Pub Date : 2022-08-11eCollection Date: 2022-09-14DOI: 10.1016/j.bpr.2022.100069
Maksim V Baranov, Melina Ioannidis, Sami Balahsioui, Auke Boersma, Rinse de Boer, Manoj Kumar, Masato Niwa, Tasuku Hirayama, Qintian Zhou, Terrence M Hopkins, Pieter Grijpstra, Shashi Thutupalli, Stefano Sacanna, Geert van den Bogaart
Localized fluxes, production, and/or degradation coupled to limited diffusion are well known to result in stable spatial concentration gradients of biomolecules in the cell. In this study, we demonstrate that this also holds true for small ions, since we found that the close membrane apposition between the membrane of a phagosome and the surface of the cargo particle it encloses, together with localized membrane rupture, suffice for stable gradients of protons and iron cations within the lumen of the phagosome. Our data show that, in phagosomes containing hexapod-shaped silica colloid particles, the phagosomal membrane is ruptured at the positions of the tips of the rods, but not at other positions. This results in the confined leakage at these positions of protons and iron from the lumen of the phagosome into the cytosol. In contrast, acidification and iron accumulation still occur at the positions of the phagosomes nearer to the cores of the particles. Our study strengthens the concept that coupling metabolic and signaling reaction cascades can be spatially confined by localized limited diffusion.
{"title":"Irregular particle morphology and membrane rupture facilitate ion gradients in the lumen of phagosomes.","authors":"Maksim V Baranov, Melina Ioannidis, Sami Balahsioui, Auke Boersma, Rinse de Boer, Manoj Kumar, Masato Niwa, Tasuku Hirayama, Qintian Zhou, Terrence M Hopkins, Pieter Grijpstra, Shashi Thutupalli, Stefano Sacanna, Geert van den Bogaart","doi":"10.1016/j.bpr.2022.100069","DOIUrl":"https://doi.org/10.1016/j.bpr.2022.100069","url":null,"abstract":"<p><p>Localized fluxes, production, and/or degradation coupled to limited diffusion are well known to result in stable spatial concentration gradients of biomolecules in the cell. In this study, we demonstrate that this also holds true for small ions, since we found that the close membrane apposition between the membrane of a phagosome and the surface of the cargo particle it encloses, together with localized membrane rupture, suffice for stable gradients of protons and iron cations within the lumen of the phagosome. Our data show that, in phagosomes containing hexapod-shaped silica colloid particles, the phagosomal membrane is ruptured at the positions of the tips of the rods, but not at other positions. This results in the confined leakage at these positions of protons and iron from the lumen of the phagosome into the cytosol. In contrast, acidification and iron accumulation still occur at the positions of the phagosomes nearer to the cores of the particles. Our study strengthens the concept that coupling metabolic and signaling reaction cascades can be spatially confined by localized limited diffusion.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40705902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-11eCollection Date: 2022-09-14DOI: 10.1016/j.bpr.2022.100068
Joëlle Eid, Marius Socol, Antoine Naillon, Jérôme Feuillard, Luca Ciandrini, Emmanuel Margeat, Benoit Charlot, Marylène Mougel
Real-time visualization and quantification of viruses released by a cell are crucial to further decipher infection processes. Kinetics studies at the single-cell level will circumvent the limitations of bulk assays with asynchronous virus replication. We have implemented a "viro-fluidic" method, which combines microfluidics and virology at single-cell and single-virus resolutions. As an experimental model, we used standard cell lines producing fluorescent HIV-like particles (VLPs). First, to scale the strategy to the single-cell level, we validated a sensitive flow virometry system to detect VLPs in low concentration samples (≥104 VLPs/mL). Then, this system was coupled to a single-cell trapping device to monitor in real-time the VLPs released, one at a time, from single cells under cell culture conditions. Our results revealed an average production rate of 50 VLPs/h/cell similar to the rate estimated for the same cells grown in population. Thus, the virus-producing capacities of the trapped cells were preserved and its real-time monitoring was accurate. Moreover, single-cell analysis revealed a release of VLPs with stochastic bursts with typical time intervals of few minutes, revealing the existence of limiting step(s) in the virus biogenesis process. Our tools can be applied to other pathogens or to extracellular vesicles to elucidate the dissemination mechanisms of these biological nanoparticles.
{"title":"Viro-fluidics: Real-time analysis of virus production kinetics at the single-cell level.","authors":"Joëlle Eid, Marius Socol, Antoine Naillon, Jérôme Feuillard, Luca Ciandrini, Emmanuel Margeat, Benoit Charlot, Marylène Mougel","doi":"10.1016/j.bpr.2022.100068","DOIUrl":"https://doi.org/10.1016/j.bpr.2022.100068","url":null,"abstract":"<p><p>Real-time visualization and quantification of viruses released by a cell are crucial to further decipher infection processes. Kinetics studies at the single-cell level will circumvent the limitations of bulk assays with asynchronous virus replication. We have implemented a \"viro-fluidic\" method, which combines microfluidics and virology at single-cell and single-virus resolutions. As an experimental model, we used standard cell lines producing fluorescent HIV-like particles (VLPs). First, to scale the strategy to the single-cell level, we validated a sensitive flow virometry system to detect VLPs in low concentration samples (≥10<sup>4</sup> VLPs/mL). Then, this system was coupled to a single-cell trapping device to monitor in real-time the VLPs released, one at a time, from single cells under cell culture conditions. Our results revealed an average production rate of 50 VLPs/h/cell similar to the rate estimated for the same cells grown in population. Thus, the virus-producing capacities of the trapped cells were preserved and its real-time monitoring was accurate. Moreover, single-cell analysis revealed a release of VLPs with stochastic bursts with typical time intervals of few minutes, revealing the existence of limiting step(s) in the virus biogenesis process. Our tools can be applied to other pathogens or to extracellular vesicles to elucidate the dissemination mechanisms of these biological nanoparticles.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/b5/main.PMC9680794.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40704941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-05eCollection Date: 2022-09-14DOI: 10.1016/j.bpr.2022.100065
Tianze Guo, Olivia L Modi, Jillian Hirano, Horacio V Guzman, Tatsuhisa Tsuboi
The three-dimensional conformation of RNA is important in the function and fate of the molecule. The common conformation of mRNA is formed based on the closed-loop structure and internal base pairings with the activity of the ribosome movements. However, recent reports suggest that the closed-loop structure might not be formed in many mRNAs. This implies that mRNA can be considered as a single polymer in the cell. Here, we introduce the Three-dimensional RNA Illustration Program (TRIP) to model the three-dimensional RNA folding shape based on single-chain models and angle restriction of each bead component from previously reported single-molecule fluorescence in situ hybridization (smFISH) experimental data. This simulation method was able to recapitulate the mRNA conformation change of the translation activity and three-dimensional positional interaction between an organelle and its localized mRNAs as end-to-end distances. Within the analyzed cases, base-pairing interactions only have minor effects on the three-dimensional mRNA conformation, and instead single-chain polymer characteristics have a more significant impact on the conformation. This top-down method will be used to interpret the aggregation mechanism of mRNA under different cellular conditions such as nucleolus and phase-separated granules.
{"title":"Single-chain models illustrate the 3D RNA folding shape during translation.","authors":"Tianze Guo, Olivia L Modi, Jillian Hirano, Horacio V Guzman, Tatsuhisa Tsuboi","doi":"10.1016/j.bpr.2022.100065","DOIUrl":"https://doi.org/10.1016/j.bpr.2022.100065","url":null,"abstract":"<p><p>The three-dimensional conformation of RNA is important in the function and fate of the molecule. The common conformation of mRNA is formed based on the closed-loop structure and internal base pairings with the activity of the ribosome movements. However, recent reports suggest that the closed-loop structure might not be formed in many mRNAs. This implies that mRNA can be considered as a single polymer in the cell. Here, we introduce the Three-dimensional RNA Illustration Program (TRIP) to model the three-dimensional RNA folding shape based on single-chain models and angle restriction of each bead component from previously reported single-molecule fluorescence in situ hybridization (smFISH) experimental data. This simulation method was able to recapitulate the mRNA conformation change of the translation activity and three-dimensional positional interaction between an organelle and its localized mRNAs as end-to-end distances. Within the analyzed cases, base-pairing interactions only have minor effects on the three-dimensional mRNA conformation, and instead single-chain polymer characteristics have a more significant impact on the conformation. This top-down method will be used to interpret the aggregation mechanism of mRNA under different cellular conditions such as nucleolus and phase-separated granules.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b2/e4/main.PMC9680788.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40705901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-05eCollection Date: 2022-09-14DOI: 10.1016/j.bpr.2022.100067
Marc Rico-Pasto, Felix Ritort
Knowledge of the elastic properties, e.g., the persistence length or interphosphate distance, of single-stranded (ss) and double-stranded (ds) DNA under different experimental conditions is critical to characterizing molecular reactions studied with single-molecule techniques. While previous experiments have addressed the dependence of the elastic parameters upon varying ionic strength and contour length, temperature-dependent effects are less studied. Here, we examine the temperature-dependent elasticity of ssDNA and dsDNA in the range 5°C-50°C using a temperature-jump optical trap. We find a temperature softening for dsDNA and a temperature stiffening for ssDNA. Our results highlight the need for a general theory explaining the phenomenology observed.
{"title":"Temperature-dependent elastic properties of DNA.","authors":"Marc Rico-Pasto, Felix Ritort","doi":"10.1016/j.bpr.2022.100067","DOIUrl":"https://doi.org/10.1016/j.bpr.2022.100067","url":null,"abstract":"<p><p>Knowledge of the elastic properties, e.g., the persistence length or interphosphate distance, of single-stranded (ss) and double-stranded (ds) DNA under different experimental conditions is critical to characterizing molecular reactions studied with single-molecule techniques. While previous experiments have addressed the dependence of the elastic parameters upon varying ionic strength and contour length, temperature-dependent effects are less studied. Here, we examine the temperature-dependent elasticity of ssDNA and dsDNA in the range 5°C-50°C using a temperature-jump optical trap. We find a temperature softening for dsDNA and a temperature stiffening for ssDNA. Our results highlight the need for a general theory explaining the phenomenology observed.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/c6/main.PMC9680767.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40705905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-22eCollection Date: 2022-09-14DOI: 10.1016/j.bpr.2022.100064
Hanh-Thuc Ton Tran, Caishun Li, Radhika Chakraberty, Christopher W Cairo
The B cell membrane expresses sialic-acid-binding immunoglobulin-like lectins, also called Siglecs, that are important for modulating immune response. Siglecs have interactions with sialoglycoproteins found on the same membrane (cis-ligands) that result in homotypic and heterotypic receptor clusters. The regulation and organization of these clusters, and their effect on cell activation, is not clearly understood. We investigated the role of human neuraminidase enzymes NEU1 and NEU3 on the clustering of CD22 on B cells using confocal microscopy. We observed that native NEU1 and NEU3 activity influence the cluster size of CD22. Using single-particle tracking, we observed that NEU3 activity increased the lateral mobility of CD22, which was in contrast to the effect of exogenous bacterial NEU enzymes. Moreover, we show that native NEU1 and NEU3 activity influenced cellular Ca2+ levels, supporting a role for these enzymes in regulating B cell activation. Our results establish a role for native NEU activity in modulating CD22 organization and function on B cells.
{"title":"NEU1 and NEU3 enzymes alter CD22 organization on B cells.","authors":"Hanh-Thuc Ton Tran, Caishun Li, Radhika Chakraberty, Christopher W Cairo","doi":"10.1016/j.bpr.2022.100064","DOIUrl":"https://doi.org/10.1016/j.bpr.2022.100064","url":null,"abstract":"<p><p>The B cell membrane expresses sialic-acid-binding immunoglobulin-like lectins, also called Siglecs, that are important for modulating immune response. Siglecs have interactions with sialoglycoproteins found on the same membrane (<i>cis</i>-ligands) that result in homotypic and heterotypic receptor clusters. The regulation and organization of these clusters, and their effect on cell activation, is not clearly understood. We investigated the role of human neuraminidase enzymes NEU1 and NEU3 on the clustering of CD22 on B cells using confocal microscopy. We observed that native NEU1 and NEU3 activity influence the cluster size of CD22. Using single-particle tracking, we observed that NEU3 activity increased the lateral mobility of CD22, which was in contrast to the effect of exogenous bacterial NEU enzymes. Moreover, we show that native NEU1 and NEU3 activity influenced cellular Ca<sup>2+</sup> levels, supporting a role for these enzymes in regulating B cell activation. Our results establish a role for native NEU activity in modulating CD22 organization and function on B cells.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7c/15/main.PMC9680808.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40705904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Collective cell migration is a dynamic and interactive behavior of cell cohorts essential for diverse physiological developments in living organisms. Recent studies have revealed the importance of three-dimensional (3D) topographical confinements to regulate the migration modes of cell cohorts in tubular confinement. However, conventional in vitro assays fail to observe cells' behavior in response to 3D structural changes, which is necessary for examining the geometric regulation factors of collective migration. Here, we introduce a newly developed assay for fabricating flexible 3D structures of capillary microtunnels to examine the behavior of vascular endothelial cells (ECs) as they progress through the successive transition across wide or narrow tube structures. The microtunnels with altered diameters were formed inside gelatin-gel blocks by photo-thermal etching with micrometer-sized spot heating of the focused infrared laser absorption. The ECs migrated and spread two-dimensionally on the inner surface of gelatin capillary microtunnels as a monolayer instead of filling the entire capillary. In the straight cylindrical topographical constraint, leading ECs exhibited no apparent diameter dependence for the maximum peak migration velocity. However, widening the diameter in the narrow-wide structures caused a decrease in migration velocity following in direct proportion to the diameter increase ratio, whereas narrowing the diameter in wide-narrow microtunnels increased the speed without obvious correlation between velocity change and diameter change. The results demonstrated the ability of the newly developed flexible 3D gelatin tube structures for collective cell migration, and the findings provide insights into the dominant geometric factor of the emerging migratory modes for endothelial migration as asymmetric fluid flow-like behavior in the borderless cylindrical cell sheets.
{"title":"Dominant geometrical factors of collective cell migration in flexible 3D gelatin tube structures.","authors":"Mitsuru Sentoku, Kento Iida, Hiromichi Hashimoto, Kenji Yasuda","doi":"10.1016/j.bpr.2022.100063","DOIUrl":"https://doi.org/10.1016/j.bpr.2022.100063","url":null,"abstract":"<p><p>Collective cell migration is a dynamic and interactive behavior of cell cohorts essential for diverse physiological developments in living organisms. Recent studies have revealed the importance of three-dimensional (3D) topographical confinements to regulate the migration modes of cell cohorts in tubular confinement. However, conventional in vitro assays fail to observe cells' behavior in response to 3D structural changes, which is necessary for examining the geometric regulation factors of collective migration. Here, we introduce a newly developed assay for fabricating flexible 3D structures of capillary microtunnels to examine the behavior of vascular endothelial cells (ECs) as they progress through the successive transition across wide or narrow tube structures. The microtunnels with altered diameters were formed inside gelatin-gel blocks by photo-thermal etching with micrometer-sized spot heating of the focused infrared laser absorption. The ECs migrated and spread two-dimensionally on the inner surface of gelatin capillary microtunnels as a monolayer instead of filling the entire capillary. In the straight cylindrical topographical constraint, leading ECs exhibited no apparent diameter dependence for the maximum peak migration velocity. However, widening the diameter in the narrow-wide structures caused a decrease in migration velocity following in direct proportion to the diameter increase ratio, whereas narrowing the diameter in wide-narrow microtunnels increased the speed without obvious correlation between velocity change and diameter change. The results demonstrated the ability of the newly developed flexible 3D gelatin tube structures for collective cell migration, and the findings provide insights into the dominant geometric factor of the emerging migratory modes for endothelial migration as asymmetric fluid flow-like behavior in the borderless cylindrical cell sheets.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/af/0e/main.PMC9680702.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40705900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-15eCollection Date: 2022-09-14DOI: 10.1016/j.bpr.2022.100061
Swetha Chandrasekar, Sophia Kuipa, Ana I Vargas, Tetyana Ignatova, Slava V Rotkin, Sabrina S Jedlicka
While exposure of C17.2 neural progenitor cells (NPCs) to nanomolar concentrations of carbon nanotubes (NTs) yields evidence of cellular substructure reorganization and alteration of cell division and differentiation, the mechanisms of NT entry are not understood. This study examines the entry modes of (GT)20 DNA-wrapped single-walled carbon nanotubes (SWCNTs) into NPCs. Several endocytic mechanisms were examined for responsibility in nanomaterial uptake and connections to alterations in cell development via cell-cycle regulation. Chemical cell-cycle arrest agents were used to synchronize NPCs in early G1, late G1/S, and G2/M phases at rates (>80%) aligned with previously documented levels of synchrony for stem cells. Synchronization led to the highest reduction in SWCNT internalization during the G1/S transition of the cell cycle. Concurrently, known inhibitors of endocytosis were used to gain control over established endocytic machineries (receptor-mediated endocytosis (RME), macropinocytosis (MP), and clathrin-independent endocytosis (CIE)), which resulted in a decrease in uptake of SWCNTs across the board in comparison with the control. The outcome implicated RME as the primary mechanism of uptake while suggesting that other endocytic mechanisms, though still fractionally responsible, are not central to SWCNT uptake and can be supplemented by RME when compromised. Thereby, endocytosis of nanomaterials was shown to have a dependency on cell-cycle progression in NPCs.
{"title":"Cell cycle-dependent endocytosis of DNA-wrapped single-walled carbon nanotubes by neural progenitor cells.","authors":"Swetha Chandrasekar, Sophia Kuipa, Ana I Vargas, Tetyana Ignatova, Slava V Rotkin, Sabrina S Jedlicka","doi":"10.1016/j.bpr.2022.100061","DOIUrl":"https://doi.org/10.1016/j.bpr.2022.100061","url":null,"abstract":"<p><p>While exposure of C17.2 neural progenitor cells (NPCs) to nanomolar concentrations of carbon nanotubes (NTs) yields evidence of cellular substructure reorganization and alteration of cell division and differentiation, the mechanisms of NT entry are not understood. This study examines the entry modes of (GT)<sub>20</sub> DNA-wrapped single-walled carbon nanotubes (SWCNTs) into NPCs. Several endocytic mechanisms were examined for responsibility in nanomaterial uptake and connections to alterations in cell development via cell-cycle regulation. Chemical cell-cycle arrest agents were used to synchronize NPCs in early G<sub>1</sub>, late G<sub>1</sub>/S, and G<sub>2</sub>/M phases at rates (>80%) aligned with previously documented levels of synchrony for stem cells. Synchronization led to the highest reduction in SWCNT internalization during the G<sub>1</sub>/S transition of the cell cycle. Concurrently, known inhibitors of endocytosis were used to gain control over established endocytic machineries (receptor-mediated endocytosis (RME), macropinocytosis (MP), and clathrin-independent endocytosis (CIE)), which resulted in a decrease in uptake of SWCNTs across the board in comparison with the control. The outcome implicated RME as the primary mechanism of uptake while suggesting that other endocytic mechanisms, though still fractionally responsible, are not central to SWCNT uptake and can be supplemented by RME when compromised. Thereby, endocytosis of nanomaterials was shown to have a dependency on cell-cycle progression in NPCs.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/be/13/main.PMC9680777.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40705903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-08DOI: 10.1016/j.bpr.2022.100055
S Galiani, K Reglinski, P Carravilla, A Barbotin, I Urbančič, J Ott, J Sehr, E Sezgin, F Schneider, D Waithe, P Hublitz, W Schliebs, R Erdmann, C Eggeling
Cellular functions rely on proper actions of organelles such as peroxisomes. These organelles rely on the import of proteins from the cytosol. The peroxisomal import receptor PEX5 takes up target proteins in the cytosol and transports them to the peroxisomal matrix. However, its cytosolic molecular interactions have so far not directly been disclosed. Here, we combined advanced optical microscopy and spectroscopy techniques such as fluorescence correlation spectroscopy and stimulated emission depletion microscopy with biochemical tools to present a detailed characterization of the cytosolic diffusion and interaction dynamics of PEX5. Among other features, we highlight a slow diffusion of PEX5, independent of aggregation or target binding, but associated with cytosolic interaction partners via its N-terminal domain. This sheds new light on the functionality of the receptor in the cytosol as well as highlighting the potential of using complementary microscopy tools to decipher molecular interactions in the cytosol by studying their diffusion dynamics.
细胞功能有赖于过氧物酶体等细胞器的正常运作。这些细胞器依赖于从细胞质中导入蛋白质。过氧物酶体导入受体 PEX5 在细胞质中吸收目标蛋白质,并将其转运到过氧物酶体基质中。然而,到目前为止,它与细胞质的分子相互作用还没有被直接披露。在这里,我们将先进的光学显微镜和光谱技术(如荧光相关光谱和受激发射损耗显微镜)与生化工具相结合,详细描述了 PEX5 的胞浆扩散和相互作用动力学。除其他特征外,我们还强调了 PEX5 的缓慢扩散,这种扩散与聚集或目标结合无关,但通过其 N 端结构域与细胞膜相互作用伙伴相关联。这为研究受体在细胞质中的功能提供了新的视角,同时也凸显了利用互补显微镜工具,通过研究其扩散动力学来解密细胞质中分子相互作用的潜力。
{"title":"Diffusion and interaction dynamics of the cytosolic peroxisomal import receptor PEX5.","authors":"S Galiani, K Reglinski, P Carravilla, A Barbotin, I Urbančič, J Ott, J Sehr, E Sezgin, F Schneider, D Waithe, P Hublitz, W Schliebs, R Erdmann, C Eggeling","doi":"10.1016/j.bpr.2022.100055","DOIUrl":"10.1016/j.bpr.2022.100055","url":null,"abstract":"<p><p>Cellular functions rely on proper actions of organelles such as peroxisomes. These organelles rely on the import of proteins from the cytosol. The peroxisomal import receptor PEX5 takes up target proteins in the cytosol and transports them to the peroxisomal matrix. However, its cytosolic molecular interactions have so far not directly been disclosed. Here, we combined advanced optical microscopy and spectroscopy techniques such as fluorescence correlation spectroscopy and stimulated emission depletion microscopy with biochemical tools to present a detailed characterization of the cytosolic diffusion and interaction dynamics of PEX5. Among other features, we highlight a slow diffusion of PEX5, independent of aggregation or target binding, but associated with cytosolic interaction partners via its N-terminal domain. This sheds new light on the functionality of the receptor in the cytosol as well as highlighting the potential of using complementary microscopy tools to decipher molecular interactions in the cytosol by studying their diffusion dynamics.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/8d/main.PMC9586885.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10853977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-08DOI: 10.1016/j.bpr.2022.100057
Pablo Carravilla, Anindita Dasgupta, Gaukhar Zhurgenbayeva, Dmytro I Danylchuk, Andrey S Klymchenko, Erdinc Sezgin, Christian Eggeling
[This corrects the article DOI: 10.1016/j.bpr.2021.100023.].
[此处更正了文章 DOI:10.1016/j.bpr.2021.100023.]。
{"title":"Erratum: Long-term STED imaging of membrane packing and dynamics by exchangeable polarity-sensitive dyes.","authors":"Pablo Carravilla, Anindita Dasgupta, Gaukhar Zhurgenbayeva, Dmytro I Danylchuk, Andrey S Klymchenko, Erdinc Sezgin, Christian Eggeling","doi":"10.1016/j.bpr.2022.100057","DOIUrl":"10.1016/j.bpr.2022.100057","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1016/j.bpr.2021.100023.].</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85988206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}