Pub Date : 2023-06-14DOI: 10.1146/annurev-anchem-091522-110825
Phoebe Zito, David C Podgorski, Matthew A Tarr
Despite the fact that oil chemistry and oils spills have been studied for many years, there are still emerging techniques and unknown processes to be explored. The 2010 Deepwater Horizon oil spill in the Gulf of Mexico resulted in a revival of oil spill research across a wide range of fields. These studies provided many new insights, but unanswered questions remain. Over 1,000 journal articles related to the Deepwater Horizon spill are indexed by the Chemical Abstract Service. Numerous ecological, human health, and organismal studies were published. Analytical tools applied to the spill include mass spectrometry, chromatography, and optical spectroscopy. Owing to the large scale of studies, this review focuses on three emerging areas that have been explored but remain underutilized in oil spill characterization: excitation-emission matrix spectroscopy, black carbon analysis, and trace metal analysis using inductively coupled plasma mass spectrometry.
{"title":"Emerging Chemical Methods for Petroleum and Petroleum-Derived Dissolved Organic Matter Following the Deepwater Horizon Oil Spill.","authors":"Phoebe Zito, David C Podgorski, Matthew A Tarr","doi":"10.1146/annurev-anchem-091522-110825","DOIUrl":"https://doi.org/10.1146/annurev-anchem-091522-110825","url":null,"abstract":"<p><p>Despite the fact that oil chemistry and oils spills have been studied for many years, there are still emerging techniques and unknown processes to be explored. The 2010 Deepwater Horizon oil spill in the Gulf of Mexico resulted in a revival of oil spill research across a wide range of fields. These studies provided many new insights, but unanswered questions remain. Over 1,000 journal articles related to the Deepwater Horizon spill are indexed by the Chemical Abstract Service. Numerous ecological, human health, and organismal studies were published. Analytical tools applied to the spill include mass spectrometry, chromatography, and optical spectroscopy. Owing to the large scale of studies, this review focuses on three emerging areas that have been explored but remain underutilized in oil spill characterization: excitation-emission matrix spectroscopy, black carbon analysis, and trace metal analysis using inductively coupled plasma mass spectrometry.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":"16 1","pages":"429-450"},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9624079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-14DOI: 10.1146/annurev-anchem-091922-073057
Trung Duc Nguyen, Yuan-I Chen, Limin H Chen, Hsin-Chih Yeh
Since the early 1990s, single-molecule detection in solution at room temperature has enabled direct observation of single biomolecules at work in real time and under physiological conditions, providing insights into complex biological systems that the traditional ensemble methods cannot offer. In particular, recent advances in single-molecule tracking techniques allow researchers to follow individual biomolecules in their native environments for a timescale of seconds to minutes, revealing not only the distinct pathways these biomolecules take for downstream signaling but also their roles in supporting life. In this review, we discuss various single-molecule tracking and imaging techniques developed to date, with an emphasis on advanced three-dimensional (3D) tracking systems that not only achieve ultrahigh spatiotemporal resolution but also provide sufficient working depths suitable for tracking single molecules in 3D tissue models. We then summarize the observables that can be extracted from the trajectory data. Methods to perform single-molecule clustering analysis and future directions are also discussed.
{"title":"Recent Advances in Single-Molecule Tracking and Imaging Techniques.","authors":"Trung Duc Nguyen, Yuan-I Chen, Limin H Chen, Hsin-Chih Yeh","doi":"10.1146/annurev-anchem-091922-073057","DOIUrl":"10.1146/annurev-anchem-091922-073057","url":null,"abstract":"<p><p>Since the early 1990s, single-molecule detection in solution at room temperature has enabled direct observation of single biomolecules at work in real time and under physiological conditions, providing insights into complex biological systems that the traditional ensemble methods cannot offer. In particular, recent advances in single-molecule tracking techniques allow researchers to follow individual biomolecules in their native environments for a timescale of seconds to minutes, revealing not only the distinct pathways these biomolecules take for downstream signaling but also their roles in supporting life. In this review, we discuss various single-molecule tracking and imaging techniques developed to date, with an emphasis on advanced three-dimensional (3D) tracking systems that not only achieve ultrahigh spatiotemporal resolution but also provide sufficient working depths suitable for tracking single molecules in 3D tissue models. We then summarize the observables that can be extracted from the trajectory data. Methods to perform single-molecule clustering analysis and future directions are also discussed.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":"16 1","pages":"253-284"},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9634480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-14DOI: 10.1146/annurev-anchem-091522-024759
Kemilly M P Pinheiro, Bárbara G S Guinati, Nikaele S Moreira, Wendell K T Coltro
Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.
{"title":"Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases.","authors":"Kemilly M P Pinheiro, Bárbara G S Guinati, Nikaele S Moreira, Wendell K T Coltro","doi":"10.1146/annurev-anchem-091522-024759","DOIUrl":"https://doi.org/10.1146/annurev-anchem-091522-024759","url":null,"abstract":"<p><p>Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":"16 1","pages":"117-138"},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9640273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-14DOI: 10.1146/annurev-anchem-091222-112115
Félix Hernández, David Fabregat-Safont, Marina Campos-Mañas, José Benito Quintana
This article critically reviews analytical method validation and quality control applied to the environmental chemistry field. The review focuses on the determination of organic micropollutants (OMPs), specifically emerging contaminants and pesticides, in the aquatic environment. The analytical technique considered is (gas and liquid) chromatography coupled to mass spectrometry (MS), including high-resolution MS for wide-scope screening purposes. An analysis of current research practices outlined in the literature has been performed, and key issues and analytical challenges are identified and critically discussed. It is worth emphasizing the lack of specific guidelines applied to environmental analytical chemistry and the minimal regulation of OMPs in waters, which greatly affect method development and performance, requirements for method validation, and the subsequent application to samples. Finally, a proposal is made for method validation and data reporting, which can be understood as starting points for further discussion with specialists in environmental analytical chemistry.
{"title":"Efficient Validation Strategies in Environmental Analytical Chemistry: A Focus on Organic Micropollutants in Water Samples.","authors":"Félix Hernández, David Fabregat-Safont, Marina Campos-Mañas, José Benito Quintana","doi":"10.1146/annurev-anchem-091222-112115","DOIUrl":"https://doi.org/10.1146/annurev-anchem-091222-112115","url":null,"abstract":"<p><p>This article critically reviews analytical method validation and quality control applied to the environmental chemistry field. The review focuses on the determination of organic micropollutants (OMPs), specifically emerging contaminants and pesticides, in the aquatic environment. The analytical technique considered is (gas and liquid) chromatography coupled to mass spectrometry (MS), including high-resolution MS for wide-scope screening purposes. An analysis of current research practices outlined in the literature has been performed, and key issues and analytical challenges are identified and critically discussed. It is worth emphasizing the lack of specific guidelines applied to environmental analytical chemistry and the minimal regulation of OMPs in waters, which greatly affect method development and performance, requirements for method validation, and the subsequent application to samples. Finally, a proposal is made for method validation and data reporting, which can be understood as starting points for further discussion with specialists in environmental analytical chemistry.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":"16 1","pages":"401-428"},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9683551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-13DOI: 10.1146/annurev-anchem-061020-015110
Bryce Manifold, Dan Fu
Since its first demonstration, stimulated Raman scattering (SRS) microscopy has become a powerful chemical imaging tool that shows promise in numerous biological and biomedical applications. The spectroscopic capability of SRS enables identification and tracking of specific molecules or classes of molecules, often without labeling. SRS microscopy also has the hallmark advantage of signal strength that is directly proportional to molecular concentration, allowing for in situ quantitative analysis of chemical composition of heterogeneous samples with submicron spatial resolution and subminute temporal resolution. However, it is important to recognize that quantification through SRS microscopy requires assumptions regarding both system and sample. Such assumptions are often taken axiomatically, which may lead to erroneous conclusions without proper validation. In this review, we focus on the tacitly accepted, yet complex, quantitative aspect of SRS microscopy. We discuss the various approaches to quantitative analysis, examples of such approaches, challenges in different systems, and potential solutions. Through our examination of published literature, we conclude that a scrupulous approach to experimental design can further expand the powerful and incisive quantitative capabilities of SRS microscopy.
{"title":"Quantitative Stimulated Raman Scattering Microscopy: Promises and Pitfalls.","authors":"Bryce Manifold, Dan Fu","doi":"10.1146/annurev-anchem-061020-015110","DOIUrl":"https://doi.org/10.1146/annurev-anchem-061020-015110","url":null,"abstract":"<p><p>Since its first demonstration, stimulated Raman scattering (SRS) microscopy has become a powerful chemical imaging tool that shows promise in numerous biological and biomedical applications. The spectroscopic capability of SRS enables identification and tracking of specific molecules or classes of molecules, often without labeling. SRS microscopy also has the hallmark advantage of signal strength that is directly proportional to molecular concentration, allowing for in situ quantitative analysis of chemical composition of heterogeneous samples with submicron spatial resolution and subminute temporal resolution. However, it is important to recognize that quantification through SRS microscopy requires assumptions regarding both system and sample. Such assumptions are often taken axiomatically, which may lead to erroneous conclusions without proper validation. In this review, we focus on the tacitly accepted, yet complex, quantitative aspect of SRS microscopy. We discuss the various approaches to quantitative analysis, examples of such approaches, challenges in different systems, and potential solutions. Through our examination of published literature, we conclude that a scrupulous approach to experimental design can further expand the powerful and incisive quantitative capabilities of SRS microscopy.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":"15 1","pages":"269-289"},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083020/pdf/nihms-1877357.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9622028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-13DOI: 10.1146/annurev-anchem-061020-123959
Taichiro Nonaka, David T W Wong
Cancer remains one of the leading causes of death, and early detection of this disease is crucial for increasing survival rates. Although cancer can be diagnosed following tissue biopsy, the biopsy procedure is invasive; liquid biopsy provides an alternative that is more comfortable for the patient. While blood, urine, and cerebral spinal fluid can all be used as a source of liquid biopsy, saliva is an ideal source of body fluid that is readily available and easily collected in the most noninvasive manner. Characterization of salivary constituents in the disease setting provides critical data for understanding pathophysiology and the evaluation of diagnostic potential. The aim of saliva diagnostics is therefore to develop a rapid and noninvasive detection of oral and systemic diseases that could be used together with compact analysis systems in the clinic to facilitate point-of-care diagnostics.
{"title":"Saliva Diagnostics.","authors":"Taichiro Nonaka, David T W Wong","doi":"10.1146/annurev-anchem-061020-123959","DOIUrl":"10.1146/annurev-anchem-061020-123959","url":null,"abstract":"<p><p>Cancer remains one of the leading causes of death, and early detection of this disease is crucial for increasing survival rates. Although cancer can be diagnosed following tissue biopsy, the biopsy procedure is invasive; liquid biopsy provides an alternative that is more comfortable for the patient. While blood, urine, and cerebral spinal fluid can all be used as a source of liquid biopsy, saliva is an ideal source of body fluid that is readily available and easily collected in the most noninvasive manner. Characterization of salivary constituents in the disease setting provides critical data for understanding pathophysiology and the evaluation of diagnostic potential. The aim of saliva diagnostics is therefore to develop a rapid and noninvasive detection of oral and systemic diseases that could be used together with compact analysis systems in the clinic to facilitate point-of-care diagnostics.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":"15 1","pages":"107-121"},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348814/pdf/nihms-1824142.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9614429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-13Epub Date: 2022-03-24DOI: 10.1146/annurev-anchem-061020-022048
Eduardo A De La Toba, Sara E Bell, Elena V Romanova, Jonathan V Sweedler
Neuropeptides (NPs), a unique class of neuronal signaling molecules, participate in a variety of physiological processes and diseases. Quantitative measurements of NPs provide valuable information regarding how these molecules are differentially regulated in a multitude of neurological, metabolic, and mental disorders. Mass spectrometry (MS) has evolved to become a powerful technique for measuring trace levels of NPs in complex biological tissues and individual cells using both targeted and exploratory approaches. There are inherent challenges to measuring NPs, including their wide endogenous concentration range, transport and postmortem degradation, complex sample matrices, and statistical processing of MS data required for accurate NP quantitation. This review highlights techniques developed to address these challenges and presents an overview of quantitative MS-based measurement approaches for NPs, including the incorporation of separation methods for high-throughput analysis, MS imaging for spatial measurements, and methods for NP quantitation in single neurons.
{"title":"Mass Spectrometry Measurements of Neuropeptides: From Identification to Quantitation.","authors":"Eduardo A De La Toba, Sara E Bell, Elena V Romanova, Jonathan V Sweedler","doi":"10.1146/annurev-anchem-061020-022048","DOIUrl":"https://doi.org/10.1146/annurev-anchem-061020-022048","url":null,"abstract":"<p><p>Neuropeptides (NPs), a unique class of neuronal signaling molecules, participate in a variety of physiological processes and diseases. Quantitative measurements of NPs provide valuable information regarding how these molecules are differentially regulated in a multitude of neurological, metabolic, and mental disorders. Mass spectrometry (MS) has evolved to become a powerful technique for measuring trace levels of NPs in complex biological tissues and individual cells using both targeted and exploratory approaches. There are inherent challenges to measuring NPs, including their wide endogenous concentration range, transport and postmortem degradation, complex sample matrices, and statistical processing of MS data required for accurate NP quantitation. This review highlights techniques developed to address these challenges and presents an overview of quantitative MS-based measurement approaches for NPs, including the incorporation of separation methods for high-throughput analysis, MS imaging for spatial measurements, and methods for NP quantitation in single neurons.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":" ","pages":"83-106"},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40319900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-13Epub Date: 2022-02-25DOI: 10.1146/annurev-anchem-061020-123817
David S Kinnamon, Jacob T Heggestad, Jason Liu, Ashutosh Chilkoti
Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)-the gold-standard assay-requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.
{"title":"Technologies for Frugal and Sensitive Point-of-Care Immunoassays.","authors":"David S Kinnamon, Jacob T Heggestad, Jason Liu, Ashutosh Chilkoti","doi":"10.1146/annurev-anchem-061020-123817","DOIUrl":"10.1146/annurev-anchem-061020-123817","url":null,"abstract":"<p><p>Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)-the gold-standard assay-requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":"15 1","pages":"123-149"},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024863/pdf/nihms-1868917.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9135018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-13Epub Date: 2022-02-15DOI: 10.1146/annurev-anchem-061020-124221
Melanie J Bailey, Marcel de Puit, Francesco Saverio Romolo
Surface analysis techniques have rapidly evolved in the last decade. Some of these are already routinely used in forensics, such as for the detection of gunshot residue or for glass analysis. Some surface analysis approaches are attractive for their portability to the crime scene. Others can be very helpful in forensic laboratories owing to their high spatial resolution, analyte coverage, speed, and specificity. Despite this, many proposed applications of the techniques have not yet led to operational deployment. Here, we explore the application of these techniques to the most important traces commonly found in forensic casework. We highlight where there is potential to add value and outline the progress that is needed to achieve operational deployment. We consider within the scope of this review surface mass spectrometry, surface spectroscopy, and surface X-ray spectrometry. We show how these tools show great promise for the analysis of fingerprints, hair, drugs, explosives, and microtraces.
{"title":"Surface Analysis Techniques in Forensic Science: Successes, Challenges, and Opportunities for Operational Deployment.","authors":"Melanie J Bailey, Marcel de Puit, Francesco Saverio Romolo","doi":"10.1146/annurev-anchem-061020-124221","DOIUrl":"https://doi.org/10.1146/annurev-anchem-061020-124221","url":null,"abstract":"<p><p>Surface analysis techniques have rapidly evolved in the last decade. Some of these are already routinely used in forensics, such as for the detection of gunshot residue or for glass analysis. Some surface analysis approaches are attractive for their portability to the crime scene. Others can be very helpful in forensic laboratories owing to their high spatial resolution, analyte coverage, speed, and specificity. Despite this, many proposed applications of the techniques have not yet led to operational deployment. Here, we explore the application of these techniques to the most important traces commonly found in forensic casework. We highlight where there is potential to add value and outline the progress that is needed to achieve operational deployment. We consider within the scope of this review surface mass spectrometry, surface spectroscopy, and surface X-ray spectrometry. We show how these tools show great promise for the analysis of fingerprints, hair, drugs, explosives, and microtraces.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":" ","pages":"173-196"},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39925328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-13DOI: 10.1146/annurev-anchem-061020-014723
Ryan E Leighton, Ariel M Alperstein, Renee R Frontiera
Biological and material samples contain nanoscale heterogeneities that are unresolvable with conventional microscopy techniques. Super-resolution fluorescence methods can break the optical diffraction limit to observe these features, but they require samples to be fluorescently labeled. Over the past decade, progress has been made toward developing super-resolution techniques that do not require the use of labels. These label-free techniques span a variety of different approaches, including structured illumination, transient absorption, infrared absorption, and coherent Raman spectroscopies. Many draw inspiration from widely successful fluorescence-based techniques such as stimulated emission depletion (STED) microscopy, photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). In this review, we discuss the progress made in these fields along with the current challenges and prospects in reaching resolutions comparable to those achieved with fluorescence-based methods.
{"title":"Label-Free Super-Resolution Imaging Techniques.","authors":"Ryan E Leighton, Ariel M Alperstein, Renee R Frontiera","doi":"10.1146/annurev-anchem-061020-014723","DOIUrl":"https://doi.org/10.1146/annurev-anchem-061020-014723","url":null,"abstract":"<p><p>Biological and material samples contain nanoscale heterogeneities that are unresolvable with conventional microscopy techniques. Super-resolution fluorescence methods can break the optical diffraction limit to observe these features, but they require samples to be fluorescently labeled. Over the past decade, progress has been made toward developing super-resolution techniques that do not require the use of labels. These label-free techniques span a variety of different approaches, including structured illumination, transient absorption, infrared absorption, and coherent Raman spectroscopies. Many draw inspiration from widely successful fluorescence-based techniques such as stimulated emission depletion (STED) microscopy, photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). In this review, we discuss the progress made in these fields along with the current challenges and prospects in reaching resolutions comparable to those achieved with fluorescence-based methods.</p>","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":"15 1","pages":"37-55"},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454238/pdf/nihms-1833975.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9622031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}