Sesamoidectomy can be associated with multiple complications secondary to loss of the intrinsic function of the excised sesamoid. We sought to mitigate these complications by preserving sesamoid function with a total sesamoid replacement (TSR) in lieu of sesamoidectomy.
Patient specific 3D printed TSR implants were designed and implanted for three patients who had exhaustively failed conservative measures. Follow up ranges from 7-36 months during which we evaluated for complications, symptom resolution, and patient satisfaction.
All patients had complete resolution of pain between 3.5-12 months postop and have remained satisfied with their outcome. No evidence of the aforementioned complications was observed.
TSR may represent a viable alternative treatment option for most cases in which sesamoidectomy would otherwise be considered.
IV, case series.
Additive manufacturing has developed rapidly in recent years and has many useful applications in the clinical field. In particular, cranio-maxillo-facial (CMF) surgery requires high precision, which can be obtained with 3D printed patient-specific surgical guides and anatomical models. Among the many different printing options, selective laser sintering (SLS) seems to be rarely used in point-of-care applications, considering its apparent characteristics.
This article examines the advantages and disadvantages of SLS printers for CMF point-of-care (PoC) by reviewing the literature and comparing in-house printed SLS and stereolithography (SLA) prints.
The investigation showed that the easily sterilizable and robust materials processed by SLS printing are well suited for CMF surgical guides and have clear advantages over SLA parts.
Some barriers to the use of SLS printers in PoC are likely to be the slightly higher complexity and cost.
However, these will decrease as 3D printing technology advances and surgeon acceptance increases, making SLS a practical PoC tool.
Non-neurosurgeons in regional and rural hospitals may be required to operate on patients presenting with a traumatic brain injury where timely transfer to a tertiary hospital is not possible. Confidence and experience can vary significantly due to limited access to hands-on training. Increasing availability to advanced 3D printed models opens new opportunities to provide accurate head models suitable for this purpose. This study evaluated the experience of regional clinicians and nurses following a neurotrauma workshop where 3D printed head models were used to provide training in burr hole and craniotomy procedures.
A neurotrauma seminar and workshop was hosted at the Sunshine Coast Health Institute, in the state of Queensland, Australia. The workshop component allowed 26 local clinicians and nurses to gain hands-on experience with a 3D printed head model, guided by neurosurgeons from the closest tertiary hospital. Following training, participants completed a short survey.
Prior to this workshop, most participants had never performed a burr hole (58 %, n=15) or interacted with a 3D printed model (69 %, n=18). Overall, most participants indicated that the 3D printed model performed better (58 %, n=15) and much better (15 %, n=4) than their expectations. 81 % (n=21) left the workshop with improved confidence in performing burr hole and craniotomy procedures. Despite some melting of the plastic, 96 % (n=25) of participants would recommend this model to their colleagues.

