Pub Date : 2025-09-25DOI: 10.1186/s42523-025-00455-3
Cecilie R Gotze, Kshitij Tandon, Gayle K Philip, Ashley M Dungan, Justin Maire, Lone Høj, Linda L Blackall, Madeleine J H van Oppen
Background: The bacterial genus Endozoicomonas is a predominant member of the coral microbiome, widely recognised for its ubiquity and ability to form high-density aggregates within coral tissues. Hence, investigating its metabolic interplay with coral hosts offers critical insights into its ecological roles and contributions to coral health and resilience.
Results: Using long- and short-read whole-genome sequencing of 11 Endozoicomonas strains from Acropora loripes, genome sizes were found to range between 5.8 and 7.1 Mbp. Phylogenomic analysis identified two distinct clades within the family Endozoicomonadaceae. Metabolic reconstruction uncovered clade-specific pathways, including the degradation of holobiont-derived carbon and lipids (e.g., galactose, starch, triacylglycerol, D-glucuronate), the latter of which suggests involvement of Endozoicomonas in host 'sex-type' steroid hormone metabolism. A clade-specific type 6 Secretion System (T6SS) and predicted effector molecules were identified, potentially facilitating coral-bacterium symbiosis. Additionally, genomic analyses revealed diverse phosphorus acquisition strategies, implicating Endozoicomonas in holobiont phosphorus cycling and stress responses.
Conclusions: This study reveals clade-specific genomic signatures of Endozoicomonas supporting its mutualistic lifestyle within corals. Findings suggests possible roles in nutrient cycling, reproductive health, and stress resilience, offering novel insights into coral holobiont functioning.
{"title":"Genomic prediction of symbiotic interactions between two Endozoicomonas clades and their coral host, Acropora loripes.","authors":"Cecilie R Gotze, Kshitij Tandon, Gayle K Philip, Ashley M Dungan, Justin Maire, Lone Høj, Linda L Blackall, Madeleine J H van Oppen","doi":"10.1186/s42523-025-00455-3","DOIUrl":"10.1186/s42523-025-00455-3","url":null,"abstract":"<p><strong>Background: </strong>The bacterial genus Endozoicomonas is a predominant member of the coral microbiome, widely recognised for its ubiquity and ability to form high-density aggregates within coral tissues. Hence, investigating its metabolic interplay with coral hosts offers critical insights into its ecological roles and contributions to coral health and resilience.</p><p><strong>Results: </strong>Using long- and short-read whole-genome sequencing of 11 Endozoicomonas strains from Acropora loripes, genome sizes were found to range between 5.8 and 7.1 Mbp. Phylogenomic analysis identified two distinct clades within the family Endozoicomonadaceae. Metabolic reconstruction uncovered clade-specific pathways, including the degradation of holobiont-derived carbon and lipids (e.g., galactose, starch, triacylglycerol, D-glucuronate), the latter of which suggests involvement of Endozoicomonas in host 'sex-type' steroid hormone metabolism. A clade-specific type 6 Secretion System (T6SS) and predicted effector molecules were identified, potentially facilitating coral-bacterium symbiosis. Additionally, genomic analyses revealed diverse phosphorus acquisition strategies, implicating Endozoicomonas in holobiont phosphorus cycling and stress responses.</p><p><strong>Conclusions: </strong>This study reveals clade-specific genomic signatures of Endozoicomonas supporting its mutualistic lifestyle within corals. Findings suggests possible roles in nutrient cycling, reproductive health, and stress resilience, offering novel insights into coral holobiont functioning.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"94"},"PeriodicalIF":4.4,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145151803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-01DOI: 10.1186/s42523-025-00458-0
Lea Kauer, Panagiotis Sapountzis, Christian Imholt, Christian Berens, Ralph Kuehn
{"title":"Correction: Microbial exchange at the wildlife-livestock interface: insights into microbial composition, antimicrobial resistance and virulence factor gene dynamics in grassland ecosystems.","authors":"Lea Kauer, Panagiotis Sapountzis, Christian Imholt, Christian Berens, Ralph Kuehn","doi":"10.1186/s42523-025-00458-0","DOIUrl":"10.1186/s42523-025-00458-0","url":null,"abstract":"","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"92"},"PeriodicalIF":4.4,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-01DOI: 10.1186/s42523-025-00459-z
Sara E Martini, Elizabeth L Geary, Patrícia M Oba, Laura L Bauer, Ryan N Dilger, Kelly S Swanson
<p><p>Metronidazole is a potent antibiotic often prescribed to treat gastrointestinal enteropathies, but is known to induce loose stools, negatively alter the fecal microbiome, and affect fecal metabolites. Dietary intervention may aid in the recovery following antibiotic cessation, but little research has been conducted regarding the potential of fiber utilization for microbial recovery in canines. Using an in vitro fermentation assay, the objective of this study was to investigate the fermentation characteristics of dietary fibers using fecal inocula from dogs treated with metronidazole. Four healthy male beagles were fed a commercial kibble diet for 2 weeks, then administered metronidazole (20 mg/kg body weight twice a day) for 2 weeks. Fresh fecal samples were collected at weeks 2 and 4, stabilized in a 20% glycerol solution, and then frozen. For the in vitro fermentation experiment, feces from each time point (ABX-= pre-metronidazole collection; ABX+ = post-metronidazole collection) were thawed, diluted in an anaerobic diluting solution, and used to inoculate tubes. Tubes contained sterile medium and either cellulose, pectin, beet pulp, or chicory pulp fiber to test fermentation potential, with additional tubes used without fiber inclusion for blank corrections. At baseline (0 h) and after 6, 12, and 18 h of fermentation, pH, short-chain fatty acid (SCFA) production, and microbiota were measured. Data was analyzed within each fiber using the Mixed Models procedure of SAS version 9.4, with effects of antibiotic treatment, time and treatment*time interactions reported, accounting for the random effect across replicates. As expected, antibiotic administration had large effects on fiber fermentability characteristics, slowing pH reduction, lowering SCFA production, and altering SCFA molar ratios. Butyrate production was minimal among all fibers tested in ABX+ inocula tubes. Additionally, ABX+ inoculum lowered bacterial alpha diversity, affected bacterial beta diversity and the relative abundances of over 50 bacterial genera. Increased Bifidobacterium and Lactobacillus was observed in tubes containing ABX + inoculum (P < 0.0001) during pectin or beet pulp fermentation. Additionally, increased Faecalibacterium, Streptococcus, and Bacteroides was observed in tubes containing ABX- inoculum during chicory pulp fermentation (P < 0.0001). Beta diversity plots during beet pulp and chicory pulp fermentation demonstrated positive shifts toward ABX- inoculum tubes, but pectin fermentation did not yield the same shifts. The data presented here demonstrate that metronidazole administration can elicit unique responses to various fiber sources by reducing microbial diversity and negatively altering microbial fermentative activity (i.e., lower SCFA production). Both beet pulp and chicory pulp increased SCFA production and microbial diversity over time, with ABX+ inoculum tubes approaching that of ABX- inoculum tubes after 18 h of fermentation. More research is
甲硝唑是一种强效抗生素,通常用于治疗胃肠道肠病,但已知会引起稀便,对粪便微生物群产生负面影响,并影响粪便代谢物。饮食干预可能有助于停用抗生素后的恢复,但很少有关于纤维利用对犬体内微生物恢复的潜力的研究。本研究采用体外发酵试验,研究了甲硝唑处理犬粪疫苗对膳食纤维的发酵特性。4只健康雄性比格犬先饲喂商品粗粉饲粮2周,然后给予甲硝唑(20 mg/kg体重,每天2次)2周。在第2周和第4周收集新鲜粪便样本,在20%甘油溶液中稳定,然后冷冻。体外发酵实验,将各时间点(ABX-=甲硝唑前收集;ABX+ =甲硝唑后收集)的粪便解冻,用厌氧稀释液稀释,用于接种管。试管中含有无菌培养基和纤维素、果胶、甜菜浆或菊苣浆纤维,以测试发酵潜力,另外使用不含纤维的试管进行空白校正。在基线(0 h)和发酵6、12和18 h后,测量pH、短链脂肪酸(SCFA)产量和微生物群。使用SAS version 9.4的混合模型程序对每个纤维内的数据进行分析,报告了抗生素治疗、时间和治疗*时间的相互作用的影响,考虑了重复间的随机效应。正如预期的那样,抗生素给药对纤维的发酵特性有很大的影响,减缓了pH的降低,降低了SCFA的产量,改变了SCFA的摩尔比。在ABX+接种管中测试的所有纤维中丁酸盐产量最小。此外,接种ABX+降低了细菌的α多样性,影响了细菌的β多样性和50多个细菌属的相对丰度。在含有ABX +接种物的试管中观察到双歧杆菌和乳酸菌的增加
{"title":"In vitro fermentation characteristics of dietary fibers using fecal inocula from dogs treated with metronidazole.","authors":"Sara E Martini, Elizabeth L Geary, Patrícia M Oba, Laura L Bauer, Ryan N Dilger, Kelly S Swanson","doi":"10.1186/s42523-025-00459-z","DOIUrl":"10.1186/s42523-025-00459-z","url":null,"abstract":"<p><p>Metronidazole is a potent antibiotic often prescribed to treat gastrointestinal enteropathies, but is known to induce loose stools, negatively alter the fecal microbiome, and affect fecal metabolites. Dietary intervention may aid in the recovery following antibiotic cessation, but little research has been conducted regarding the potential of fiber utilization for microbial recovery in canines. Using an in vitro fermentation assay, the objective of this study was to investigate the fermentation characteristics of dietary fibers using fecal inocula from dogs treated with metronidazole. Four healthy male beagles were fed a commercial kibble diet for 2 weeks, then administered metronidazole (20 mg/kg body weight twice a day) for 2 weeks. Fresh fecal samples were collected at weeks 2 and 4, stabilized in a 20% glycerol solution, and then frozen. For the in vitro fermentation experiment, feces from each time point (ABX-= pre-metronidazole collection; ABX+ = post-metronidazole collection) were thawed, diluted in an anaerobic diluting solution, and used to inoculate tubes. Tubes contained sterile medium and either cellulose, pectin, beet pulp, or chicory pulp fiber to test fermentation potential, with additional tubes used without fiber inclusion for blank corrections. At baseline (0 h) and after 6, 12, and 18 h of fermentation, pH, short-chain fatty acid (SCFA) production, and microbiota were measured. Data was analyzed within each fiber using the Mixed Models procedure of SAS version 9.4, with effects of antibiotic treatment, time and treatment*time interactions reported, accounting for the random effect across replicates. As expected, antibiotic administration had large effects on fiber fermentability characteristics, slowing pH reduction, lowering SCFA production, and altering SCFA molar ratios. Butyrate production was minimal among all fibers tested in ABX+ inocula tubes. Additionally, ABX+ inoculum lowered bacterial alpha diversity, affected bacterial beta diversity and the relative abundances of over 50 bacterial genera. Increased Bifidobacterium and Lactobacillus was observed in tubes containing ABX + inoculum (P < 0.0001) during pectin or beet pulp fermentation. Additionally, increased Faecalibacterium, Streptococcus, and Bacteroides was observed in tubes containing ABX- inoculum during chicory pulp fermentation (P < 0.0001). Beta diversity plots during beet pulp and chicory pulp fermentation demonstrated positive shifts toward ABX- inoculum tubes, but pectin fermentation did not yield the same shifts. The data presented here demonstrate that metronidazole administration can elicit unique responses to various fiber sources by reducing microbial diversity and negatively altering microbial fermentative activity (i.e., lower SCFA production). Both beet pulp and chicory pulp increased SCFA production and microbial diversity over time, with ABX+ inoculum tubes approaching that of ABX- inoculum tubes after 18 h of fermentation. More research is ","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"93"},"PeriodicalIF":4.4,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-26DOI: 10.1186/s42523-025-00457-1
Yipeng Li, Huifang Zhou, Jie Yu, Boying Dong, Han Li, Chongyu Zhang, Guiguo Zhang, Cuihua Guo
<p><strong>Background: </strong>Protein is a primary nutrient in concentrate supplementation for donkey foals, and the source of this protein significantly influences their growth and development. Milk-derived protein sources, such as milk powder, casein, and whey protein, are widely used in milk replacers for donkey foals due to their balanced nutritional profiles, high digestibility, and high bioavailability. However, the increasing costs of milk powder and whey protein have prompted researchers to explore alternative protein sources, with soy protein being a particularly promising option. This study compared the effects of soybean meal and milk-derived ingredients as protein sources in concentrate supplementation on the growth performance, rectal microbiota, and serum metabolites of suckling donkey foals. A total of 42 Dezhou donkey foals, aged 10 days, were randomly assigned to three groups: SP (soybean meal as the main protein source in the diet), MP (milk-derived ingredients as the main protein source in the diet), and SMP (a combination of the SP and MP diets at a ratio of 6:4 used as the dietary component). Each group consisted of 14 replicates, with one donkey in each replicate. The foals were raised from 10 days of age to 130 days of age, and the entire experimental period lasted 120 days.</p><p><strong>Results: </strong>The final body weight (at 130 days of age) and average daily gain (ADG) were significantly higher (P < 0.001) in the SP group compared to the MP and SMP groups. The feed conversion ratio (FCR) in the SP and SMP groups was significantly lower than that in the MP group (P < 0.05). Among the three groups, the serum levels of thyroxine, growth hormone (GH), insulin-like growth factor-І (IGF-І), and vitamin B6 were significantly enhanced (P < 0.05) in the SP group, whereas the cortisol levels were significantly decreased (P < 0.05). Rectal microbiota analysis further demonstrated that the SP intervention reshaped the gut microbial composition and enriched several genera, including Oscillospiraceae_UCG-005, Oscillospiraceae_NK4A214_group, Akkermansia, Porphyromonas, Streptococcus, Bacteroides, Fusobacterium, and Christensenellaceae_R-7_group. Metabolomic profiling identified 15 differential metabolites, which were considered the key differential metabolites in this study and were related to phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine biosynthesis, vitamin B6 metabolism, biotin metabolism, tryptophan metabolism, and some amino acid metabolic processes. Notably, the rectal microbial genera Akkermansia, Porphyromonas, Oscillospiraceae_NK4A214_group, Oscillospiraceae_UCG-005, and Streptococcus, which were most abundant in the SP group, showed significant positive correlations with ADG, serum concentrations of thyroxine, IGF-I, and vitamin B6, as well as with the levels of serum metabolites serotonin and pyridoxine.</p><p><strong>Conclusions: </strong>Compared to the milk-derived protein in concentrate suppl
{"title":"Dietary protein sources in concentrate supplementation influence growth performance by manipulating gut microbiota and serum metabolites in suckling Donkey foals.","authors":"Yipeng Li, Huifang Zhou, Jie Yu, Boying Dong, Han Li, Chongyu Zhang, Guiguo Zhang, Cuihua Guo","doi":"10.1186/s42523-025-00457-1","DOIUrl":"10.1186/s42523-025-00457-1","url":null,"abstract":"<p><strong>Background: </strong>Protein is a primary nutrient in concentrate supplementation for donkey foals, and the source of this protein significantly influences their growth and development. Milk-derived protein sources, such as milk powder, casein, and whey protein, are widely used in milk replacers for donkey foals due to their balanced nutritional profiles, high digestibility, and high bioavailability. However, the increasing costs of milk powder and whey protein have prompted researchers to explore alternative protein sources, with soy protein being a particularly promising option. This study compared the effects of soybean meal and milk-derived ingredients as protein sources in concentrate supplementation on the growth performance, rectal microbiota, and serum metabolites of suckling donkey foals. A total of 42 Dezhou donkey foals, aged 10 days, were randomly assigned to three groups: SP (soybean meal as the main protein source in the diet), MP (milk-derived ingredients as the main protein source in the diet), and SMP (a combination of the SP and MP diets at a ratio of 6:4 used as the dietary component). Each group consisted of 14 replicates, with one donkey in each replicate. The foals were raised from 10 days of age to 130 days of age, and the entire experimental period lasted 120 days.</p><p><strong>Results: </strong>The final body weight (at 130 days of age) and average daily gain (ADG) were significantly higher (P < 0.001) in the SP group compared to the MP and SMP groups. The feed conversion ratio (FCR) in the SP and SMP groups was significantly lower than that in the MP group (P < 0.05). Among the three groups, the serum levels of thyroxine, growth hormone (GH), insulin-like growth factor-І (IGF-І), and vitamin B6 were significantly enhanced (P < 0.05) in the SP group, whereas the cortisol levels were significantly decreased (P < 0.05). Rectal microbiota analysis further demonstrated that the SP intervention reshaped the gut microbial composition and enriched several genera, including Oscillospiraceae_UCG-005, Oscillospiraceae_NK4A214_group, Akkermansia, Porphyromonas, Streptococcus, Bacteroides, Fusobacterium, and Christensenellaceae_R-7_group. Metabolomic profiling identified 15 differential metabolites, which were considered the key differential metabolites in this study and were related to phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine biosynthesis, vitamin B6 metabolism, biotin metabolism, tryptophan metabolism, and some amino acid metabolic processes. Notably, the rectal microbial genera Akkermansia, Porphyromonas, Oscillospiraceae_NK4A214_group, Oscillospiraceae_UCG-005, and Streptococcus, which were most abundant in the SP group, showed significant positive correlations with ADG, serum concentrations of thyroxine, IGF-I, and vitamin B6, as well as with the levels of serum metabolites serotonin and pyridoxine.</p><p><strong>Conclusions: </strong>Compared to the milk-derived protein in concentrate suppl","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"91"},"PeriodicalIF":4.4,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-21DOI: 10.1186/s42523-025-00451-7
Mikaella L Grant, Renee M Petri, Tristan M Baecklund, Gregory A Wilson, Christopher J Kyle
{"title":"Subspecific variation in gut microbiota of North American bison in a sympatric setting reveals differentially abundant taxa.","authors":"Mikaella L Grant, Renee M Petri, Tristan M Baecklund, Gregory A Wilson, Christopher J Kyle","doi":"10.1186/s42523-025-00451-7","DOIUrl":"10.1186/s42523-025-00451-7","url":null,"abstract":"","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"89"},"PeriodicalIF":4.4,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-20DOI: 10.1186/s42523-025-00454-4
Joelle K Hass, Arthur G Fernandes, Michael J Montague, Armando Burgos-Rodriguez, Melween I Martinez, Lauren J N Brent, Noah Snyder-Mackler, John Danias, Gadi Wollstein, James P Higham, Amanda D Melin
Background: The ocular surface microbiota (OSM) is important for eye health, and variations in OSM composition have been associated with multiple diseases in humans. Studies of OSM-disease dynamics in humans are confounded by lifestyle factors. Animal models provide a complementary approach to understanding biological systems, free from many confounds of human studies. Here, we provide the first study of the OSM of rhesus macaques, a premier animal model for eye health and disease. We describe the taxonomy of the rhesus macaque OSM, and explore compositional correlations with age, sex, and living condition.
Methods: We analyzed eyelid and conjunctival microbiota swabs from 132 individual rhesus macaques (Macaca mulatta) (57 males, 75 females, 1-26 years old) from one captive and one free-ranging group using 16 S rRNA V3/V4 MiSeq sequencing. We investigated alpha diversity, beta diversity, and differential abundance.
Results: We found several similarities between the top Phyla and Genera of the rhesus macaque OSM and those reported in human literature. Significantly higher alpha diversity, which may reflect age-related ocular surface mucous membrane integrity and immune function, was present in younger individuals compared to older ones. Higher alpha diversity was also present in free-ranging rhesus macaques compared to ones in captivity, possibly related to differences in diet, exercise, and medical exposures between macaques in different living conditions. Beta diversity was most strongly influenced by individual identity, followed by living conditions. Sex did not correlate with any OSM variation.
Conclusions: In this study we describe the taxonomic composition of the rhesus macaque OSM, and identify significant differences in alpha and beta diversity according to individual nonhuman primate host variables and the surrounding environment. Our findings suggest composition of the nonhuman primate OSM is shaped by age-related physiology, individual identity, and external living conditions. Our results offer novel insights into an underexplored region of the primate microbiome and highlight the utility of rhesus macaques as a model system for investigating the links between the OSM, ocular health, and disease.
{"title":"The ocular surface microbiome of rhesus macaques.","authors":"Joelle K Hass, Arthur G Fernandes, Michael J Montague, Armando Burgos-Rodriguez, Melween I Martinez, Lauren J N Brent, Noah Snyder-Mackler, John Danias, Gadi Wollstein, James P Higham, Amanda D Melin","doi":"10.1186/s42523-025-00454-4","DOIUrl":"10.1186/s42523-025-00454-4","url":null,"abstract":"<p><strong>Background: </strong>The ocular surface microbiota (OSM) is important for eye health, and variations in OSM composition have been associated with multiple diseases in humans. Studies of OSM-disease dynamics in humans are confounded by lifestyle factors. Animal models provide a complementary approach to understanding biological systems, free from many confounds of human studies. Here, we provide the first study of the OSM of rhesus macaques, a premier animal model for eye health and disease. We describe the taxonomy of the rhesus macaque OSM, and explore compositional correlations with age, sex, and living condition.</p><p><strong>Methods: </strong>We analyzed eyelid and conjunctival microbiota swabs from 132 individual rhesus macaques (Macaca mulatta) (57 males, 75 females, 1-26 years old) from one captive and one free-ranging group using 16 S rRNA V3/V4 MiSeq sequencing. We investigated alpha diversity, beta diversity, and differential abundance.</p><p><strong>Results: </strong>We found several similarities between the top Phyla and Genera of the rhesus macaque OSM and those reported in human literature. Significantly higher alpha diversity, which may reflect age-related ocular surface mucous membrane integrity and immune function, was present in younger individuals compared to older ones. Higher alpha diversity was also present in free-ranging rhesus macaques compared to ones in captivity, possibly related to differences in diet, exercise, and medical exposures between macaques in different living conditions. Beta diversity was most strongly influenced by individual identity, followed by living conditions. Sex did not correlate with any OSM variation.</p><p><strong>Conclusions: </strong>In this study we describe the taxonomic composition of the rhesus macaque OSM, and identify significant differences in alpha and beta diversity according to individual nonhuman primate host variables and the surrounding environment. Our findings suggest composition of the nonhuman primate OSM is shaped by age-related physiology, individual identity, and external living conditions. Our results offer novel insights into an underexplored region of the primate microbiome and highlight the utility of rhesus macaques as a model system for investigating the links between the OSM, ocular health, and disease.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"88"},"PeriodicalIF":4.4,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366034/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-13DOI: 10.1186/s42523-025-00450-8
Jinzhu Yang, Xiaoyang Yao, Zhonghao Zhang, Gang Lin, Mingzhu Li, Kangsen Mai, Yanjiao Zhang
Background: Microbiota sequencing has emerged a powerful tool for advancing aquatic nutrition research. However, few studies have comprehensively investigated the host microbiota's response to trace minerals. This study examined the role of organic copper supplementation in promoting the health of farmed white shrimp (Penaeus vannamei) from a microbiota perspective.
Results: In an 8-week feeding trial, shrimp were fed diets supplemented with no copper, 30 mg/kg inorganic copper (CuSO4·5H2O) or organic copper (Cu-proteinate). The apparent digestibility coefficients of copper and zinc, along with carbon and nitrogen assimilation, were determined. The V3-V4 region of the 16S rRNA gene was sequenced from feeds, intestines, gills, and water samples. Shrimp that fed the organic copper diet demonstrated healthier physiological status, higher apparent digestibility coefficients of both copper and zinc, as well as greater accumulation of copper, zinc, carbon, and nitrogen. The organic copper group exhibited distinct microbial diversity and a more complex microbial co-occurrence network, characterized by enhanced natural connectivity and robustness. Keystone taxa, including Vibrio, Candidatus_Bacilloplasma, and Photobacterium, contributed to network stability. Taxa associated with nutrient metabolism, including Butyricicoccus, Lactobacillus, and genera in the family Lachnospiraceae, Prevotellaceae, Rikenellaceae and Ruminococcaceae, were significantly enriched, correlating well with improved nutritional profiles. In accordance, functional annotation revealed that the organic copper group exhibited higher abundances of functional modules associated with nutrient and energy metabolism such as carbon and nitrogen cycling. Furthermore, host-selective pressure shaped the unique microbiota composition in the intestine and gill, which differed from the surrounding water and water source, with the gill microbiota potentially serving as a transitional bridge shaping the intestinal microbiota.
Conclusions: More stable host microbiota, enriched nutrient-metabolizing taxa, and enhanced ecological cycling in this study provide a potential strategy for innovative aqua-feed development. Our findings offer novel microbiota-centric insights into the role of organic copper in healthy shrimp farming.
{"title":"Unlocking microbiota potential: the role of organic copper in enhancing healthy white shrimp (Penaeus vannamei) farming.","authors":"Jinzhu Yang, Xiaoyang Yao, Zhonghao Zhang, Gang Lin, Mingzhu Li, Kangsen Mai, Yanjiao Zhang","doi":"10.1186/s42523-025-00450-8","DOIUrl":"10.1186/s42523-025-00450-8","url":null,"abstract":"<p><strong>Background: </strong>Microbiota sequencing has emerged a powerful tool for advancing aquatic nutrition research. However, few studies have comprehensively investigated the host microbiota's response to trace minerals. This study examined the role of organic copper supplementation in promoting the health of farmed white shrimp (Penaeus vannamei) from a microbiota perspective.</p><p><strong>Results: </strong>In an 8-week feeding trial, shrimp were fed diets supplemented with no copper, 30 mg/kg inorganic copper (CuSO<sub>4</sub>·5H<sub>2</sub>O) or organic copper (Cu-proteinate). The apparent digestibility coefficients of copper and zinc, along with carbon and nitrogen assimilation, were determined. The V3-V4 region of the 16S rRNA gene was sequenced from feeds, intestines, gills, and water samples. Shrimp that fed the organic copper diet demonstrated healthier physiological status, higher apparent digestibility coefficients of both copper and zinc, as well as greater accumulation of copper, zinc, carbon, and nitrogen. The organic copper group exhibited distinct microbial diversity and a more complex microbial co-occurrence network, characterized by enhanced natural connectivity and robustness. Keystone taxa, including Vibrio, Candidatus_Bacilloplasma, and Photobacterium, contributed to network stability. Taxa associated with nutrient metabolism, including Butyricicoccus, Lactobacillus, and genera in the family Lachnospiraceae, Prevotellaceae, Rikenellaceae and Ruminococcaceae, were significantly enriched, correlating well with improved nutritional profiles. In accordance, functional annotation revealed that the organic copper group exhibited higher abundances of functional modules associated with nutrient and energy metabolism such as carbon and nitrogen cycling. Furthermore, host-selective pressure shaped the unique microbiota composition in the intestine and gill, which differed from the surrounding water and water source, with the gill microbiota potentially serving as a transitional bridge shaping the intestinal microbiota.</p><p><strong>Conclusions: </strong>More stable host microbiota, enriched nutrient-metabolizing taxa, and enhanced ecological cycling in this study provide a potential strategy for innovative aqua-feed development. Our findings offer novel microbiota-centric insights into the role of organic copper in healthy shrimp farming.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"87"},"PeriodicalIF":4.4,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144849935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-12DOI: 10.1186/s42523-025-00452-6
Zou Yuting, Li Chenghao, Huang Jing, Yang Haochen, Luo Liang, Liew Honjung, Chang Yumei
Amur ide (Leuciscus waleckii), which inhabits Lake Dali, a soda lake in Northeast China with extremely high alkalinity (~ 53.57 mmol/L) and pH value (~ 9.6), is considered to be an ideal model for elucidating alkaline adaption mechanisms. To uncover the molecular mechanisms underlying this adaptation, we conducted a comparative study between the alkaline water ecotype (JY) and freshwater ecotype (DY). Both groups were exposed to a gradient of NaHCO3 stress levels (0, 10, 30, and 50 mmol/L), and their responses were systematically assessed through integrated multi-omics analyses alongside physiological assays. Our results revealed that under low and moderate alkaline stress (10 and 30 mmol/L), JY group significantly upregulated the gene anpep, facilitating the hydrolysis of cysteinyl-glycine to release L-cysteine, thereby enhancing antioxidant capacity. Under high stress conditions (50 mmol/L), JY further synergistically upregulated gpx to activated the glutathione peroxidase (GPx) pathway to eliminate excess ROS. In contrast, the DY group predominantly relied on upregulating chac1-mediated γ-glutamyltransferase activity to facilitate glutathione cycling. Notably, while cysteinyl-glycine content significantly increased in the alkaline water ecotype (JY) under moderate and high alkalinity stress (30 and 50 mmol/L), the expression of its upstream gene chac1 was significantly downregulated. This paradox suggests alternative sources or regulatory mechanisms for cysteinyl-glycine accumulation in JY. Microbial tracing analysis revealed a positive correlation between cysteinyl-glycine levels and the gut microbiota genus Stenotrophomonas in JY, whose relative abundance increased progressively with elevated alkalinity. It is speculated that Stenotrophomonas may modulate host glutathione metabolism by regulating cysteinyl-glycine levels, thereby facilitating alkaline adaptation.
{"title":"The influence of glutathione metabolism on alkaline adaptation of Amur ide (Leuciscus waleckii) and potential role of gut microbiota.","authors":"Zou Yuting, Li Chenghao, Huang Jing, Yang Haochen, Luo Liang, Liew Honjung, Chang Yumei","doi":"10.1186/s42523-025-00452-6","DOIUrl":"10.1186/s42523-025-00452-6","url":null,"abstract":"<p><p>Amur ide (Leuciscus waleckii), which inhabits Lake Dali, a soda lake in Northeast China with extremely high alkalinity (~ 53.57 mmol/L) and pH value (~ 9.6), is considered to be an ideal model for elucidating alkaline adaption mechanisms. To uncover the molecular mechanisms underlying this adaptation, we conducted a comparative study between the alkaline water ecotype (JY) and freshwater ecotype (DY). Both groups were exposed to a gradient of NaHCO<sub>3</sub> stress levels (0, 10, 30, and 50 mmol/L), and their responses were systematically assessed through integrated multi-omics analyses alongside physiological assays. Our results revealed that under low and moderate alkaline stress (10 and 30 mmol/L), JY group significantly upregulated the gene anpep, facilitating the hydrolysis of cysteinyl-glycine to release L-cysteine, thereby enhancing antioxidant capacity. Under high stress conditions (50 mmol/L), JY further synergistically upregulated gpx to activated the glutathione peroxidase (GPx) pathway to eliminate excess ROS. In contrast, the DY group predominantly relied on upregulating chac1-mediated γ-glutamyltransferase activity to facilitate glutathione cycling. Notably, while cysteinyl-glycine content significantly increased in the alkaline water ecotype (JY) under moderate and high alkalinity stress (30 and 50 mmol/L), the expression of its upstream gene chac1 was significantly downregulated. This paradox suggests alternative sources or regulatory mechanisms for cysteinyl-glycine accumulation in JY. Microbial tracing analysis revealed a positive correlation between cysteinyl-glycine levels and the gut microbiota genus Stenotrophomonas in JY, whose relative abundance increased progressively with elevated alkalinity. It is speculated that Stenotrophomonas may modulate host glutathione metabolism by regulating cysteinyl-glycine levels, thereby facilitating alkaline adaptation.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"86"},"PeriodicalIF":4.4,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144838702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-11DOI: 10.1186/s42523-025-00453-5
Varsha Kale, Germana Baldi, Martin Beracochea, Cecilie Clausen, Alejandra Escobar-Zepeda, Sabina Leanti La Rosa, Laurène A Lecaudey, Sen Li, Sarah S T Mak, Michael D Martin, Garazi Martin Bideguren, Louisa A Pless, Jacob A Rasmussen, Alexander B Rogers, Harald Sveier, Arturo Vera-Ponce de León, Ana Verissimo, M Thomas P Gilbert, Lorna Richardson, Morten T Limborg, Robert D Finn
Resolving the microbiome of the Atlantic salmon Salmo salar gut is challenged by a low microbial diversity often dominated by one or two species of bacteria, and high levels of host contamination in sequencing data. Nevertheless, existing metabarcoding and metagenomic studies consistently resolve a putative beneficial Mycoplasma species as the most abundant organism in gut samples. The remaining microbiome is heavily influenced by factors such as developmental stage and water salinity. We profiled the salmon gut microbiome across 540 salmon samples in differing conditions with a view to capture the genomic diversity that can be resolved from the salmon gut. The salmon were exposed to 3 different nutritional additives: seaweed, blue mussel protein and silaged blue mussel protein, including both pre-smolts (30-60 g salmon reared in freshwater) as well as post-smolts (300-600 g salmon reared in saltwater). Using genome-resolved metagenomics, we generated a catalogue of 11 species-level bacterial MAGs from 188 input metagenome assembled genomes, with 5 species not found in other catalogues. This highlights that our understanding of salmon gut microbial diversity is still incomplete. A prevalent bacterial genome annotated as Mycoplasmoidaceae is present in adult fish, and a comparison of functions revealed significant sub-species variation. Juvenile fish have a different microbial diversity, dominated by a species of Pseudomonas aeruginosa. We also present the first viral catalogue for salmon including prophage sequences which can be linked to the bacterial MAGs.
{"title":"A bacterial and viral genome catalogue from Atlantic salmon highlights diverse gut microbiome compositions at pre- and post-smolt life stages.","authors":"Varsha Kale, Germana Baldi, Martin Beracochea, Cecilie Clausen, Alejandra Escobar-Zepeda, Sabina Leanti La Rosa, Laurène A Lecaudey, Sen Li, Sarah S T Mak, Michael D Martin, Garazi Martin Bideguren, Louisa A Pless, Jacob A Rasmussen, Alexander B Rogers, Harald Sveier, Arturo Vera-Ponce de León, Ana Verissimo, M Thomas P Gilbert, Lorna Richardson, Morten T Limborg, Robert D Finn","doi":"10.1186/s42523-025-00453-5","DOIUrl":"10.1186/s42523-025-00453-5","url":null,"abstract":"<p><p>Resolving the microbiome of the Atlantic salmon Salmo salar gut is challenged by a low microbial diversity often dominated by one or two species of bacteria, and high levels of host contamination in sequencing data. Nevertheless, existing metabarcoding and metagenomic studies consistently resolve a putative beneficial Mycoplasma species as the most abundant organism in gut samples. The remaining microbiome is heavily influenced by factors such as developmental stage and water salinity. We profiled the salmon gut microbiome across 540 salmon samples in differing conditions with a view to capture the genomic diversity that can be resolved from the salmon gut. The salmon were exposed to 3 different nutritional additives: seaweed, blue mussel protein and silaged blue mussel protein, including both pre-smolts (30-60 g salmon reared in freshwater) as well as post-smolts (300-600 g salmon reared in saltwater). Using genome-resolved metagenomics, we generated a catalogue of 11 species-level bacterial MAGs from 188 input metagenome assembled genomes, with 5 species not found in other catalogues. This highlights that our understanding of salmon gut microbial diversity is still incomplete. A prevalent bacterial genome annotated as Mycoplasmoidaceae is present in adult fish, and a comparison of functions revealed significant sub-species variation. Juvenile fish have a different microbial diversity, dominated by a species of Pseudomonas aeruginosa. We also present the first viral catalogue for salmon including prophage sequences which can be linked to the bacterial MAGs.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"85"},"PeriodicalIF":4.4,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144823314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}