首页 > 最新文献

Analysis & sensing最新文献

英文 中文
Carbon Nanotubes and Their Composites for Flexible Electrochemical Biosensors
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-10-18 DOI: 10.1002/anse.202400038
Luana Gazzato, Marco Frasconi

Flexible biosensors play a crucial role for healthcare management and disease diagnosis. Electrochemical biosensors have attracted significant attention for wearable sensing applications owing to their numerous advantages, including high sensitivity and selectivity, inherent miniaturization and rapid response times. Challenges lie in the development of highly conductive and flexible electrodes that can be integrated with biorecognition components to engineer selective biosensor interfaces. Carbon nanotubes (CNTs) hold significant promise as materials for wearable flexible sensor fabrication. This review highlights recent strategies for fabricating conductive and flexible electrodes, whether in the form of films or fibers, based on CNTs and their composites. Additionally, the review explores emerging biosensing applications, including flexible sensors for the direct electrochemical detection of biomarkers, sensors functionalized with enzymes, antibodies, or DNA, and sensors interfaced with cells to monitor transient biochemical signals.

{"title":"Carbon Nanotubes and Their Composites for Flexible Electrochemical Biosensors","authors":"Luana Gazzato,&nbsp;Marco Frasconi","doi":"10.1002/anse.202400038","DOIUrl":"https://doi.org/10.1002/anse.202400038","url":null,"abstract":"<p>Flexible biosensors play a crucial role for healthcare management and disease diagnosis. Electrochemical biosensors have attracted significant attention for wearable sensing applications owing to their numerous advantages, including high sensitivity and selectivity, inherent miniaturization and rapid response times. Challenges lie in the development of highly conductive and flexible electrodes that can be integrated with biorecognition components to engineer selective biosensor interfaces. Carbon nanotubes (CNTs) hold significant promise as materials for wearable flexible sensor fabrication. This review highlights recent strategies for fabricating conductive and flexible electrodes, whether in the form of films or fibers, based on CNTs and their composites. Additionally, the review explores emerging biosensing applications, including flexible sensors for the direct electrochemical detection of biomarkers, sensors functionalized with enzymes, antibodies, or DNA, and sensors interfaced with cells to monitor transient biochemical signals.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminescent Terbium Probe for Time-Resolved FRET and NSET Binding Assays with Quantum Dots and Gold Nanoparticles
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-19 DOI: 10.1002/anse.202400059
P. Iyanu Diriwari, N. Connor Payne, Ralph Mazitschek, Thibault Gallavardin, Niko Hildebrandt

Time-gated or time-resolved FRET (TR-FRET) assays are important tools in biosensing, bioimaging, drug screening, and molecular diagnostics. Efficient TR-FRET assays require stable lanthanide complexes with high absorption cross sections, high quantum yields, and long photoluminescence lifetimes. Owing to their challenging synthesis, such complexes are relatively rare and new components are of potential interest when developing TR-FRET probes. Here, we evaluate the recently developed Tb complex CoraFluor-1 concerning its analytical performance in terbium-to-quantum dot FRET and terbium-to-gold nanoparticle NSET assays using the prototypical biological recognition system of streptavidin and biotin. Biological binding was quantifiable at sub-picomolar concentrations in small sample volumes, with broad applicability demonstrated across three commercial fluorescence plate readers used for time-resolved, spectrally-resolved, and clinical bioanalysis. Overall, CoraFluor-1 provided excellent analytical performance as both FRET and NSET donor, validating its potential for developing new TR-FRET probes for biosensing and bioimaging.

{"title":"Luminescent Terbium Probe for Time-Resolved FRET and NSET Binding Assays with Quantum Dots and Gold Nanoparticles","authors":"P. Iyanu Diriwari,&nbsp;N. Connor Payne,&nbsp;Ralph Mazitschek,&nbsp;Thibault Gallavardin,&nbsp;Niko Hildebrandt","doi":"10.1002/anse.202400059","DOIUrl":"https://doi.org/10.1002/anse.202400059","url":null,"abstract":"<p>Time-gated or time-resolved FRET (TR-FRET) assays are important tools in biosensing, bioimaging, drug screening, and molecular diagnostics. Efficient TR-FRET assays require stable lanthanide complexes with high absorption cross sections, high quantum yields, and long photoluminescence lifetimes. Owing to their challenging synthesis, such complexes are relatively rare and new components are of potential interest when developing TR-FRET probes. Here, we evaluate the recently developed Tb complex CoraFluor-1 concerning its analytical performance in terbium-to-quantum dot FRET and terbium-to-gold nanoparticle NSET assays using the prototypical biological recognition system of streptavidin and biotin. Biological binding was quantifiable at sub-picomolar concentrations in small sample volumes, with broad applicability demonstrated across three commercial fluorescence plate readers used for time-resolved, spectrally-resolved, and clinical bioanalysis. Overall, CoraFluor-1 provided excellent analytical performance as both FRET and NSET donor, validating its potential for developing new TR-FRET probes for biosensing and bioimaging.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper Phthalocyanine for Designing a Highly Selective and Disposable Electrochemical Volatile Organic Compound (VOC) Sensor
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-17 DOI: 10.1002/anse.202400033
Mohammad Shakhawat Hossain, Nirmita Roy, Prasanta Kumar Biswas, Manoj Ram, Arash Takshi

Formic acid (FA) is one of the very important organic acids that has been widely used in various industries. The highly corrosive FA can have severe adverse effects on the surrounding environment. Here, we developed an electrochemical sensor that utilizes the material properties of multi-walled carbon nanotubes (MWCNTs), and copper phthalocyanine (CuPc) for the real-time detection of FA gas. The response of FA has been compared with the responses of 9 common volatile organic compounds (VOCs). The chronoamperometry (CA) results revealed a high selectivity towards FA by showing an increase in the sensor current by about 25 %, in contrast to the decrease of the current in response to the other VOCs. The sensitivity of the CuPc device to FA was calculated to be 38.85 mAM−1. Material characterization (SEM, EDX, FTIR, Raman, and UV-vis) also strongly suggests a protonation mechanism caused by the carboxylic acid group, which enhances the electrical conductivity.

{"title":"Copper Phthalocyanine for Designing a Highly Selective and Disposable Electrochemical Volatile Organic Compound (VOC) Sensor","authors":"Mohammad Shakhawat Hossain,&nbsp;Nirmita Roy,&nbsp;Prasanta Kumar Biswas,&nbsp;Manoj Ram,&nbsp;Arash Takshi","doi":"10.1002/anse.202400033","DOIUrl":"https://doi.org/10.1002/anse.202400033","url":null,"abstract":"<p>Formic acid (FA) is one of the very important organic acids that has been widely used in various industries. The highly corrosive FA can have severe adverse effects on the surrounding environment. Here, we developed an electrochemical sensor that utilizes the material properties of multi-walled carbon nanotubes (MWCNTs), and copper phthalocyanine (CuPc) for the real-time detection of FA gas. The response of FA has been compared with the responses of 9 common volatile organic compounds (VOCs). The chronoamperometry (CA) results revealed a high selectivity towards FA by showing an increase in the sensor current by about 25 %, in contrast to the decrease of the current in response to the other VOCs. The sensitivity of the CuPc device to FA was calculated to be 38.85 mAM<sup>−1</sup>. Material characterization (SEM, EDX, FTIR, Raman, and UV-vis) also strongly suggests a protonation mechanism caused by the carboxylic acid group, which enhances the electrical conductivity.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Anal. Sens. 5/2024) 封面:Anal.5/2024)
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-13 DOI: 10.1002/anse.202480501

{"title":"Front Cover: Anal. Sens. 5/2024)","authors":"","doi":"10.1002/anse.202480501","DOIUrl":"https://doi.org/10.1002/anse.202480501","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202480501","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogeneous Catalysts for Hydrogenative PHIP Used in Biomedical Applications
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-15 DOI: 10.1002/anse.202400044
Dr. Mai T. Huynh, Prof. Zoltan Kovacs

At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H2) induced polarization (PHIP), can generate sufficiently high liquid state 13C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H2 to create non-equilibrium spin populations. In hydrogenative PHIP, para-H2 is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst. The hydrogenation catalyst plays a crucial role in converting the singlet spin order of para-H2 into detectable nuclear polarization. Currently, rhodium(I) bisphosphine complexes are the most widely employed catalysts for PHIP, capable of catalyzing the addition of para-H2 to unsaturated precursors in organic solvents or aqueous media, depending on the ligand. Chiral catalysts enable the stereoselective production of hyperpolarized substrates. Ruthenium(II) piano stool complexes are capable of trans addition and are used to generate hyperpolarized fumarate. However, these catalysts systems are not optimal, and the greatest source of nuclear spin polarization loss is attributed to the mixing of singlet and triplet states of the protons derived from the para-H2 during the hydrogenation process. Hence, future efforts should focus on enhancing the efficiency and kinetics of these catalysts.

{"title":"Homogeneous Catalysts for Hydrogenative PHIP Used in Biomedical Applications","authors":"Dr. Mai T. Huynh,&nbsp;Prof. Zoltan Kovacs","doi":"10.1002/anse.202400044","DOIUrl":"https://doi.org/10.1002/anse.202400044","url":null,"abstract":"<p>At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H<sub>2</sub>) induced polarization (PHIP), can generate sufficiently high liquid state <sup>13</sup>C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H<sub>2</sub> to create non-equilibrium spin populations. In hydrogenative PHIP, para-H<sub>2</sub> is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst. The hydrogenation catalyst plays a crucial role in converting the singlet spin order of para-H<sub>2</sub> into detectable nuclear polarization. Currently, rhodium(I) bisphosphine complexes are the most widely employed catalysts for PHIP, capable of catalyzing the addition of para-H<sub>2</sub> to unsaturated precursors in organic solvents or aqueous media, depending on the ligand. Chiral catalysts enable the stereoselective production of hyperpolarized substrates. Ruthenium(II) piano stool complexes are capable of <i>trans</i> addition and are used to generate hyperpolarized fumarate. However, these catalysts systems are not optimal, and the greatest source of nuclear spin polarization loss is attributed to the mixing of singlet and triplet states of the protons derived from the para-H<sub>2</sub> during the hydrogenation process. Hence, future efforts should focus on enhancing the efficiency and kinetics of these catalysts.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Promise of Carbon Nano-Onions: Preparation, Characterization and Their Application in Electrochemical Sensing
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-14 DOI: 10.1002/anse.202400035
Hector Daniel Almeida Gonzalez, Janser Hernandez Ojeda, Angel Luis Corcho-Valdés, Ivan Padron-Ramirez, Marina Perez Cruz, Claudia Iriarte-Mesa, Luis Felipe Desdin-Garcia, Pierangelo Gobbo, Manuel Antuch

Carbon nano-onions (CNOs) promise to improve the range of applications of carbon materials for electroanalytical applications. In this review, we explore the synthesis, characterization, and electrochemical applications of CNOs. CNO-based sensors present impressive features, including low detection limits in the femtogram per milliliter range, a broad linear detection range spanning up to 7 orders of magnitude, exceptional selectivity, reproducibility, and stability. Synthetic methods and characterization techniques for CNOs were thoroughly examined, shedding light on their pivotal role in biosensing technologies. Comparative analyses with other carbon materials underscore CNOs′ competitive performance, either surpassing or matching many counterparts. Despite their relatively recent integration in biosensing applications, CNOs exhibit comparable or superior results concerning other carbon-based materials. Indeed, the incorporation of CNOs into hybrid nanocomposites has shown promising outcomes, indicating a synergistic potential for future advancements in biosensing technologies. Our review provides a broad approach to the application of CNOs to the field, with emphasis on breakthroughs of the last 5 years.

{"title":"The Promise of Carbon Nano-Onions: Preparation, Characterization and Their Application in Electrochemical Sensing","authors":"Hector Daniel Almeida Gonzalez,&nbsp;Janser Hernandez Ojeda,&nbsp;Angel Luis Corcho-Valdés,&nbsp;Ivan Padron-Ramirez,&nbsp;Marina Perez Cruz,&nbsp;Claudia Iriarte-Mesa,&nbsp;Luis Felipe Desdin-Garcia,&nbsp;Pierangelo Gobbo,&nbsp;Manuel Antuch","doi":"10.1002/anse.202400035","DOIUrl":"https://doi.org/10.1002/anse.202400035","url":null,"abstract":"<p>Carbon nano-onions (CNOs) promise to improve the range of applications of carbon materials for electroanalytical applications. In this review, we explore the synthesis, characterization, and electrochemical applications of CNOs. CNO-based sensors present impressive features, including low detection limits in the femtogram per milliliter range, a broad linear detection range spanning up to 7 orders of magnitude, exceptional selectivity, reproducibility, and stability. Synthetic methods and characterization techniques for CNOs were thoroughly examined, shedding light on their pivotal role in biosensing technologies. Comparative analyses with other carbon materials underscore CNOs′ competitive performance, either surpassing or matching many counterparts. Despite their relatively recent integration in biosensing applications, CNOs exhibit comparable or superior results concerning other carbon-based materials. Indeed, the incorporation of CNOs into hybrid nanocomposites has shown promising outcomes, indicating a synergistic potential for future advancements in biosensing technologies. Our review provides a broad approach to the application of CNOs to the field, with emphasis on breakthroughs of the last 5 years.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioneering Sensing Technologies Using Borophene-Based Composite/Hybrid Electrochemical Biosensors for Health Monitoring: A Perspective 利用硼吩基复合/混合电化学生物传感器进行健康监测的先锋传感技术:透视
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-07 DOI: 10.1002/anse.202400034
Shahzad Ahmed, Arshiya Ansari, Syed Kashif Ali, Bhagyashree R. Patil, Farhana Riyaz, Afzal Khan, Pranay Ranjan

Biosensors are analytical tools that integrate a biological element with a physicochemical detector in order to quantify the existence or concentration of chemicals, biomolecules, or other biological elements for human health monitoring purposes. Electrochemical techniques for biological analyte detection include the use of electrochemical sensors to identify and quantify the existence and concentration of biological molecules. These techniques are often used because of their high sensitivity, specificity, quick reaction time, and the possibility of being made smaller in size, but still, the research problem in electrochemical-based biosensing largely revolves around improving biosensors′ sensitivity, selectivity, stability, and response time. Borophene, an intriguing and novel substance within the domain of two-dimensional (2D) materials, emerges as a highly promising protagonist in the continuous and dynamic history of nanoscience and nanotechnology. Borophene, characterized by its distinctive electronic, mechanical, and thermal properties, enthralls scientists due to its atomic structure consisting exclusively of boron atoms organized in a honeycomb lattice. In recent years, borophene hybrids and composites have emerged as potentially fruitful avenues for expanding their utility in numerous fields and improving their properties. In addition, borophene and its hybrid systems hold significant potential to overcome the limitations of current electrochemical-based biosensors. By leveraging their unique properties—such as high surface area, chemical versatility, and mechanical strength—these materials can improve biosensors′ limitations. Moreover, the integration of borophene with other materials can further optimize performance, paving the way for advanced and practical biosensing solutions. This perspective presents a synopsis of recent developments in biosensing composites and hybrids based on borophene, including polymers and other nanomaterials. In addition, we emphasized the remarkable characteristics of borophene hybrids, which permit the detection of biological analytes such as proteins, nucleic acids, and small molecules in a sensitive and selective manner. Additionally, a summary of the computational investigations into analyte detection utilizing borophene-based systems has been provided. In a nutshell, we discussed the challenges and future directions in the field, outlining opportunities for further innovation and optimization of borophene-based biosensing platforms.

生物传感器是一种分析工具,它将生物元素与理化检测器结合在一起,以量化化学品、生物分子或其他生物元素的存在或浓度,从而达到监测人类健康的目的。用于生物分析物检测的电化学技术包括使用电化学传感器来识别和量化生物分子的存在和浓度。这些技术因其灵敏度高、特异性强、反应时间快以及体积可以做得更小而经常被使用,但基于电化学的生物传感的研究问题仍主要围绕提高生物传感器的灵敏度、选择性、稳定性和反应时间展开。硼吩是二维(2D)材料领域中一种引人入胜的新型物质,是纳米科学和纳米技术发展史上极具潜力的主角。硼铼具有独特的电子、机械和热特性,其原子结构完全由蜂窝晶格中的硼原子组成,这使科学家们为之着迷。近年来,硼吩混 合物和复合材料的出现为扩大其在众多领域的应用和改善其性能提供了潜在的富有成效的途径。此外,硼吩和其混合系统在克服目前基于电化学的生物传感器的局限性方面具有巨大潜力。这些材料利用其独特的性能,如高比表面积、化学多功能性和机械强度,可以改善生物传感器的局限性。此外,硼吩与其他材料的整合可以进一步优化性能,为先进实用的生物传感解决方案铺平道路。本视角概述了基于硼吩的生物传感复合材料和混合材料(包括聚合物和其他纳米材料)的最新发展。此外,我们还强调了硼吩混合物的显著特点,它可以灵敏、选择性地检测蛋白质、核酸和小分子等生物分析物。此外,我们还总结了利用硼吩基系统检测分析物的计算研究。总之,我们讨论了该领域的挑战和未来方向,概述了进一步创新和优化基于硼吩的生物传感平台的机会。
{"title":"Pioneering Sensing Technologies Using Borophene-Based Composite/Hybrid Electrochemical Biosensors for Health Monitoring: A Perspective","authors":"Shahzad Ahmed,&nbsp;Arshiya Ansari,&nbsp;Syed Kashif Ali,&nbsp;Bhagyashree R. Patil,&nbsp;Farhana Riyaz,&nbsp;Afzal Khan,&nbsp;Pranay Ranjan","doi":"10.1002/anse.202400034","DOIUrl":"https://doi.org/10.1002/anse.202400034","url":null,"abstract":"<p>Biosensors are analytical tools that integrate a biological element with a physicochemical detector in order to quantify the existence or concentration of chemicals, biomolecules, or other biological elements for human health monitoring purposes. Electrochemical techniques for biological analyte detection include the use of electrochemical sensors to identify and quantify the existence and concentration of biological molecules. These techniques are often used because of their high sensitivity, specificity, quick reaction time, and the possibility of being made smaller in size, but still, the research problem in electrochemical-based biosensing largely revolves around improving biosensors′ sensitivity, selectivity, stability, and response time. Borophene, an intriguing and novel substance within the domain of two-dimensional (2D) materials, emerges as a highly promising protagonist in the continuous and dynamic history of nanoscience and nanotechnology. Borophene, characterized by its distinctive electronic, mechanical, and thermal properties, enthralls scientists due to its atomic structure consisting exclusively of boron atoms organized in a honeycomb lattice. In recent years, borophene hybrids and composites have emerged as potentially fruitful avenues for expanding their utility in numerous fields and improving their properties. In addition, borophene and its hybrid systems hold significant potential to overcome the limitations of current electrochemical-based biosensors. By leveraging their unique properties—such as high surface area, chemical versatility, and mechanical strength—these materials can improve biosensors′ limitations. Moreover, the integration of borophene with other materials can further optimize performance, paving the way for advanced and practical biosensing solutions. This perspective presents a synopsis of recent developments in biosensing composites and hybrids based on borophene, including polymers and other nanomaterials. In addition, we emphasized the remarkable characteristics of borophene hybrids, which permit the detection of biological analytes such as proteins, nucleic acids, and small molecules in a sensitive and selective manner. Additionally, a summary of the computational investigations into analyte detection utilizing borophene-based systems has been provided. In a nutshell, we discussed the challenges and future directions in the field, outlining opportunities for further innovation and optimization of borophene-based biosensing platforms.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust G-Quadruplex Dimer-Guided Transmembrane DNA Nanovehicles for Targeted Payload Delivery
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-06 DOI: 10.1002/anse.202400048
Chengbin Liu, Qiwei Wang, Prof. Lili Shi, Prof. Tao Li

Here we report a robust G-quadruplex (G4) dimer-guided transmembrane DNA nanovehicle for targeted payload delivery, based on dimeric G4-proximized aptamers that efficiently target transferrin receptors (TfR) over-expressed on cancer cell surface. It enables the cancer-specific delivery of fluorescent G4 ligands and therapeutic drugs for cellular imaging and treatment.

{"title":"Robust G-Quadruplex Dimer-Guided Transmembrane DNA Nanovehicles for Targeted Payload Delivery","authors":"Chengbin Liu,&nbsp;Qiwei Wang,&nbsp;Prof. Lili Shi,&nbsp;Prof. Tao Li","doi":"10.1002/anse.202400048","DOIUrl":"https://doi.org/10.1002/anse.202400048","url":null,"abstract":"<p>Here we report a robust G-quadruplex (G4) dimer-guided transmembrane DNA nanovehicle for targeted payload delivery, based on dimeric G4-proximized aptamers that efficiently target transferrin receptors (TfR) over-expressed on cancer cell surface. It enables the cancer-specific delivery of fluorescent G4 ligands and therapeutic drugs for cellular imaging and treatment.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signal Amplification by Reversible Exchange and its Translation to Hyperpolarized Magnetic Resonance Imaging in Biomedicine 可逆交换的信号放大及其在生物医学超极化磁共振成像中的应用
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-05 DOI: 10.1002/anse.202400039
Dr. Andreas B. Schmidt, Prof. Dr. Eduard Y. Chekmenev, Henri de Maissin, Philipp R. Groß, Stefan Petersen, Luca Nagel, Prof. Dr. Franz Schilling, Dr. Ilai Schwartz, Prof. Dr. Thomas Reinheckel, Prof. Dr. Jan-Bernd Hövener, Dr. Stephan Knecht

Hyperpolarized magnetic resonance imaging (HP-MRI) has emerged as a powerful tool in molecular imaging, providing in vivo, real-time insights into metabolic pathways without ionizing radiation. Signal Amplification by Reversible Exchange (SABRE) represents a promising hyperpolarization technique, leveraging parahydrogen to enhance MRI signals. In this concept, we delineate the evolution of SABRE and landmark papers that have enabled us recently to produce biocompatible and low-cost hyperpolarized pyruvate within minutes for in vivo metabolic imaging, showcasing SABRE′s potential for preclinical and near-future clinical settings. Looking ahead, with ongoing efforts focused on optimizing polarizer technology and expanding applications beyond pyruvate, we envision SABRE as a key player in the research and application of HP-MRI due to its simplicity and throughput.

超极化磁共振成像(HP-MRI)已成为分子成像领域的一种强大工具,可在不产生电离辐射的情况下实时深入了解体内代谢途径。可逆交换信号放大技术(SABRE)是一种前景广阔的超极化技术,它利用对氢增强磁共振成像信号。在这一概念中,我们描述了 SABRE 的演变过程和具有里程碑意义的论文,这些论文使我们最近能够在几分钟内生产出生物相容性和低成本的超极化丙酮酸,用于体内代谢成像,展示了 SABRE 在临床前和不久的将来临床应用中的潜力。展望未来,SABRE 将继续致力于优化偏振片技术,并将应用扩展到丙酮酸盐以外的领域。
{"title":"Signal Amplification by Reversible Exchange and its Translation to Hyperpolarized Magnetic Resonance Imaging in Biomedicine","authors":"Dr. Andreas B. Schmidt,&nbsp;Prof. Dr. Eduard Y. Chekmenev,&nbsp;Henri de Maissin,&nbsp;Philipp R. Groß,&nbsp;Stefan Petersen,&nbsp;Luca Nagel,&nbsp;Prof. Dr. Franz Schilling,&nbsp;Dr. Ilai Schwartz,&nbsp;Prof. Dr. Thomas Reinheckel,&nbsp;Prof. Dr. Jan-Bernd Hövener,&nbsp;Dr. Stephan Knecht","doi":"10.1002/anse.202400039","DOIUrl":"https://doi.org/10.1002/anse.202400039","url":null,"abstract":"<p>Hyperpolarized magnetic resonance imaging (HP-MRI) has emerged as a powerful tool in molecular imaging, providing <i>in vivo</i>, real-time insights into metabolic pathways without ionizing radiation. Signal Amplification by Reversible Exchange (SABRE) represents a promising hyperpolarization technique, leveraging parahydrogen to enhance MRI signals. In this concept, we delineate the evolution of SABRE and landmark papers that have enabled us recently to produce biocompatible and low-cost hyperpolarized pyruvate within minutes for <i>in vivo</i> metabolic imaging, showcasing SABRE′s potential for preclinical and near-future clinical settings. Looking ahead, with ongoing efforts focused on optimizing polarizer technology and expanding applications beyond pyruvate, we envision SABRE as a key player in the research and application of HP-MRI due to its simplicity and throughput.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: (Anal. Sens. 4/2024) 封面:(Anal. Sens. 4/2024)
IF 3.4 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-07-16 DOI: 10.1002/anse.202480401

{"title":"Front Cover: (Anal. Sens. 4/2024)","authors":"","doi":"10.1002/anse.202480401","DOIUrl":"https://doi.org/10.1002/anse.202480401","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202480401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Analysis & sensing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1