Pub Date : 2023-08-31DOI: 10.1186/s42523-023-00261-9
Maurielle Eke, Kévin Tougeron, Alisa Hamidovic, Leonard S Ngamo Tinkeu, Thierry Hance, François Renoz
Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.
{"title":"Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges.","authors":"Maurielle Eke, Kévin Tougeron, Alisa Hamidovic, Leonard S Ngamo Tinkeu, Thierry Hance, François Renoz","doi":"10.1186/s42523-023-00261-9","DOIUrl":"10.1186/s42523-023-00261-9","url":null,"abstract":"<p><p>Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10499204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.1186/s42523-023-00258-4
Katrine Wegener Tams, Inge Larsen, Julie Elvekjær Hansen, Henrik Spiegelhauer, Alexander Damm Strøm-Hansen, Sophia Rasmussen, Anna Cäcilia Ingham, Lajos Kalmar, Iain Robert Louis Kean, Øystein Angen, Mark A Holmes, Karl Pedersen, Lars Jelsbak, Anders Folkesson, Anders Rhod Larsen, Mikael Lenz Strube
Antibiotics are widely used in pig farming across the world which has led to concerns about the potential impact on human health through the selection of antibiotic resistant pathogenic bacteria. This worry has resulted in the development of a production scheme known as pigs Raised Without Antibiotics (RWA), in which pigs are produced in commercial farms, but are ear-tagged as RWA until slaughter unless they receive treatment, thus allowing the farmer to sell the pigs either as premium priced RWA or as conventional meat. Development of antibiotic resistance in pig farming has been studied in national surveys of antibiotic usage and resistance, as well as in experimental studies of groups of pigs, but not in individual pigs followed longitudinally in a commercial pig farm. In this study, a cohort of RWA designated pigs were sampled at 10 time points from birth until slaughter along with pen-mates treated with antibiotics at the same farm. From these samples, the microbiome, determined using 16S sequencing, and the resistome, as determined using qPCR for 82 resistance genes, was investigated, allowing us to examine the difference between RWA pigs and antibiotic treated pigs. We furthermore included 176 additional pigs from six different RWA farms which were sampled at the slaughterhouse as an endpoint to substantiate the cohort as well as for evaluation of intra-farm variability. The results showed a clear effect of age in both the microbiome and resistome composition from early life up until slaughter. As a function of antibiotic treatment, however, we observed a small but significant divergence between treated and untreated animals in their microbiome composition immediately following treatment, which disappeared before 8 weeks of age. The effect on the resistome was evident and an effect of treatment could still be detected at week 8. In animals sampled at the slaughterhouse, we observed no difference in the microbiome or the resistome as a result of treatment status but did see a strong effect of farm origin. Network analysis of co-occurrence of microbiome and resistome data suggested that some resistance genes may be transferred through mobile genetic elements, so we used Hi-C metagenomics on a subset of samples to investigate this. We conclude that antibiotic treatment has a differential effect on the microbiome vs. the resistome and that although resistance gene load is increased by antibiotic treatment load, this effect disappears before slaughter. More studies are needed to elucidate the optimal way to rear pigs without antibiotics.
{"title":"The effects of antibiotic use on the dynamics of the microbiome and resistome in pigs.","authors":"Katrine Wegener Tams, Inge Larsen, Julie Elvekjær Hansen, Henrik Spiegelhauer, Alexander Damm Strøm-Hansen, Sophia Rasmussen, Anna Cäcilia Ingham, Lajos Kalmar, Iain Robert Louis Kean, Øystein Angen, Mark A Holmes, Karl Pedersen, Lars Jelsbak, Anders Folkesson, Anders Rhod Larsen, Mikael Lenz Strube","doi":"10.1186/s42523-023-00258-4","DOIUrl":"10.1186/s42523-023-00258-4","url":null,"abstract":"<p><p>Antibiotics are widely used in pig farming across the world which has led to concerns about the potential impact on human health through the selection of antibiotic resistant pathogenic bacteria. This worry has resulted in the development of a production scheme known as pigs Raised Without Antibiotics (RWA), in which pigs are produced in commercial farms, but are ear-tagged as RWA until slaughter unless they receive treatment, thus allowing the farmer to sell the pigs either as premium priced RWA or as conventional meat. Development of antibiotic resistance in pig farming has been studied in national surveys of antibiotic usage and resistance, as well as in experimental studies of groups of pigs, but not in individual pigs followed longitudinally in a commercial pig farm. In this study, a cohort of RWA designated pigs were sampled at 10 time points from birth until slaughter along with pen-mates treated with antibiotics at the same farm. From these samples, the microbiome, determined using 16S sequencing, and the resistome, as determined using qPCR for 82 resistance genes, was investigated, allowing us to examine the difference between RWA pigs and antibiotic treated pigs. We furthermore included 176 additional pigs from six different RWA farms which were sampled at the slaughterhouse as an endpoint to substantiate the cohort as well as for evaluation of intra-farm variability. The results showed a clear effect of age in both the microbiome and resistome composition from early life up until slaughter. As a function of antibiotic treatment, however, we observed a small but significant divergence between treated and untreated animals in their microbiome composition immediately following treatment, which disappeared before 8 weeks of age. The effect on the resistome was evident and an effect of treatment could still be detected at week 8. In animals sampled at the slaughterhouse, we observed no difference in the microbiome or the resistome as a result of treatment status but did see a strong effect of farm origin. Network analysis of co-occurrence of microbiome and resistome data suggested that some resistance genes may be transferred through mobile genetic elements, so we used Hi-C metagenomics on a subset of samples to investigate this. We conclude that antibiotic treatment has a differential effect on the microbiome vs. the resistome and that although resistance gene load is increased by antibiotic treatment load, this effect disappears before slaughter. More studies are needed to elucidate the optimal way to rear pigs without antibiotics.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10041354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.1186/s42523-023-00254-8
Michael J Sieler, Colleen E Al-Samarrie, Kristin D Kasschau, Zoltan M Varga, Michael L Kent, Thomas J Sharpton
Background: Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan.
Results: Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen, Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds to M. chelonae exposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected by M. chelonae.
Conclusions: Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.
{"title":"Disentangling the link between zebrafish diet, gut microbiome succession, and Mycobacterium chelonae infection.","authors":"Michael J Sieler, Colleen E Al-Samarrie, Kristin D Kasschau, Zoltan M Varga, Michael L Kent, Thomas J Sharpton","doi":"10.1186/s42523-023-00254-8","DOIUrl":"10.1186/s42523-023-00254-8","url":null,"abstract":"<p><strong>Background: </strong>Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan.</p><p><strong>Results: </strong>Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen, Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds to M. chelonae exposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected by M. chelonae.</p><p><strong>Conclusions: </strong>Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10331193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-05DOI: 10.1186/s42523-023-00259-3
Roi Lapid, Yair Motro, Hillary Craddock, Boris Khalfin, Roni King, Gila Kahila Bar-Gal, Jacob Moran-Gilad
The golden jackal (Canis aureus), is a medium canid carnivore widespread throughout the Mediterranean region and expanding into Europe. This species thrives near human settlements and is implicated in zoonoses such as rabies. This study explores for the first time, the golden jackal fecal microbiota. We analyzed 111 fecal samples of wild golden jackals using 16S rRNA amplicon sequencing the connection of the microbiome to animal characteristics, burden of pathogens and geographic and climate characteristics. We further compared the fecal microbiota of the golden jackal to the black-backed jackal and domestic dog. We found that the golden jackal fecal microbiota is dominated by the phyla Bacteroidota, Fusobacteriota and Firmicutes. The golden jackal fecal microbiota was associated with different variables, including geographic region, age-class, exposure to rabies oral vaccine, fecal parasites and toxoplasmosis. A remarkable variation in the relative abundance of different taxa was also found associated with different variables, such as age-class. Linear discriminant analysis effect size (LEfSe) analysis found abundance of specific taxons in each region, Megasphaera genus in group 1, Megamonas genus in group 2 and Bacteroides coprocola species in group 3. We also found a different composition between the fecal microbiota of the golden jackal, blacked-backed jackal and the domestic dog. Furthermore, LEfSe analysis found abundance of Fusobacterium and Bacteroides genera in the golden jackal, Clostridia class in blacked-backed jackal and Megamonas genus in domestic dog. The golden jackal fecal microbiota is influenced by multiple factors including host traits and pathogen burden. The characterization of the microbiota of this thriving species may aid in mapping its spread and proximity to human settlements. Moreover, understanding the jackal microbiota could inform the study of potential animal and human health risks and inform control measures.
{"title":"Fecal microbiota of the synanthropic golden jackal (Canis aureus).","authors":"Roi Lapid, Yair Motro, Hillary Craddock, Boris Khalfin, Roni King, Gila Kahila Bar-Gal, Jacob Moran-Gilad","doi":"10.1186/s42523-023-00259-3","DOIUrl":"10.1186/s42523-023-00259-3","url":null,"abstract":"<p><p>The golden jackal (Canis aureus), is a medium canid carnivore widespread throughout the Mediterranean region and expanding into Europe. This species thrives near human settlements and is implicated in zoonoses such as rabies. This study explores for the first time, the golden jackal fecal microbiota. We analyzed 111 fecal samples of wild golden jackals using 16S rRNA amplicon sequencing the connection of the microbiome to animal characteristics, burden of pathogens and geographic and climate characteristics. We further compared the fecal microbiota of the golden jackal to the black-backed jackal and domestic dog. We found that the golden jackal fecal microbiota is dominated by the phyla Bacteroidota, Fusobacteriota and Firmicutes. The golden jackal fecal microbiota was associated with different variables, including geographic region, age-class, exposure to rabies oral vaccine, fecal parasites and toxoplasmosis. A remarkable variation in the relative abundance of different taxa was also found associated with different variables, such as age-class. Linear discriminant analysis effect size (LEfSe) analysis found abundance of specific taxons in each region, Megasphaera genus in group 1, Megamonas genus in group 2 and Bacteroides coprocola species in group 3. We also found a different composition between the fecal microbiota of the golden jackal, blacked-backed jackal and the domestic dog. Furthermore, LEfSe analysis found abundance of Fusobacterium and Bacteroides genera in the golden jackal, Clostridia class in blacked-backed jackal and Megamonas genus in domestic dog. The golden jackal fecal microbiota is influenced by multiple factors including host traits and pathogen burden. The characterization of the microbiota of this thriving species may aid in mapping its spread and proximity to human settlements. Moreover, understanding the jackal microbiota could inform the study of potential animal and human health risks and inform control measures.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9946560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-03DOI: 10.1186/s42523-023-00257-5
Ilario Ferrocino, Ilaria Biasato, Sihem Dabbou, Elena Colombino, Kalliopi Rantsiou, Simone Squara, Marta Gariglio, Maria Teresa Capucchio, Laura Gasco, Chiara Emilia Cordero, Erica Liberto, Achille Schiavone, Luca Cocolin
Background: The inclusion of alternative ingredients in poultry feed is foreseen to impact poultry gut microbiota. New feeding strategies (probiotics/prebiotics) must be adopted to allow sustainable productions. Therefore, the current study aimed to use metagenomics approaches to determine how dietary inclusion of prebiotic (inulin) plus a multi-strain probiotic mixture of Lactiplantibacillus plantarum and Lactiplantibacillus pentosus affected microbiota composition and functions of the gastro-intestinal tract of the broilers during production. Fecal samples were collected at the beginning of the trial and after 5, 11 and 32 days for metataxonomic analysis. At the end of the trial, broilers were submitted to anatomo-pathological investigations and caecal content was subjected to volatilome analysis and DNAseq.
Results: Probiotic plus prebiotic inclusion did not significantly influence bird performance and did not produce histopathological alterations or changes in blood measurements, which indicates that the probiotic did not impair the overall health status of the birds. The multi-strain probiotic plus inulin inclusion in broilers increased the abundance of Blautia, Faecalibacterium and Lachnospiraceae and as a consequence an increased level of butyric acid was observed. In addition, the administration of probiotics plus inulin modified the gut microbiota composition also at strain level since probiotics alone or in combination with inulin select specific Faecalibacterium prausnitzi strain populations. The metagenomic analysis showed in probiotic plus prebiotic fed broilers a higher number of genes required for branched-chain amino acid biosynthesis belonging to selected F. prausnitzi strains, which are crucial in increasing immune function resistance to pathogens. In the presence of the probiotic/prebiotic a reduction in the occurrence of antibiotic resistance genes belonging to aminoglycoside, beta-lactamase and lincosamide family was observed.
Conclusions: The positive microbiome modulation observed is particularly relevant, since the use of these alternative ingredients could promote a healthier status of the broiler's gut.
{"title":"Lactiplantibacillus plantarum, lactiplantibacillus pentosus and inulin meal inclusion boost the metagenomic function of broiler chickens.","authors":"Ilario Ferrocino, Ilaria Biasato, Sihem Dabbou, Elena Colombino, Kalliopi Rantsiou, Simone Squara, Marta Gariglio, Maria Teresa Capucchio, Laura Gasco, Chiara Emilia Cordero, Erica Liberto, Achille Schiavone, Luca Cocolin","doi":"10.1186/s42523-023-00257-5","DOIUrl":"10.1186/s42523-023-00257-5","url":null,"abstract":"<p><strong>Background: </strong>The inclusion of alternative ingredients in poultry feed is foreseen to impact poultry gut microbiota. New feeding strategies (probiotics/prebiotics) must be adopted to allow sustainable productions. Therefore, the current study aimed to use metagenomics approaches to determine how dietary inclusion of prebiotic (inulin) plus a multi-strain probiotic mixture of Lactiplantibacillus plantarum and Lactiplantibacillus pentosus affected microbiota composition and functions of the gastro-intestinal tract of the broilers during production. Fecal samples were collected at the beginning of the trial and after 5, 11 and 32 days for metataxonomic analysis. At the end of the trial, broilers were submitted to anatomo-pathological investigations and caecal content was subjected to volatilome analysis and DNAseq.</p><p><strong>Results: </strong>Probiotic plus prebiotic inclusion did not significantly influence bird performance and did not produce histopathological alterations or changes in blood measurements, which indicates that the probiotic did not impair the overall health status of the birds. The multi-strain probiotic plus inulin inclusion in broilers increased the abundance of Blautia, Faecalibacterium and Lachnospiraceae and as a consequence an increased level of butyric acid was observed. In addition, the administration of probiotics plus inulin modified the gut microbiota composition also at strain level since probiotics alone or in combination with inulin select specific Faecalibacterium prausnitzi strain populations. The metagenomic analysis showed in probiotic plus prebiotic fed broilers a higher number of genes required for branched-chain amino acid biosynthesis belonging to selected F. prausnitzi strains, which are crucial in increasing immune function resistance to pathogens. In the presence of the probiotic/prebiotic a reduction in the occurrence of antibiotic resistance genes belonging to aminoglycoside, beta-lactamase and lincosamide family was observed.</p><p><strong>Conclusions: </strong>The positive microbiome modulation observed is particularly relevant, since the use of these alternative ingredients could promote a healthier status of the broiler's gut.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9938886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Artificial rearing system, commonly used in prolific sheep breeds, is associated to increased mortality and morbidity rates before weaning, which might be linked to perturbations in digestive tract maturation, including microbiota colonization. This study evaluated the effect of rearing mode (mothered or artificially reared) on the establishment of the rumen and intestinal microbiome of lambs from birth to weaning. We also measured immunological and zootechnical parameters to assess lambs' growth and health. GIT anatomy as well as rumen and intestinal epithelium gene expression were also analysed on weaned animals to assess possible long-term effects of the rearing practice.
Results: Total VFA concentrations were higher in mothered lambs at 2 months of age, while artificially-reared lambs had lower average daily gain, a more degraded sanitary status and lower serum IgG concentration in the early growth phase. Metataxonomic analysis revealed higher richness of bacterial and eukaryote populations in mothered vs. artificially-reared lambs in both Rumen and Feces. Beta diversity analysis indicated an evolution of rumen and fecal bacterial communities in mothered lambs with age, not observed in artificially-reared lambs. Important functional microorganisms such as the cellulolytic bacterium Fibrobacter succinogenes and rumen protozoa did not establish correctly before weaning in artificially-reared lambs. Enterobacteriaceae and Escherichia coli were dominant in the fecal microbiota of mothered lambs, but main E. coli virulence genes were not found differential between the two groups, suggesting they are commensal bacteria which could exert a protective effect against pathogens. The fecal microbiota of artificially-reared lambs had a high proportion of lactic acid bacteria taxa. No difference was observed in mucosa gene expression in the two lamb groups after weaning.
Conclusions: The rearing mode influences gastrointestinal microbiota and health-associated parameters in offspring in early life: rumen maturation was impaired in artificially-reared lambs which also presented altered sanitary status and higher risk of gut dysbiosis. The first month of age is thus a critical period where the gastrointestinal tract environment and microbiota are particularly unstable and special care should be taken in the management of artificially fed newborn ruminants.
{"title":"Effects of rearing mode on gastro-intestinal microbiota and development, immunocompetence, sanitary status and growth performance of lambs from birth to two months of age.","authors":"Lysiane Dunière, Philippe Ruiz, Yacine Lebbaoui, Laurie Guillot, Mickael Bernard, Evelyne Forano, Frédérique Chaucheyras-Durand","doi":"10.1186/s42523-023-00255-7","DOIUrl":"https://doi.org/10.1186/s42523-023-00255-7","url":null,"abstract":"<p><strong>Background: </strong>Artificial rearing system, commonly used in prolific sheep breeds, is associated to increased mortality and morbidity rates before weaning, which might be linked to perturbations in digestive tract maturation, including microbiota colonization. This study evaluated the effect of rearing mode (mothered or artificially reared) on the establishment of the rumen and intestinal microbiome of lambs from birth to weaning. We also measured immunological and zootechnical parameters to assess lambs' growth and health. GIT anatomy as well as rumen and intestinal epithelium gene expression were also analysed on weaned animals to assess possible long-term effects of the rearing practice.</p><p><strong>Results: </strong>Total VFA concentrations were higher in mothered lambs at 2 months of age, while artificially-reared lambs had lower average daily gain, a more degraded sanitary status and lower serum IgG concentration in the early growth phase. Metataxonomic analysis revealed higher richness of bacterial and eukaryote populations in mothered vs. artificially-reared lambs in both Rumen and Feces. Beta diversity analysis indicated an evolution of rumen and fecal bacterial communities in mothered lambs with age, not observed in artificially-reared lambs. Important functional microorganisms such as the cellulolytic bacterium Fibrobacter succinogenes and rumen protozoa did not establish correctly before weaning in artificially-reared lambs. Enterobacteriaceae and Escherichia coli were dominant in the fecal microbiota of mothered lambs, but main E. coli virulence genes were not found differential between the two groups, suggesting they are commensal bacteria which could exert a protective effect against pathogens. The fecal microbiota of artificially-reared lambs had a high proportion of lactic acid bacteria taxa. No difference was observed in mucosa gene expression in the two lamb groups after weaning.</p><p><strong>Conclusions: </strong>The rearing mode influences gastrointestinal microbiota and health-associated parameters in offspring in early life: rumen maturation was impaired in artificially-reared lambs which also presented altered sanitary status and higher risk of gut dysbiosis. The first month of age is thus a critical period where the gastrointestinal tract environment and microbiota are particularly unstable and special care should be taken in the management of artificially fed newborn ruminants.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-17DOI: 10.1186/s42523-023-00256-6
Brandi Feehan, Qinghong Ran, Victoria Dorman, Kourtney Rumback, Sophia Pogranichniy, Kaitlyn Ward, Robert Goodband, Megan C Niederwerder, Sonny T M Lee
Background: Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination.
Results: We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.
{"title":"Novel complete methanogenic pathways in longitudinal genomic study of monogastric age-associated archaea.","authors":"Brandi Feehan, Qinghong Ran, Victoria Dorman, Kourtney Rumback, Sophia Pogranichniy, Kaitlyn Ward, Robert Goodband, Megan C Niederwerder, Sonny T M Lee","doi":"10.1186/s42523-023-00256-6","DOIUrl":"10.1186/s42523-023-00256-6","url":null,"abstract":"<p><strong>Background: </strong>Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination.</p><p><strong>Results: </strong>We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9891111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-29DOI: 10.1186/s42523-023-00253-9
Marvin Suhr, Finn-Thorbjörn Fichtner-Grabowski, Henrike Seibel, Corinna Bang, Andre Franke, Carsten Schulz, Stéphanie Céline Hornburg
Background: The aim of the present study was to characterize the effects of handling stress on the microbiota in the intestinal gut contents of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet from two different breeding lines (initial body weights: A: 124.69 g, B: 147.24 g). Diets were formulated in accordance with commercial trout diets differing in their respective protein sources: fishmeal (35% in fishmeal-based diet F, 7% in plant protein-based diet V) and plant-based proteins (47% in diet F, 73% in diet V). Experimental diets were provided for 59 days to all female trout in two separate recirculating aquaculture systems (RASs; mean temperature: A: 15.17 °C ± 0.44, B: 15.42 °C ± 0.38). Half of the fish in each RAS were chased with a fishing net twice per day to induce long-term stress (Group 1), while the other half were not exposed to stress (Group 0).
Results: No differences in performance parameters were found between the treatment groups. By using 16S rRNA amplicon sequencing of the hypervariable region V3/V4, we examined the microbial community in the whole intestinal content of fish at the end of the trial. We discovered no significant differences in alpha diversity induced by diet or stress within either genetic trout line. However, the microbial composition was significantly driven by the interaction of stress and diet in trout line A. Otherwise, in trout line B, the main factor was stress. The communities of both breeding lines were predominantly colonized by bacteria from the phyla Fusobacteriota, Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota. The most varying and abundant taxa were Firmicutes and Fusobacteriota, whereas at the genus level, Cetobacterium and Mycoplasma were key components in terms of adaptation. In trout line A, Cetobacterium abundance was affected by factor stress, and in trout line B, it was affected by the factor diet.
Conclusion: We conclude that microbial gut composition, but neither microbial diversity nor fish performance, is highly influenced by stress handling, which also interacts with dietary protein sources. This influence varies between different genetic trout lines and depends on the fish's life history.
{"title":"The microbiota knows: handling-stress and diet transform the microbial landscape in the gut content of rainbow trout in RAS.","authors":"Marvin Suhr, Finn-Thorbjörn Fichtner-Grabowski, Henrike Seibel, Corinna Bang, Andre Franke, Carsten Schulz, Stéphanie Céline Hornburg","doi":"10.1186/s42523-023-00253-9","DOIUrl":"https://doi.org/10.1186/s42523-023-00253-9","url":null,"abstract":"<p><strong>Background: </strong>The aim of the present study was to characterize the effects of handling stress on the microbiota in the intestinal gut contents of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet from two different breeding lines (initial body weights: A: 124.69 g, B: 147.24 g). Diets were formulated in accordance with commercial trout diets differing in their respective protein sources: fishmeal (35% in fishmeal-based diet F, 7% in plant protein-based diet V) and plant-based proteins (47% in diet F, 73% in diet V). Experimental diets were provided for 59 days to all female trout in two separate recirculating aquaculture systems (RASs; mean temperature: A: 15.17 °C ± 0.44, B: 15.42 °C ± 0.38). Half of the fish in each RAS were chased with a fishing net twice per day to induce long-term stress (Group 1), while the other half were not exposed to stress (Group 0).</p><p><strong>Results: </strong>No differences in performance parameters were found between the treatment groups. By using 16S rRNA amplicon sequencing of the hypervariable region V3/V4, we examined the microbial community in the whole intestinal content of fish at the end of the trial. We discovered no significant differences in alpha diversity induced by diet or stress within either genetic trout line. However, the microbial composition was significantly driven by the interaction of stress and diet in trout line A. Otherwise, in trout line B, the main factor was stress. The communities of both breeding lines were predominantly colonized by bacteria from the phyla Fusobacteriota, Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota. The most varying and abundant taxa were Firmicutes and Fusobacteriota, whereas at the genus level, Cetobacterium and Mycoplasma were key components in terms of adaptation. In trout line A, Cetobacterium abundance was affected by factor stress, and in trout line B, it was affected by the factor diet.</p><p><strong>Conclusion: </strong>We conclude that microbial gut composition, but neither microbial diversity nor fish performance, is highly influenced by stress handling, which also interacts with dietary protein sources. This influence varies between different genetic trout lines and depends on the fish's life history.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9741381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-12DOI: 10.1186/s42523-023-00252-w
Mahendra Mariadassou, Laurent X Nouvel, Fabienne Constant, Diego P Morgavi, Lucie Rault, Sarah Barbey, Emmanuelle Helloin, Olivier Rué, Sophie Schbath, Frederic Launay, Olivier Sandra, Rachel Lefebvre, Yves Le Loir, Pierre Germon, Christine Citti, Sergine Even
Background: Host-associated microbes are major determinants of the host phenotypes. In the present study, we used dairy cows with different scores of susceptibility to mastitis with the aim to explore the relationships between microbiota composition and different factors in various body sites throughout lactation as well as the intra- and inter-animal microbial sharing.
Results: Microbiotas from the mouth, nose, vagina and milk of 45 lactating dairy cows were characterized by metataxonomics at four time points during the first lactation, from 1-week pre-partum to 7 months post-partum. Each site harbored a specific community that changed with time, likely reflecting physiological changes in the transition period and changes in diet and housing. Importantly, we found a significant number of microbes shared among different anatomical sites within each animal. This was between nearby anatomic sites, with up to 32% of the total number of Amplicon Sequence Variants (ASVs) of the oral microbiota shared with the nasal microbiota but also between distant ones (e.g. milk with nasal and vaginal microbiotas). In contrast, the share of microbes between animals was limited (< 7% of ASVs shared by more than 50% of the herd for a given site and time point). The latter widely shared ASVs were mainly found in the oral and nasal microbiotas. These results thus indicate that despite a common environment and diet, each animal hosted a specific set of bacteria, supporting a tight interplay between each animal and its microbiota. The score of susceptibility to mastitis was slightly but significantly related to the microbiota associated to milk suggesting a link between host genetics and microbiota.
Conclusions: This work highlights an important sharing of microbes between relevant microbiotas involved in health and production at the animal level, whereas the presence of common microbes was limited between animals of the herd. This suggests a host regulation of body-associated microbiotas that seems to be differently expressed depending on the body site, as suggested by changes in the milk microbiota that were associated to genotypes of susceptibility to mastitis.
{"title":"Microbiota members from body sites of dairy cows are largely shared within individual hosts throughout lactation but sharing is limited in the herd.","authors":"Mahendra Mariadassou, Laurent X Nouvel, Fabienne Constant, Diego P Morgavi, Lucie Rault, Sarah Barbey, Emmanuelle Helloin, Olivier Rué, Sophie Schbath, Frederic Launay, Olivier Sandra, Rachel Lefebvre, Yves Le Loir, Pierre Germon, Christine Citti, Sergine Even","doi":"10.1186/s42523-023-00252-w","DOIUrl":"https://doi.org/10.1186/s42523-023-00252-w","url":null,"abstract":"<p><strong>Background: </strong>Host-associated microbes are major determinants of the host phenotypes. In the present study, we used dairy cows with different scores of susceptibility to mastitis with the aim to explore the relationships between microbiota composition and different factors in various body sites throughout lactation as well as the intra- and inter-animal microbial sharing.</p><p><strong>Results: </strong>Microbiotas from the mouth, nose, vagina and milk of 45 lactating dairy cows were characterized by metataxonomics at four time points during the first lactation, from 1-week pre-partum to 7 months post-partum. Each site harbored a specific community that changed with time, likely reflecting physiological changes in the transition period and changes in diet and housing. Importantly, we found a significant number of microbes shared among different anatomical sites within each animal. This was between nearby anatomic sites, with up to 32% of the total number of Amplicon Sequence Variants (ASVs) of the oral microbiota shared with the nasal microbiota but also between distant ones (e.g. milk with nasal and vaginal microbiotas). In contrast, the share of microbes between animals was limited (< 7% of ASVs shared by more than 50% of the herd for a given site and time point). The latter widely shared ASVs were mainly found in the oral and nasal microbiotas. These results thus indicate that despite a common environment and diet, each animal hosted a specific set of bacteria, supporting a tight interplay between each animal and its microbiota. The score of susceptibility to mastitis was slightly but significantly related to the microbiota associated to milk suggesting a link between host genetics and microbiota.</p><p><strong>Conclusions: </strong>This work highlights an important sharing of microbes between relevant microbiotas involved in health and production at the animal level, whereas the presence of common microbes was limited between animals of the herd. This suggests a host regulation of body-associated microbiotas that seems to be differently expressed depending on the body site, as suggested by changes in the milk microbiota that were associated to genotypes of susceptibility to mastitis.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9629708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1186/s42523-023-00251-x
Arunima Sen, Gwenn Tanguy, Pierre E Galand, Ann C Andersen, Stéphane Hourdez
Background: High latitude seeps are dominated by Oligobrachia siboglinid worms. Since these worms are often the sole chemosymbiotrophic taxon present (they host chemosynthetic bacteria within the trophosome organ in their trunk region), a key question in the study of high latitude seep ecology has been whether they harbor methanotrophic symbionts. This debate has manifested due to the mismatch between stable carbon isotope signatures of the worms (lower than -50‰ and usually indicative of methanotrophic symbioses) and the lack of molecular or microscopic evidence for methanotrophic symbionts. Two hypotheses have circulated to explain this paradox: (1) the uptake of sediment carbon compounds with depleted δC13 values from the seep environment, and (2) a small, but significant and difficult to detect population of methanotrophic symbionts. We conducted 16S rRNA amplicon sequencing of the V3-V4 regions on two species of northern seep Oligobrachia (Oligobrachia webbi and Oligobrachia sp. CPL-clade), from four different high latitude sites, to investigate the latter hypothesis. We also visually checked the worms' symbiotic bacteria within the symbiont-hosting organ, the trophosome, through transmission electron microscopy.
Results: The vast majority of the obtained reads corresponded to sulfide-oxidizers and only a very small proportion of the reads pertained to methane-oxidizers, which suggests a lack of methanotrophic symbionts. A number of sulfur oxidizing bacterial strains were recovered from the different worms, however, host individuals tended to possess a single strain, or sometimes two closely-related strains. However, strains did not correspond specifically with either of the two Oligobrachia species we investigated. Water depth could play a role in determining local sediment bacterial communities that were opportunistically taken up by the worms. Bacteria were abundant in non-trophosome (and thereby symbiont-free) tissue and are likely epibiotic or tube bacterial communities.
Conclusions: The absence of methanotrophic bacterial sequences in the trophosome of Arctic and north Atlantic seep Oligobrachia likely indicates a lack of methanotrophic symbionts in these worms, which suggests that nutrition is sulfur-based. This is turn implies that sediment carbon uptake is responsible for the low δ13C values of these animals. Furthermore, endosymbiotic partners could be locally determined, and possibly only represent a fraction of all bacterial sequences obtained from tissues of these (and other) species of frenulates.
{"title":"Bacterial symbiont diversity in Arctic seep Oligobrachia siboglinids.","authors":"Arunima Sen, Gwenn Tanguy, Pierre E Galand, Ann C Andersen, Stéphane Hourdez","doi":"10.1186/s42523-023-00251-x","DOIUrl":"https://doi.org/10.1186/s42523-023-00251-x","url":null,"abstract":"<p><strong>Background: </strong>High latitude seeps are dominated by Oligobrachia siboglinid worms. Since these worms are often the sole chemosymbiotrophic taxon present (they host chemosynthetic bacteria within the trophosome organ in their trunk region), a key question in the study of high latitude seep ecology has been whether they harbor methanotrophic symbionts. This debate has manifested due to the mismatch between stable carbon isotope signatures of the worms (lower than -50‰ and usually indicative of methanotrophic symbioses) and the lack of molecular or microscopic evidence for methanotrophic symbionts. Two hypotheses have circulated to explain this paradox: (1) the uptake of sediment carbon compounds with depleted δC<sup>13</sup> values from the seep environment, and (2) a small, but significant and difficult to detect population of methanotrophic symbionts. We conducted 16S rRNA amplicon sequencing of the V3-V4 regions on two species of northern seep Oligobrachia (Oligobrachia webbi and Oligobrachia sp. CPL-clade), from four different high latitude sites, to investigate the latter hypothesis. We also visually checked the worms' symbiotic bacteria within the symbiont-hosting organ, the trophosome, through transmission electron microscopy.</p><p><strong>Results: </strong>The vast majority of the obtained reads corresponded to sulfide-oxidizers and only a very small proportion of the reads pertained to methane-oxidizers, which suggests a lack of methanotrophic symbionts. A number of sulfur oxidizing bacterial strains were recovered from the different worms, however, host individuals tended to possess a single strain, or sometimes two closely-related strains. However, strains did not correspond specifically with either of the two Oligobrachia species we investigated. Water depth could play a role in determining local sediment bacterial communities that were opportunistically taken up by the worms. Bacteria were abundant in non-trophosome (and thereby symbiont-free) tissue and are likely epibiotic or tube bacterial communities.</p><p><strong>Conclusions: </strong>The absence of methanotrophic bacterial sequences in the trophosome of Arctic and north Atlantic seep Oligobrachia likely indicates a lack of methanotrophic symbionts in these worms, which suggests that nutrition is sulfur-based. This is turn implies that sediment carbon uptake is responsible for the low δ<sup>13</sup>C values of these animals. Furthermore, endosymbiotic partners could be locally determined, and possibly only represent a fraction of all bacterial sequences obtained from tissues of these (and other) species of frenulates.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9928972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}