Pub Date : 2023-03-20DOI: 10.3390/biomechanics3010014
A. Alanen, Olivia L. Bruce, L. Benson, Mathieu Chin, C. van den Berg, M. Jordan, R. Ferber, K. Pasanen
This study aimed to examine the utility of inertial measurement unit (IMU) technology to identify angle, step-specific, and side-specific differences between youth soccer players with and without a history of lower limb injury during soccer-specific field tests. Thirty-two youths (mean age 16.4 years) who were elite soccer players (Females n = 13, Males n = 19) wore IMUs during pre- and postseason soccer-specific change-of-direction assessments. A response feature analysis was used to compare the change in peak resultant acceleration of the groups at a level of significance of p < 0.05. Statistical analysis revealed significant differences in change of peak resultant acceleration of right leg final foot contact in a 180° pivot turn (p = 0.012, ES = 1.0) and a 90° cut (p = 0.04, ES = 0.75) between the two groups. These data suggest that players with a history of lower limb injury might experience greater angle and side-specific change within a season in peak resultant acceleration when compared with injury-free athletes. This study demonstrates that IMUs may present a useful method to analyze youth soccer players’ change of direction movement after returning to play. These results can inform future studies investigating player monitoring and may prove to be a useful tool for coaches when designing individualized training programs in this population.
{"title":"Capturing in Season Change-of-Direction Movement Pattern Change in Youth Soccer Players with Inertial Measurement Units","authors":"A. Alanen, Olivia L. Bruce, L. Benson, Mathieu Chin, C. van den Berg, M. Jordan, R. Ferber, K. Pasanen","doi":"10.3390/biomechanics3010014","DOIUrl":"https://doi.org/10.3390/biomechanics3010014","url":null,"abstract":"This study aimed to examine the utility of inertial measurement unit (IMU) technology to identify angle, step-specific, and side-specific differences between youth soccer players with and without a history of lower limb injury during soccer-specific field tests. Thirty-two youths (mean age 16.4 years) who were elite soccer players (Females n = 13, Males n = 19) wore IMUs during pre- and postseason soccer-specific change-of-direction assessments. A response feature analysis was used to compare the change in peak resultant acceleration of the groups at a level of significance of p < 0.05. Statistical analysis revealed significant differences in change of peak resultant acceleration of right leg final foot contact in a 180° pivot turn (p = 0.012, ES = 1.0) and a 90° cut (p = 0.04, ES = 0.75) between the two groups. These data suggest that players with a history of lower limb injury might experience greater angle and side-specific change within a season in peak resultant acceleration when compared with injury-free athletes. This study demonstrates that IMUs may present a useful method to analyze youth soccer players’ change of direction movement after returning to play. These results can inform future studies investigating player monitoring and may prove to be a useful tool for coaches when designing individualized training programs in this population.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42331747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-08DOI: 10.3390/biomechanics3010011
Raffaele Pertusio, Silvestro Roatta
In biomedical studies as well as in clinical trials, it is often useful to have a reliable measure of the force exerted by the body (e.g., clenching force at the teeth or pinch force at fingertips) or on the body by external stimuli (e.g., taps to elicit reflexes or local pressure for nociceptive stimulation). Thin-film sensors such as FlexiForce® provide a very handy and versatile solution for these applications, but can be easily damaged and offer poor accuracy and repeatability, being heavily affected by the surface material they come into contact with. The aim of the study is the realization of a 3D-printed housing that completely embeds the sensor, thus providing mechanical protection and increasing the reliability of the measurement. The increasing availability of 3D printers and of printing materials for medical use allows the user to shape the housing according to specific needs, with short developing time and low cost.
{"title":"3D-Printed Encapsulation of Thin-Film Transducers for Reliable Force Measurement in Biomedical Applications","authors":"Raffaele Pertusio, Silvestro Roatta","doi":"10.3390/biomechanics3010011","DOIUrl":"https://doi.org/10.3390/biomechanics3010011","url":null,"abstract":"In biomedical studies as well as in clinical trials, it is often useful to have a reliable measure of the force exerted by the body (e.g., clenching force at the teeth or pinch force at fingertips) or on the body by external stimuli (e.g., taps to elicit reflexes or local pressure for nociceptive stimulation). Thin-film sensors such as FlexiForce® provide a very handy and versatile solution for these applications, but can be easily damaged and offer poor accuracy and repeatability, being heavily affected by the surface material they come into contact with. The aim of the study is the realization of a 3D-printed housing that completely embeds the sensor, thus providing mechanical protection and increasing the reliability of the measurement. The increasing availability of 3D printers and of printing materials for medical use allows the user to shape the housing according to specific needs, with short developing time and low cost.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136245249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-08DOI: 10.3390/biomechanics3010012
P. Bazyar, Andreas Baumgart, H. Altenbach, A. Usbeck
Specific finite detail modeling of the human body gives a capable primary enhancement to the prediction of damage risk through automobile impact. Currently, car crash protection countermeasure improvement is based on an aggregate of testing with installed anthropomorphic test devices (i.e., ATD or dummy) and a mixture of multibody (dummy) and finite element detail (vehicle) modeling. If an incredibly easy finite element detail version can be advanced to capture extra statistics beyond the abilities of the multi-body structures, it might allow advanced countermeasure improvement through a more targeted prediction of overall performance. Numerous research has been done on finite element analysis of broken femurs. However, there are two missing pieces of information: 1- choosing the right material properties, and 2- designing a precise model including the inner structure of the bone. In this research, most of the chosen material properties for femur bone will be discussed and evaluated.
{"title":"An Overview of Selected Material Properties in Finite Element Modeling of the Human Femur","authors":"P. Bazyar, Andreas Baumgart, H. Altenbach, A. Usbeck","doi":"10.3390/biomechanics3010012","DOIUrl":"https://doi.org/10.3390/biomechanics3010012","url":null,"abstract":"Specific finite detail modeling of the human body gives a capable primary enhancement to the prediction of damage risk through automobile impact. Currently, car crash protection countermeasure improvement is based on an aggregate of testing with installed anthropomorphic test devices (i.e., ATD or dummy) and a mixture of multibody (dummy) and finite element detail (vehicle) modeling. If an incredibly easy finite element detail version can be advanced to capture extra statistics beyond the abilities of the multi-body structures, it might allow advanced countermeasure improvement through a more targeted prediction of overall performance. Numerous research has been done on finite element analysis of broken femurs. However, there are two missing pieces of information: 1- choosing the right material properties, and 2- designing a precise model including the inner structure of the bone. In this research, most of the chosen material properties for femur bone will be discussed and evaluated.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47128420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01Epub Date: 2023-03-10DOI: 10.3390/biomechanics3010013
John L Cerillo, Alexander N Becsey, Chai P Sanghadia, Kevin T Root, Brandon Lucke-Wold
Spinal bracing is a common non-surgical technique that allows clinicians to prevent and correct malformations or injuries of a patient's spinal column. This review will explore the current standards of practice on spinal brace utilization. Specifically, it will highlight bracing usage in traumatic injuries, pregnancy, pediatrics, osteoporosis, and hyperkyphosis; address radiological findings concurrent with brace usage; and provide an overview of the braces currently available and advancements in the field. In doing so, we aim to improve clinicians' understanding and knowledge of bracing in common spinal pathologies to promote their appropriate use and improve patient outcomes.
{"title":"Spine Bracing: When to Utilize-A Narrative Review.","authors":"John L Cerillo, Alexander N Becsey, Chai P Sanghadia, Kevin T Root, Brandon Lucke-Wold","doi":"10.3390/biomechanics3010013","DOIUrl":"10.3390/biomechanics3010013","url":null,"abstract":"<p><p>Spinal bracing is a common non-surgical technique that allows clinicians to prevent and correct malformations or injuries of a patient's spinal column. This review will explore the current standards of practice on spinal brace utilization. Specifically, it will highlight bracing usage in traumatic injuries, pregnancy, pediatrics, osteoporosis, and hyperkyphosis; address radiological findings concurrent with brace usage; and provide an overview of the braces currently available and advancements in the field. In doing so, we aim to improve clinicians' understanding and knowledge of bracing in common spinal pathologies to promote their appropriate use and improve patient outcomes.</p>","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":"3 1","pages":"136-154"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10295338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-24DOI: 10.3390/biomechanics3010010
Keita Honda, Yusuke Sekiguchi, S. Izumi
Older adults have a smaller effective living space and reduced physical activity. Although walking ability in various living spaces is necessary to maintain a healthy life and a high level of physical activity, it is unclear how older adults adapt to compliant surfaces when walking. The purpose of this study was to determine the differences in the trunk and lower limb kinematics while walking on a level versus compliant surface, and the effect of aging on these kinematic changes. Twenty-two healthy individuals (aged from 20–80 years) were asked to walk along a 7-m walkway at a comfortable speed on a level and compliant surface. Gait kinematics were measured using a three-dimensional camera-based motion analysis system. We found that knee and hip flexion and ankle plantarflexion angles in the early stance phase and thoracic flexion angle throughout the gait cycle were significantly increased when walking on a compliant surface versus a level surface. The change in the thoracic flexion angle, ankle plantarflexion angle, and cadence between level and compliant surfaces was significantly correlated with age. Therefore, older adults use increased thoracic flexion and ankle plantarflexion angles along with a higher cadence to navigate compliant surfaces.
{"title":"Effect of Aging on the Trunk and Lower Limb Kinematics during Gait on a Compliant Surface in Healthy Individuals","authors":"Keita Honda, Yusuke Sekiguchi, S. Izumi","doi":"10.3390/biomechanics3010010","DOIUrl":"https://doi.org/10.3390/biomechanics3010010","url":null,"abstract":"Older adults have a smaller effective living space and reduced physical activity. Although walking ability in various living spaces is necessary to maintain a healthy life and a high level of physical activity, it is unclear how older adults adapt to compliant surfaces when walking. The purpose of this study was to determine the differences in the trunk and lower limb kinematics while walking on a level versus compliant surface, and the effect of aging on these kinematic changes. Twenty-two healthy individuals (aged from 20–80 years) were asked to walk along a 7-m walkway at a comfortable speed on a level and compliant surface. Gait kinematics were measured using a three-dimensional camera-based motion analysis system. We found that knee and hip flexion and ankle plantarflexion angles in the early stance phase and thoracic flexion angle throughout the gait cycle were significantly increased when walking on a compliant surface versus a level surface. The change in the thoracic flexion angle, ankle plantarflexion angle, and cadence between level and compliant surfaces was significantly correlated with age. Therefore, older adults use increased thoracic flexion and ankle plantarflexion angles along with a higher cadence to navigate compliant surfaces.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41867751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-08DOI: 10.3390/biomechanics3010009
Akihiro Tamura, Keita Shimura, Yuri Inoue
The purpose of this study was to clarify the characteristics of lower-extremity kinematics during the running of soccer players with chronic ankle instability (CAI) in comparison to those without CAI. Twenty-two male college soccer players participated in this study. Twelve players were assigned to the CAI group and ten players to the non-CAI group, and players were diagnosed according to the Cumberland Ankle Instability Tool. Kinematic data of the hip, knee, ankle, foot, and ground reaction force components during the stance phase of running were obtained using a three-dimensional motion analysis system. The results revealed that soccer players with CAI who landed with ankle inversion and other characteristic kinematics in their lower extremity during the stance phase of running were similar to those without CAI. These results show that running kinematics in soccer players are not affected by the presence or absence of CAI. Future studies based on the results of this study may contribute to the analysis of the risk of developing CAI during soccer and may also help prevent lateral ankle sprains.
{"title":"Lower-Extremity Kinematics of Soccer Players with Chronic Ankle Instability during Running: A Case-Control Study","authors":"Akihiro Tamura, Keita Shimura, Yuri Inoue","doi":"10.3390/biomechanics3010009","DOIUrl":"https://doi.org/10.3390/biomechanics3010009","url":null,"abstract":"The purpose of this study was to clarify the characteristics of lower-extremity kinematics during the running of soccer players with chronic ankle instability (CAI) in comparison to those without CAI. Twenty-two male college soccer players participated in this study. Twelve players were assigned to the CAI group and ten players to the non-CAI group, and players were diagnosed according to the Cumberland Ankle Instability Tool. Kinematic data of the hip, knee, ankle, foot, and ground reaction force components during the stance phase of running were obtained using a three-dimensional motion analysis system. The results revealed that soccer players with CAI who landed with ankle inversion and other characteristic kinematics in their lower extremity during the stance phase of running were similar to those without CAI. These results show that running kinematics in soccer players are not affected by the presence or absence of CAI. Future studies based on the results of this study may contribute to the analysis of the risk of developing CAI during soccer and may also help prevent lateral ankle sprains.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43568438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.3390/biomechanics3010008
A. Behboodi, Ashwini Sansare, Samuel C. K. Lee
Smoothness is a hallmark of skilled, coordinated movement, however, mathematically quantifying movement smoothness is nuanced. Several smoothness metrics exist, each having its own limitations and may be specific to a particular motion such as upper limb reaching. To date, there is no consensus on which smoothness metric is the most appropriate for assessing cycling motion in children with cerebral palsy (CP). We evaluated the ability of four preexisting metrics, dimensionless jerk, spectral arc length measure, roughness index, and cross-correlation; and two new metrics, arc length and root mean square error, to quantify the smoothness of cycling in a preexisting dataset from children with CP (mean age 13.7 ± 2.6 years). First, to measure the repeatability of each measure in distinguishing between different levels of un-smoothness, we applied each metric to a set of simulated crank motion signals with a known number of aberrant revolutions using subjects’ actual crank angle data. Second, we used discriminant function analysis to statistically compare the strength of the six metrics, relative to each other, to discriminate between a smooth cycling motion obtained from a dataset of typically developed children (TD), the control group (mean age 14.9 ± 1.4 years), and a less smooth, halted cycling motion obtained from children with CP. Our results show that (1) ArcL showed the highest repeatability in accurately quantifying an unsmooth motion when the same cycling revolutions were presented in a different order, and (2) ArcL and DJ had the highest discriminatory ability to differentiate between an unsmooth and smooth cycling motion. Combining the results from the repeatability and discriminatory analysis, ArcL was the most repeatable and sensitive metric in identifying unsmooth, halted cycling motion from smooth motion. ArcL can hence be used as a metric in future studies to quantify changes in the smoothness of cycling motion pre- vs. post-interventions. Further, this metric may serve as a tool to track motor recovery not just in individuals with CP but in other patient populations with similar neurological deficits that may present with halted, unsmooth cycling motion.
{"title":"Quantification of Cycling Smoothness in Children with Cerebral Palsy","authors":"A. Behboodi, Ashwini Sansare, Samuel C. K. Lee","doi":"10.3390/biomechanics3010008","DOIUrl":"https://doi.org/10.3390/biomechanics3010008","url":null,"abstract":"Smoothness is a hallmark of skilled, coordinated movement, however, mathematically quantifying movement smoothness is nuanced. Several smoothness metrics exist, each having its own limitations and may be specific to a particular motion such as upper limb reaching. To date, there is no consensus on which smoothness metric is the most appropriate for assessing cycling motion in children with cerebral palsy (CP). We evaluated the ability of four preexisting metrics, dimensionless jerk, spectral arc length measure, roughness index, and cross-correlation; and two new metrics, arc length and root mean square error, to quantify the smoothness of cycling in a preexisting dataset from children with CP (mean age 13.7 ± 2.6 years). First, to measure the repeatability of each measure in distinguishing between different levels of un-smoothness, we applied each metric to a set of simulated crank motion signals with a known number of aberrant revolutions using subjects’ actual crank angle data. Second, we used discriminant function analysis to statistically compare the strength of the six metrics, relative to each other, to discriminate between a smooth cycling motion obtained from a dataset of typically developed children (TD), the control group (mean age 14.9 ± 1.4 years), and a less smooth, halted cycling motion obtained from children with CP. Our results show that (1) ArcL showed the highest repeatability in accurately quantifying an unsmooth motion when the same cycling revolutions were presented in a different order, and (2) ArcL and DJ had the highest discriminatory ability to differentiate between an unsmooth and smooth cycling motion. Combining the results from the repeatability and discriminatory analysis, ArcL was the most repeatable and sensitive metric in identifying unsmooth, halted cycling motion from smooth motion. ArcL can hence be used as a metric in future studies to quantify changes in the smoothness of cycling motion pre- vs. post-interventions. Further, this metric may serve as a tool to track motor recovery not just in individuals with CP but in other patient populations with similar neurological deficits that may present with halted, unsmooth cycling motion.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48850428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.3390/biomechanics3010007
Carina Thomas, Kevin Nolte, Marcus Schmidt, T. Jaitner
Children have different anthropometrical size ratios in relation to ball and basket compared to adults, but usually compete on the same basket height and field. Therefore, they have to adapt their throwing technique, which might result in movement patterns unfavorable for long-term performance development. In this study, we analyze how children adapt their throwing techniques to different conditions. Seven basketball players (10.14 ± 1.12 years) completed a total of 60 throws, combining different ball sizes, basket heights, and distances. The throwing movements were captured by a 3D motion capture system. Accumulated distances between all time courses of angles, angular accelerations, and velocities served as similarity measures and were analyzed by cluster analysis, including purity measures. Considering all throws, a division into seven clusters separated each individual. For all subjects, distances accounted for the most changes in the throwing motion (purity 0.81–1). In the subclusters, the basket heights were not a decisive condition (purity 0.42–0.63). However, an increase in purity was found compared to the main clusters. Children seem to adapt their movement behavior primarily to throwing distances and subordinately to basket heights, which indicates that changing playing conditions (e.g., closer 3-point line, lower baskets) might be beneficial in mini-basketball.
{"title":"Lower Baskets and Smaller Balls Influence Mini-Basketball Players’ Throwing Motions","authors":"Carina Thomas, Kevin Nolte, Marcus Schmidt, T. Jaitner","doi":"10.3390/biomechanics3010007","DOIUrl":"https://doi.org/10.3390/biomechanics3010007","url":null,"abstract":"Children have different anthropometrical size ratios in relation to ball and basket compared to adults, but usually compete on the same basket height and field. Therefore, they have to adapt their throwing technique, which might result in movement patterns unfavorable for long-term performance development. In this study, we analyze how children adapt their throwing techniques to different conditions. Seven basketball players (10.14 ± 1.12 years) completed a total of 60 throws, combining different ball sizes, basket heights, and distances. The throwing movements were captured by a 3D motion capture system. Accumulated distances between all time courses of angles, angular accelerations, and velocities served as similarity measures and were analyzed by cluster analysis, including purity measures. Considering all throws, a division into seven clusters separated each individual. For all subjects, distances accounted for the most changes in the throwing motion (purity 0.81–1). In the subclusters, the basket heights were not a decisive condition (purity 0.42–0.63). However, an increase in purity was found compared to the main clusters. Children seem to adapt their movement behavior primarily to throwing distances and subordinately to basket heights, which indicates that changing playing conditions (e.g., closer 3-point line, lower baskets) might be beneficial in mini-basketball.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42276476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-12DOI: 10.3390/biomechanics3010006
High-quality academic publishing is built on rigorous peer review [...]
高质量的学术出版建立在严格的同行评审基础上〔…〕
{"title":"Acknowledgment to the Reviewers of Biomechanics in 2022","authors":"","doi":"10.3390/biomechanics3010006","DOIUrl":"https://doi.org/10.3390/biomechanics3010006","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43948567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-10DOI: 10.3390/biomechanics3010005
Isaura Leite, P. Fonseca, Lurdes Ávila-Carvalho, J. Vilas-Boas, M. Goethel, L. Mochizuki, F. Conceição
The biomechanical analysis of Acrobatic Gymnastics elements has not been extensively explored in scientific research to date. Due to the increased challenge of implementing experimental protocols and collecting data from multiple individuals, it is required to develop strategies that allow a safe, valid and reproducible methodology. This work aims to collect information and systematically analyze the biomechanical approach in Acrobatic Gymnastics to date. A search was conducted in the Web of Science, Scopus, EBSCO, PubMed and ISBS databases. After the selection and quality-control phases, fourteen documents were included. The results revealed that the biomechanical research in Acrobatics has been focused on balance evaluation, in which the force plate and the center of pressure are the most used instrument and variable, respectively. Research has been focused on kinetics evaluation. Kinematics analysis of pair/group elements would provide scientific answers to unresolved problems, considering that Gymnastics provides almost limitless possibilities to study human motion. Researchers should focus on the type of element, difficulty degree, main characteristics, relationship between the instrument and floor surface specificity and safety conditions. We encourage gymnastics clubs and coaches to establish networks with biomechanics laboratories, allowing to bridge the gap between research and practice.
杂技体操元素的生物力学分析至今在科学研究中还没有得到广泛的探讨。由于实施实验方案和从多个个体收集数据的挑战增加,需要制定允许安全,有效和可重复的方法的策略。本工作旨在收集资料,系统分析迄今为止杂技体操的生物力学方法。在Web of Science、Scopus、EBSCO、PubMed和ISBS数据库中进行了检索。经过选择和质量控制阶段,共纳入14份文件。结果表明,杂技的生物力学研究主要集中在平衡评价上,其中力板和压力中心分别是使用最多的仪器和变量。研究的重点是动力学评价。考虑到体操为研究人体运动提供了几乎无限的可能性,对/组元素的运动学分析将为尚未解决的问题提供科学的答案。研究人员应重点研究元件类型、难易程度、主要特性、仪器与地板表面的关系以及安全条件。我们鼓励体操俱乐部和教练与生物力学实验室建立联系,以弥合研究和实践之间的差距。
{"title":"Biomechanical Research Methods Used in Acrobatic Gymnastics: A Systematic Review","authors":"Isaura Leite, P. Fonseca, Lurdes Ávila-Carvalho, J. Vilas-Boas, M. Goethel, L. Mochizuki, F. Conceição","doi":"10.3390/biomechanics3010005","DOIUrl":"https://doi.org/10.3390/biomechanics3010005","url":null,"abstract":"The biomechanical analysis of Acrobatic Gymnastics elements has not been extensively explored in scientific research to date. Due to the increased challenge of implementing experimental protocols and collecting data from multiple individuals, it is required to develop strategies that allow a safe, valid and reproducible methodology. This work aims to collect information and systematically analyze the biomechanical approach in Acrobatic Gymnastics to date. A search was conducted in the Web of Science, Scopus, EBSCO, PubMed and ISBS databases. After the selection and quality-control phases, fourteen documents were included. The results revealed that the biomechanical research in Acrobatics has been focused on balance evaluation, in which the force plate and the center of pressure are the most used instrument and variable, respectively. Research has been focused on kinetics evaluation. Kinematics analysis of pair/group elements would provide scientific answers to unresolved problems, considering that Gymnastics provides almost limitless possibilities to study human motion. Researchers should focus on the type of element, difficulty degree, main characteristics, relationship between the instrument and floor surface specificity and safety conditions. We encourage gymnastics clubs and coaches to establish networks with biomechanics laboratories, allowing to bridge the gap between research and practice.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46934685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}