Pub Date : 2023-08-01DOI: 10.1016/j.stlm.2023.100119
Yannis CLAUDIC , David A. ZOPF , Melis OZKAN , Remi DI FRANCIA , Weiguo HU
Since the 1980s, 3D printing has considerably broadened its field of application. Although only recently developed, there are now several techniques that allow the custom design of 3D objects. Plastic surgery, with its wide range of surgical indications, also benefits from the various 3D printing techniques. It brings a precious help to the surgeon, whether it is within the framework of pre-operative planning, of the custom design of cutting tools in maxillofacial surgery, or within a pedagogical framework with the learning of surgical techniques to students or for the provision of more precise information to patients. This work first recalls the different modalities of three-dimensional printing, then describes the main uses of 3D printing in plastic surgery.
{"title":"Current use of 3D printing in plastic surgery","authors":"Yannis CLAUDIC , David A. ZOPF , Melis OZKAN , Remi DI FRANCIA , Weiguo HU","doi":"10.1016/j.stlm.2023.100119","DOIUrl":"10.1016/j.stlm.2023.100119","url":null,"abstract":"<div><p>Since the 1980s, 3D printing has considerably broadened its field of application. Although only recently developed, there are now several techniques that allow the custom design of 3D objects. Plastic surgery, with its wide range of surgical indications, also benefits from the various 3D printing techniques. It brings a precious help to the surgeon, whether it is within the framework of pre-operative planning, of the custom design of cutting tools in maxillofacial surgery, or within a pedagogical framework with the learning of surgical techniques to students or for the provision of more precise information to patients. This work first recalls the different modalities of three-dimensional printing, then describes the main uses of 3D printing in plastic surgery.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"11 ","pages":"Article 100119"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44308150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.stlm.2023.100118
Eryn Ling Yi Chan , Yi Lin Song , Kelvin Weng Chiong Foong , Ming Tak Chew
Aims
Twin blocks are appliances used for Class II skeletal discrepancies, where the lower jaw is positioned more posteriorly compared to the upper. The conventional method of fabrication of this appliance is tedious and labour-intensive; hence this study intends to explore the feasibility of a digital workflow to three-dimensionally (3D) print them.
Methods
Three sets of twin blocks, identical except for amount of offset (0.0 mm, 0.1 mm and 0.2 mm), were designed and 3D printed for 5 anonymized scans of patients with Class II skeletal discrepancies. The intaglio surfaces of the 0.0 mm offset twin blocks were scanned and superimposed onto their original computer-aided-design files. The resultant colour maps, root mean square (RMS) deviations, and percentage in-tolerance values at thresholds of 0.1 mm and 0.2 mm were assessed. The fit and retention of all twin blocks were assessed on their 3D printed models via a fit and retention score (FRS).
Results
The median RMS deviation was 0.10 mm; percentage in-tolerance values at thresholds of 0.1 mm and 0.2 mm were 79.90%, and 94.51%. Printing deviations occurred most often at labial and incisal edges anteriorly, and buccal and occlusal surfaces posteriorly. There was no significant difference between the total FRS for the three groups (p = 0.076). However, the frequency of satisfactory scores for upper fit (p = 0.049), lower fit (p = 0.018), upper retention (p = 0.038) and lower retention (p = 0.015) differed significantly between the three groups.
Conclusion
This study demonstrated the viability of a digital workflow to 3D print twin blocks. Print accuracy was satisfactory, with 0.1 mm offset providing the best fit and retention.
{"title":"3D printed twin block: A feasibility study","authors":"Eryn Ling Yi Chan , Yi Lin Song , Kelvin Weng Chiong Foong , Ming Tak Chew","doi":"10.1016/j.stlm.2023.100118","DOIUrl":"10.1016/j.stlm.2023.100118","url":null,"abstract":"<div><h3>Aims</h3><p>Twin blocks are appliances used for Class II skeletal discrepancies, where the lower jaw is positioned more posteriorly compared to the upper. The conventional method of fabrication of this appliance is tedious and labour-intensive; hence this study intends to explore the feasibility of a digital workflow to three-dimensionally (3D) print them.</p></div><div><h3>Methods</h3><p>Three sets of twin blocks, identical except for amount of offset (0.0 mm, 0.1 mm and 0.2 mm), were designed and 3D printed for 5 anonymized scans of patients with Class II skeletal discrepancies. The intaglio surfaces of the 0.0 mm offset twin blocks were scanned and superimposed onto their original computer-aided-design files. The resultant colour maps, root mean square (RMS) deviations, and percentage in-tolerance values at thresholds of 0.1 mm and 0.2 mm were assessed. The fit and retention of all twin blocks were assessed on their 3D printed models via a fit and retention score (FRS).</p></div><div><h3>Results</h3><p>The median RMS deviation was 0.10 mm; percentage in-tolerance values at thresholds of 0.1 mm and 0.2 mm were 79.90%, and 94.51%. Printing deviations occurred most often at labial and incisal edges anteriorly, and buccal and occlusal surfaces posteriorly. There was no significant difference between the total FRS for the three groups (<em>p</em> = 0.076). However, the frequency of satisfactory scores for upper fit (<em>p</em> = 0.049), lower fit (<em>p</em> = 0.018), upper retention (<em>p</em> = 0.038) and lower retention (<em>p</em> = 0.015) differed significantly between the three groups.</p></div><div><h3>Conclusion</h3><p>This study demonstrated the viability of a digital workflow to 3D print twin blocks. Print accuracy was satisfactory, with 0.1 mm offset providing the best fit and retention.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"11 ","pages":"Article 100118"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44432314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.stlm.2023.100116
Paolo Magagna, Michele Gallo, Loris Salvador
During imaging follow-up, the residual dissection after a type A repair dissection could progress and may require repair of the aortic arch and the distal aorta. Our approach for repairing the evolving dissection includes open aortic arch replacement involving all 3 supra-aortic branches in combination with the frozen elephant trunk (FET) technique (n = 14). Distal arch repair combines a vascular and endovascular treatment to treat aortic arch disease (n = 13). A 3D printed aorta model has been used preoperatively and intraoperatively to improve surgical results. Hereby we report our aortic arch surgical experience and results in the treatment for this challenging pathology.
{"title":"Aortic arch repair in chronic dissection using 3D-printing planning","authors":"Paolo Magagna, Michele Gallo, Loris Salvador","doi":"10.1016/j.stlm.2023.100116","DOIUrl":"10.1016/j.stlm.2023.100116","url":null,"abstract":"<div><p>During imaging follow-up, the residual dissection after a type A repair dissection could progress and may require repair of the aortic arch and the distal aorta. Our approach for repairing the evolving dissection includes open aortic arch replacement involving all 3 supra-aortic branches in combination with the frozen elephant trunk (FET) technique (<em>n</em> = 14). Distal arch repair combines a vascular and endovascular treatment to treat aortic arch disease (<em>n</em> = 13). A 3D printed aorta model has been used preoperatively and intraoperatively to improve surgical results. Hereby we report our aortic arch surgical experience and results in the treatment for this challenging pathology.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"11 ","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42479665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.stlm.2023.100120
Veeresh Rai , Anthony J. Kyser , Dylan A. Goodin , Mohamed Y. Mahmoud , Jill M. Steinbach-Rankins , Hermann B. Frieboes
Lactobacilli, play a beneficial role in the female reproductive tract (FRT), regulating pH via lactic acid metabolism to help maintain a healthy environment. Bacterial vaginosis (BV) is characterized by a dysregulated flora in which anaerobes such as Gardnerella vaginalis (Gardnerella) create a less acidic environment. Current treatment focuses on antibiotic administration, including metronidazole, clindamycin, or tinidazole; however, lack of patient compliance as wel as antibiotic resistance may contribute to 50% recurrence within a year. Recently, locally administered probiotic such as Lactobacillus crispatus (L. crispatus) have been evaluated as a prophylactic against recurrence. To mitigate the lack of patient compliance, sustained probiotic delivery has been proposed via 3D-bioprinted delivery vehicles. Successful delivery depends on a variety of vehicle fabrication parameters influencing timing and rate of probiotic recovery; detailed evaluation of these parameters would benefit from computational modeling complementary to experimental evaluation. This study implements a novel simulation platform to evaluate sustained delivery of probiotics from 3D-bioprinted scaffolds, taking into consideration bacterial lactic acid production and associated pH changes. The results show that the timing and rate of probiotic recovery can be realistically simulated based on fabrication parameters that affect scaffold degradation and probiotic survival. Longer term, the proposed approach could help personalize localized probiotic delivery to the FRT to advance women's health.
{"title":"Computational modeling of probiotic recovery from 3D-bioprinted scaffolds for localized vaginal application","authors":"Veeresh Rai , Anthony J. Kyser , Dylan A. Goodin , Mohamed Y. Mahmoud , Jill M. Steinbach-Rankins , Hermann B. Frieboes","doi":"10.1016/j.stlm.2023.100120","DOIUrl":"10.1016/j.stlm.2023.100120","url":null,"abstract":"<div><p>Lactobacilli, play a beneficial role in the female reproductive tract (FRT), regulating pH via lactic acid metabolism to help maintain a healthy environment. Bacterial vaginosis (BV) is characterized by a dysregulated flora in which anaerobes such as <em>Gardnerella vaginalis</em> (<em>Gardnerella</em>) create a less acidic environment. Current treatment focuses on antibiotic administration, including metronidazole, clindamycin, or tinidazole; however, lack of patient compliance as wel as antibiotic resistance may contribute to 50% recurrence within a year. Recently, locally administered probiotic such as <em>Lactobacillus crispatus</em> (<em>L. crispatus</em>) have been evaluated as a prophylactic against recurrence. To mitigate the lack of patient compliance, sustained probiotic delivery has been proposed via 3D-bioprinted delivery vehicles. Successful delivery depends on a variety of vehicle fabrication parameters influencing timing and rate of probiotic recovery; detailed evaluation of these parameters would benefit from computational modeling complementary to experimental evaluation. This study implements a novel simulation platform to evaluate sustained delivery of probiotics from 3D-bioprinted scaffolds, taking into consideration bacterial lactic acid production and associated pH changes. The results show that the timing and rate of probiotic recovery can be realistically simulated based on fabrication parameters that affect scaffold degradation and probiotic survival. Longer term, the proposed approach could help personalize localized probiotic delivery to the FRT to advance women's health.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"11 ","pages":"Article 100120"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10075812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adolescent idiopathic scoliosis (AIS) is a noticeable spinal deformity in both adult and adolescent population. In majority of the cases, the gold standard of treatment is surgical intervention. Technological advancements in medical imaging and 3D printing have revolutionised the surgical planning and intraoperative decision making for surgeons in spinal surgery. However, its applicability for planning complex spinal surgeries is poorly documented with human subjects. The objective of this study is to evaluate the accuracy of 3D printed models for complex spinal deformities based on Cobb angles between 40° to 95°.This is a retrospective cohort study where, five CT scans of the patients with AIS were segmented and 3D printed for evaluating the accuracy. Consideration was given to the Inter-patient and acquisition apparatus variability of the CT-scan dataset to understand the effect on trueness and accuracy of the developed CAD models. The developed anatomical models were re-scanned for analysing quantitative surface deviation to assess the accuracy of 3D printed spinal models. Results show that the average of the root mean square error (RMSE) between the 3DP models and virtual models developed using CT scan of mean surface deviations for the five 3d printed models was found to be 0.5±0.07 mm. Based on the RMSE, it can be concluded that 3D printing based workflow is accurate enough to be used for presurgical planning for complex adolescent spinal deformities. Image acquisition and post processing parameters, type of 3D printing technology plays key role in acquiring required accuracy for surgical applications.
{"title":"Accuracy of 3D printed spine models for pre-surgical planning of complex adolescent idiopathic scoliosis (AIS) in spinal surgeries: a case series","authors":"Abir Dutta , Menaka Singh , Kathryn Kumar , Aida Ribera Navarro , Rodney Santiago , Ruchi Pathak Kaul , Sanganagouda Patil , Deepak M Kalaskar","doi":"10.1016/j.stlm.2023.100117","DOIUrl":"10.1016/j.stlm.2023.100117","url":null,"abstract":"<div><p>Adolescent idiopathic scoliosis (AIS) is a noticeable spinal deformity in both adult and adolescent population. In majority of the cases, the gold standard of treatment is surgical intervention. Technological advancements in medical imaging and 3D printing have revolutionised the surgical planning and intraoperative decision making for surgeons in spinal surgery. However, its applicability for planning complex spinal surgeries is poorly documented with human subjects. The objective of this study is to evaluate the accuracy of 3D printed models for complex spinal deformities based on Cobb angles between 40° to 95°.This is a retrospective cohort study where, five CT scans of the patients with AIS were segmented and 3D printed for evaluating the accuracy. Consideration was given to the Inter-patient and acquisition apparatus variability of the CT-scan dataset to understand the effect on trueness and accuracy of the developed CAD models. The developed anatomical models were re-scanned for analysing quantitative surface deviation to assess the accuracy of 3D printed spinal models. Results show that the average of the root mean square error (RMSE) between the 3DP models and virtual models developed using CT scan of mean surface deviations for the five 3d printed models was found to be 0.5±0.07 mm. Based on the RMSE, it can be concluded that 3D printing based workflow is accurate enough to be used for presurgical planning for complex adolescent spinal deformities. Image acquisition and post processing parameters, type of 3D printing technology plays key role in acquiring required accuracy for surgical applications.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"11 ","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10047342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.stlm.2023.100107
Olivier Schottey , Stijn E.F. Huys , G. Harry van Lenthe , Maurice Y. Mommaerts , Jos Vander Sloten
Segmental defects affecting the continuity of the mandible have a profound impact on a patient's quality of life. Adequate reconstruction of such continuity defects is essential to restore aesthetics and function. While reconstruction using an autologous bone transplant supported by a stock reconstruction plate is the gold standard treatment, it has various drawbacks that can be attested to the plates’ off-the-shelf nature.
To mitigate these drawbacks, this study develops a patient-specific implant for the reconstruction of Brown class II defects with a high ramal osteotomy. The implant is intended to be additively manufactured in Ti6Al4V grade 23 ELI and features porous scaffold zones at the symphyseal and condylar sides which can induce bone ingrowth.
Finite element (FE) analyses were used to assess the implants’ performance in terms of failure, stability and stress shielding by simulating four clenching tasks. In addition, the implant was topologically optimized and re-evaluated.
The results showed that the implant experienced stress below its yield strength and fatigue limit. Relative micromotions between the implant and the bone indicated adequate stability to allow bone ingrowth to occur. Strains in the bone indicated limited stress shielding should occur between screw connections and around the osteotomy planes.
Finally, topological optimization reduced implant volume by 49% compared to the initial design, while FE analyses showed similar performance to the original design. The resulting implant is a promising first prototype that is numerically evaluated and can be optimized further in terms of fixation, surgical approach and dental restoration by in situ testing.
{"title":"Development of a topologically optimized patient-specific mandibular reconstruction implant for a Brown class II defect","authors":"Olivier Schottey , Stijn E.F. Huys , G. Harry van Lenthe , Maurice Y. Mommaerts , Jos Vander Sloten","doi":"10.1016/j.stlm.2023.100107","DOIUrl":"10.1016/j.stlm.2023.100107","url":null,"abstract":"<div><p>Segmental defects affecting the continuity of the mandible have a profound impact on a patient's quality of life. Adequate reconstruction of such continuity defects is essential to restore aesthetics and function. While reconstruction using an autologous bone transplant supported by a stock reconstruction plate is the gold standard treatment, it has various drawbacks that can be attested to the plates’ off-the-shelf nature.</p><p>To mitigate these drawbacks, this study develops a patient-specific implant for the reconstruction of Brown class II defects with a high ramal osteotomy. The implant is intended to be additively manufactured in Ti6Al4V grade 23 ELI and features porous scaffold zones at the symphyseal and condylar sides which can induce bone ingrowth.</p><p>Finite element (FE) analyses were used to assess the implants’ performance in terms of failure, stability and stress shielding by simulating four clenching tasks. In addition, the implant was topologically optimized and re-evaluated.</p><p>The results showed that the implant experienced stress below its yield strength and fatigue limit. Relative micromotions between the implant and the bone indicated adequate stability to allow bone ingrowth to occur. Strains in the bone indicated limited stress shielding should occur between screw connections and around the osteotomy planes.</p><p>Finally, topological optimization reduced implant volume by 49% compared to the initial design, while FE analyses showed similar performance to the original design. The resulting implant is a promising first prototype that is numerically evaluated and can be optimized further in terms of fixation, surgical approach and dental restoration by in situ testing.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"10 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44938359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel 3D-printed glucose sensor is presented for cell culture application. Glucose sensing was performed using a fluorescence resonance energy transfer (FRET)-based assay principle based on ConA and dextran. Both molecules are encapsulated in alginate microspheres and embedded in the UV-curable, stable hydrogel polyvinyl alcohol (PVA). The rheology of the formulation was adapted to obtain good properties for an extrusion-based printing process. The printed sensor structures were tested for their ability to detect glucose in vitro. A proportional increase in fluorescence intensity was observed in a concentration range of 0 - 2 g/L glucose. Tests with HEK cell cultures also showed good cell compatibility and excellent adhesion properties on plasma-treated Petri dishes. The printed sensors were able to detect the glucose decay associated with the metabolic activities of the fast-growing HEK cells in the cell culture medium over ten days. The proof-of-principle study shows that metabolic processes in cell cultures can be monitored with the new printed sensor using a standard fluorescence wide-field microscope.
{"title":"3D printed biosensor for continuous glucose measurement in cell cultures","authors":"Nenad Krstić , Jens Jüttner , Lars Giegerich , Margot Mayer , Monika Knuth , Achim Müller , Christiane Thielemann","doi":"10.1016/j.stlm.2023.100111","DOIUrl":"10.1016/j.stlm.2023.100111","url":null,"abstract":"<div><p>A novel 3D-printed glucose sensor is presented for cell culture application. Glucose sensing was performed using a fluorescence resonance energy transfer (FRET)-based assay principle based on ConA and dextran. Both molecules are encapsulated in alginate microspheres and embedded in the UV-curable, stable hydrogel polyvinyl alcohol (PVA). The rheology of the formulation was adapted to obtain good properties for an extrusion-based printing process. The printed sensor structures were tested for their ability to detect glucose <em>in vitro</em>. A proportional increase in fluorescence intensity was observed in a concentration range of 0 - 2 g/L glucose. Tests with HEK cell cultures also showed good cell compatibility and excellent adhesion properties on plasma-treated Petri dishes. The printed sensors were able to detect the glucose decay associated with the metabolic activities of the fast-growing HEK cells in the cell culture medium over ten days. The proof-of-principle study shows that metabolic processes in cell cultures can be monitored with the new printed sensor using a standard fluorescence wide-field microscope.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"10 ","pages":"Article 100111"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49665423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.stlm.2023.100108
Yu-Hui Huang MD, MS , David Nascene MD , Benjamin Spilseth MD, MBA , Jeffrey A. Chuy MD
Background
Nasal bridles help prevent nasoenteric feeding tube dislodgement. If placed incorrectly, nasal bridles can cause injury, epistaxis, skin ulceration, or failure to prevent dislodgment. Training is frequently performed on patients, which can lead to discomfort or complications. To improve training prior to placing nasal bridles in patients, we utilized an anatomically accurate 3D printed simulator for nasal bridle placement training.
Methods
The model was modified from a nasopharyngeal swab simulator by BONE 3D, which was developed from imaging data through segmentation, computer-aided design, and 3D printing. Eighteen radiology residents and 3 medical students received a pre-test covering the anatomical knowledge and technique relevant to nasal bridle placement followed by a training session using the model. After training, participants provided feedback on the impact of training with the model on anatomical knowledge, hands-on skills, and confidence via a post-test using a 5-point Likert scale [from 1 (not beneficial/confident) to 5 (extremely beneficial/ confident)].
Results
Twenty participants completed both pre- and post-tests. The group performed significantly better on the post-test (4.8 ± 0.52) than the pre-test (2.6 ± 1.64), and the intervention demonstrated a large effect on knowledge (p < 0.0001; d = 1.82) and confidence level (p < 0.0001, d = 2.45) with mean magnitude of improvement of 2.3 out of 5 points. All respondents requested the 3D printed model be offered in formal training.
Conclusions
An anatomically accurate 3D printed model is a feasible and acceptable training aid with the potential to facilitate novice knowledge, proficiency, and confidence for nasal bridle placement.
背景:鼻笼头有助于防止鼻肠饲管移位。如果放置不正确,鼻笼头会造成损伤、鼻出血、皮肤溃疡或无法防止脱臼。经常对患者进行训练,这可能导致不适或并发症。为了改善患者放置鼻笼头前的训练,我们使用了解剖学上精确的3D打印模拟器进行鼻笼头放置训练。方法使用BONE 3D软件对鼻咽拭子模拟器进行模型修饰,将影像数据进行分割、计算机辅助设计和3D打印。18名放射科住院医师和3名医科学生接受了有关鼻笼头放置的解剖学知识和技术的预测试,随后进行了使用该模型的培训。培训后,参与者通过使用5点李克特量表(从1(无益/自信)到5(非常有益/自信))的后测,就模型培训对解剖学知识、动手技能和信心的影响提供反馈。结果20名受试者完成了前后测试。实验组在测试后得分(4.8±0.52)显著高于测试前得分(2.6±1.64),干预对知识有显著影响(p <0.0001;D = 1.82)和置信水平(p <0.0001, d = 2.45),平均改善幅度为2.3(满分为5分)。所有受访者都要求在正式培训中提供3D打印模型。结论解剖精确的3D打印模型是一种可行且可接受的训练辅助工具,有可能提高新手对鼻笼头放置的知识、熟练程度和信心。
{"title":"High-fidelity simulation training for nasal bridle placement with a 3D printed model","authors":"Yu-Hui Huang MD, MS , David Nascene MD , Benjamin Spilseth MD, MBA , Jeffrey A. Chuy MD","doi":"10.1016/j.stlm.2023.100108","DOIUrl":"10.1016/j.stlm.2023.100108","url":null,"abstract":"<div><h3>Background</h3><p>Nasal bridles help prevent nasoenteric feeding tube dislodgement. If placed incorrectly, nasal bridles can cause injury, epistaxis, skin ulceration, or failure to prevent dislodgment. Training is frequently performed on patients, which can lead to discomfort or complications. To improve training prior to placing nasal bridles in patients, we utilized an anatomically accurate 3D printed simulator for nasal bridle placement training.</p></div><div><h3>Methods</h3><p>The model was modified from a nasopharyngeal swab simulator by BONE 3D, which was developed from imaging data through segmentation, computer-aided design, and 3D printing. Eighteen radiology residents and 3 medical students received a pre-test covering the anatomical knowledge and technique relevant to nasal bridle placement followed by a training session using the model. After training, participants provided feedback on the impact of training with the model on anatomical knowledge, hands-on skills, and confidence <em>via</em> a post-test using a 5-point Likert scale [from 1 (not beneficial/confident) to 5 (extremely beneficial/ confident)].</p></div><div><h3>Results</h3><p>Twenty participants completed both pre- and post-tests. The group performed significantly better on the post-test (4.8 ± 0.52) than the pre-test (2.6 ± 1.64), and the intervention demonstrated a large effect on knowledge (<em>p</em> < 0.0001; <em>d</em> = 1.82) and confidence level (<em>p</em> < 0.0001, <em>d</em> = 2.45) with mean magnitude of improvement of 2.3 out of 5 points. All respondents requested the 3D printed model be offered in formal training.</p></div><div><h3>Conclusions</h3><p>An anatomically accurate 3D printed model is a feasible and acceptable training aid with the potential to facilitate novice knowledge, proficiency, and confidence for nasal bridle placement.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"10 ","pages":"Article 100108"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48894226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.stlm.2023.100109
Steve Maisi , Mauro Dominguez , Peta Charmaine Gilong , Chung Tze Kiong , Syarfa Hajam , Ahmad Fadhli Ahmad Badruddin , Han Fong Siew , Saravanan Gopalan , Kok Tuck Choon
The fibula free flap (FFF) surgery has long been used for complicated mandibular reconstruction. Virtual surgical planning (VSP) has been incorporated into the reconstruction planning by surgeons and has been found to reduce operating time and surgeon stress intraoperatively. When compared to traditional reconstruction, VSP enhances accuracy, surgical efficiency, and clinical outcomes. However, VSP on the other hand, need advanced technology such as software and 3D printing equipment, which are not always accessible in all centres. We describe our workflow on VSP reconstruction of the mandible with FFF by using open-source software.
Methods
Three patients underwent mandible reconstruction with FFF. VSP was used for all reconstruction planning.
Results
The mean operative time was min 765 minutes (range: 615 – 960 minutes), the mean ischemic time was 260 minutes (range: 120 – 355 minutes) and the mean length of stay was 10.7 days (range: 10 – 12 days). There were no flap failures. There were no major complications.
Conclusion
VSP is a very viable method that saves time and cost, making surgery more efficient.
{"title":"In-house virtual surgical planning for mandibular reconstruction with fibula free flap: Case series and literature review","authors":"Steve Maisi , Mauro Dominguez , Peta Charmaine Gilong , Chung Tze Kiong , Syarfa Hajam , Ahmad Fadhli Ahmad Badruddin , Han Fong Siew , Saravanan Gopalan , Kok Tuck Choon","doi":"10.1016/j.stlm.2023.100109","DOIUrl":"10.1016/j.stlm.2023.100109","url":null,"abstract":"<div><p>The fibula free flap (FFF) surgery has long been used for complicated mandibular reconstruction. Virtual surgical planning (VSP) has been incorporated into the reconstruction planning by surgeons and has been found to reduce operating time and surgeon stress intraoperatively. When compared to traditional reconstruction, VSP enhances accuracy, surgical efficiency, and clinical outcomes. However, VSP on the other hand, need advanced technology such as software and 3D printing equipment, which are not always accessible in all centres. We describe our workflow on VSP reconstruction of the mandible with FFF by using open-source software.</p></div><div><h3>Methods</h3><p>Three patients underwent mandible reconstruction with FFF. VSP was used for all reconstruction planning.</p></div><div><h3>Results</h3><p>The mean operative time was min 765 minutes (range: 615 – 960 minutes), the mean ischemic time was 260 minutes (range: 120 – 355 minutes) and the mean length of stay was 10.7 days (range: 10 – 12 days). There were no flap failures. There were no major complications.</p></div><div><h3>Conclusion</h3><p>VSP is a very viable method that saves time and cost, making surgery more efficient.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"10 ","pages":"Article 100109"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48151387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}