalling MDS/AML和肌苷信号传导的研究进展
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2023.100955
Alessia De Stefano , Maria Vittoria Marvi , Antonietta Fazio , James A. McCubrey , Pann-Ghill Suh , Stefano Ratti , Giulia Ramazzotti , Lucia Manzoli , Lucio Cocco , Matilde Y. Follo

Aberrant signaling pathways regulating proliferation and differentiation of hematopoietic stem cells (HSCs) can contribute to disease pathogenesis and neoplastic growth. Phosphoinositides (PIs) are inositol phospholipids that are implicated in the regulation of critical signaling pathways: aberrant regulation of Phospholipase C (PLC) beta1, PLCgamma1 and the PI3K/Akt/mTOR pathway play essential roles in the pathogenesis of Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML).

调节造血干细胞增殖和分化的异常信号通路可能有助于疾病的发病机制和肿瘤的生长。磷脂(PI)是一种与关键信号通路的调节有关的肌醇磷脂:磷脂酶C(PLC)β1、PLCγ1和PI3K/Akt/mTOR通路的异常调节在骨髓增生异常综合征(MDS)和急性髓细胞白血病(AML)的发病机制中起着重要作用。
{"title":"Advances in MDS/AML and inositide signalling","authors":"Alessia De Stefano ,&nbsp;Maria Vittoria Marvi ,&nbsp;Antonietta Fazio ,&nbsp;James A. McCubrey ,&nbsp;Pann-Ghill Suh ,&nbsp;Stefano Ratti ,&nbsp;Giulia Ramazzotti ,&nbsp;Lucia Manzoli ,&nbsp;Lucio Cocco ,&nbsp;Matilde Y. Follo","doi":"10.1016/j.jbior.2023.100955","DOIUrl":"10.1016/j.jbior.2023.100955","url":null,"abstract":"<div><p>Aberrant signaling pathways regulating proliferation and differentiation of hematopoietic stem cells (HSCs) can contribute to disease pathogenesis and neoplastic growth. Phosphoinositides (PIs) are inositol phospholipids that are implicated in the regulation of critical signaling pathways: aberrant regulation of Phospholipase C (PLC) beta1, PLCgamma1 and the PI3K/Akt/mTOR pathway play essential roles in the pathogenesis of Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML).</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100955"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9540971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Phospholipase D and cancer metastasis: A focus on exosomes 磷脂酶D与肿瘤转移:以外泌体为中心
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100924
Alexander Wolf, Emeline Tanguy, Qili Wang, Stéphane Gasman, Nicolas Vitale

In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.

在哺乳动物中,磷脂酶D(PLD)酶涉及6种异构体,其中只有三种具有产生信号脂质磷脂酸(PA)的脂肪酶活性。三十多年来,人们一直认为这种磷脂酶活性有助于癌症的发展,但其确切机制尚待揭示。事实上,使用各种模型,已经提出了改变PLD活性以提高细胞存活率、促进血管生成、增强雷帕霉素耐药性和促进转移。尽管在某种程度上,PA的这种增加是致癌的分子途径是部分已知的,但PA的多效性功能使得很难区分这些简单的信号通路中的哪一个负责这些PLD方面。在这篇综述中,我们将描述PLD1和PLD2产生的PA在外泌体的生物发生、分泌和摄取中的额外潜在贡献。这些细胞外小泡现在被视为携带信息分子的膜载体,这些信息分子能够改变接收细胞在远离原始肿瘤处的命运,以利于转移的归巢。我们将讨论如何更好地理解PLD的这些复杂作用。
{"title":"Phospholipase D and cancer metastasis: A focus on exosomes","authors":"Alexander Wolf,&nbsp;Emeline Tanguy,&nbsp;Qili Wang,&nbsp;Stéphane Gasman,&nbsp;Nicolas Vitale","doi":"10.1016/j.jbior.2022.100924","DOIUrl":"10.1016/j.jbior.2022.100924","url":null,"abstract":"<div><p>In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100924"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9173474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Key to photograph of participants 参加者照片的钥匙
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100952
{"title":"Key to photograph of participants","authors":"","doi":"10.1016/j.jbior.2022.100952","DOIUrl":"10.1016/j.jbior.2022.100952","url":null,"abstract":"","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100952"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10422826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AP-4 loss in CRISPR-edited zebrafish affects early embryo development crispr编辑的斑马鱼AP-4缺失影响早期胚胎发育
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/j.jbior.2022.100945
Olivia G. Pembridge , Natalie S. Wallace , Thomas P. Clements , Lauren P. Jackson

Mutations in the heterotetrametric adaptor protein 4 (AP-4; ε/β4/μ4/σ4 subunits) membrane trafficking coat complex lead to complex neurological disorders characterized by spastic paraplegia, microcephaly, and intellectual disabilities. Understanding molecular mechanisms underlying these disorders continues to emerge with recent identification of an essential autophagy protein, ATG9A, as an AP-4 cargo. Significant progress has been made uncovering AP-4 function in cell culture and patient-derived cell lines, and ATG9A trafficking by AP-4 is considered a potential target for gene therapy approaches. In contrast, understanding how AP-4 trafficking affects development and function at the organismal level has long been hindered by loss of conserved AP-4 genes in key model systems (S. cerevisiae, C. elegans, D. melanogaster). However, zebrafish (Danio rerio) have retained AP-4 and can serve as an important model system for studying both the nervous system and overall development. We undertook gene editing in zebrafish using a CRISPR-ExoCas9 knockout system to determine how loss of single AP-4, or its accessory protein tepsin, genes affect embryo development 24 h post-fertilization (hpf). Single gene-edited embryos display abnormal head morphology and neural necrosis. We further conducted the first exploration of how AP-4 single gene knockouts in zebrafish embryos affect expression levels and patterns of two autophagy genes, atg9a and map1lc3b. This work suggests zebrafish may be further adapted and developed as a tool to uncover AP-4 function in membrane trafficking and autophagy in the context of a model organism.

异四向接头蛋白4(AP-4;ε/β4/μ4/σ4亚基)膜运输外壳复合体的突变会导致以痉挛性截瘫、小头畸形和智力残疾为特征的复杂神经系统疾病。随着最近一种重要的自噬蛋白ATG9A被鉴定为AP-4货物,对这些疾病的分子机制的理解不断涌现。在揭示AP-4在细胞培养和患者来源的细胞系中的功能方面取得了重大进展,AP-4转运ATG9A被认为是基因治疗方法的潜在靶点。相比之下,长期以来,由于关键模型系统(酿酒酵母、秀丽隐杆线虫、黑腹果蝇)中保守的AP-4基因的缺失,理解AP-4运输如何在生物体水平上影响发育和功能一直受到阻碍。然而,斑马鱼(Danio rerio)保留了AP-4,可以作为研究神经系统和整体发育的重要模型系统。我们使用CRISPR-ExoCas9敲除系统对斑马鱼进行基因编辑,以确定单个AP-4或其辅助蛋白tepsin基因的缺失如何影响受精后24小时的胚胎发育(hpf)。单基因编辑的胚胎表现出异常的头部形态和神经坏死。我们进一步对斑马鱼胚胎中AP-4单基因敲除如何影响两个自噬基因atg9a和map1lc3b的表达水平和模式进行了首次探索。这项工作表明,斑马鱼可能会被进一步适应和开发,作为一种工具,在模式生物的背景下揭示AP-4在膜运输和自噬中的功能。
{"title":"AP-4 loss in CRISPR-edited zebrafish affects early embryo development","authors":"Olivia G. Pembridge ,&nbsp;Natalie S. Wallace ,&nbsp;Thomas P. Clements ,&nbsp;Lauren P. Jackson","doi":"10.1016/j.jbior.2022.100945","DOIUrl":"10.1016/j.jbior.2022.100945","url":null,"abstract":"<div><p>Mutations in the heterotetrametric adaptor protein 4 (AP-4; ε/β4/μ4/σ4 subunits) membrane trafficking coat complex lead to complex neurological disorders characterized by spastic paraplegia, microcephaly, and intellectual disabilities. Understanding molecular mechanisms underlying these disorders continues to emerge with recent identification of an essential autophagy protein, ATG9A, as an AP-4 cargo. Significant progress has been made uncovering AP-4 function in cell culture and patient-derived cell lines, and ATG9A trafficking by AP-4 is considered a potential target for gene therapy approaches. In contrast, understanding how AP-4 trafficking affects development and function at the organismal level has long been hindered by loss of conserved AP-4 genes in key model systems (<em>S. cerevisiae</em>, <em>C. elegans</em>, <em>D. melanogaster</em>). However, zebrafish (<em>Danio rerio</em>) have retained AP-4 and can serve as an important model system for studying both the nervous system and overall development. We undertook gene editing in zebrafish using a CRISPR-ExoCas9 knockout system to determine how loss of single AP-4, or its accessory protein tepsin, genes affect embryo development 24 h post-fertilization (hpf). Single gene-edited embryos display abnormal head morphology and neural necrosis. We further conducted the first exploration of how AP-4 single gene knockouts in zebrafish embryos affect expression levels and patterns of two autophagy genes, <em>atg9a</em> and <em>map1lc3b</em>. This work suggests zebrafish may be further adapted and developed as a tool to uncover AP-4 function in membrane trafficking and autophagy in the context of a model organism.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"87 ","pages":"Article 100945"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Advances in biological regulation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1