Colon cancer is the second leading cause of cancer death. With over 153,000 new CRC cases predicted, it is the third most commonly diagnosed cancer. Early detection can lead to curative surgical intervention, but recurrent and late metastatic disease is frequently treated with chemotherapeutic options based on induction of DNA damage. Understanding mechanism(s) that regulate DNA damage repair within colon tumor cells is essential to developing effective therapeutic strategies. The Notch signaling pathway is known to participate in normal colon development and we have recently described a pathway by which Notch-1, Notch-3 and Smad may regulated EMT and stem-like properties in colon tumor cells, promoting tumorigenesis. Little is known about how Notch may regulate drug resistance. In this study, we used shRNA to generate colon tumor cells with loss of Notch-3 expression. These cells exhibited reduced expression of the base-excision repair proteins PARP1 and APE1, along with increased sensitivity to ara-c and cisplatin. These data point to a pathway in which Notch-3 signaling can regulate DNA repair within colon tumor cells and suggests that targeting Notch-3 may be an effective approach to rendering colon tumors sensitive to chemotherapeutic drugs.